1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7 #include <linux/types.h> 8 #include <linux/string.h> 9 #include <linux/kvm.h> 10 #include <linux/kvm_host.h> 11 #include <linux/highmem.h> 12 #include <linux/gfp.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/vmalloc.h> 16 #include <linux/srcu.h> 17 #include <linux/anon_inodes.h> 18 #include <linux/file.h> 19 #include <linux/debugfs.h> 20 21 #include <asm/kvm_ppc.h> 22 #include <asm/kvm_book3s.h> 23 #include <asm/book3s/64/mmu-hash.h> 24 #include <asm/hvcall.h> 25 #include <asm/synch.h> 26 #include <asm/ppc-opcode.h> 27 #include <asm/cputable.h> 28 #include <asm/pte-walk.h> 29 30 #include "book3s.h" 31 #include "book3s_hv.h" 32 #include "trace_hv.h" 33 34 //#define DEBUG_RESIZE_HPT 1 35 36 #ifdef DEBUG_RESIZE_HPT 37 #define resize_hpt_debug(resize, ...) \ 38 do { \ 39 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 40 printk(__VA_ARGS__); \ 41 } while (0) 42 #else 43 #define resize_hpt_debug(resize, ...) \ 44 do { } while (0) 45 #endif 46 47 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 48 long pte_index, unsigned long pteh, 49 unsigned long ptel, unsigned long *pte_idx_ret); 50 51 struct kvm_resize_hpt { 52 /* These fields read-only after init */ 53 struct kvm *kvm; 54 struct work_struct work; 55 u32 order; 56 57 /* These fields protected by kvm->arch.mmu_setup_lock */ 58 59 /* Possible values and their usage: 60 * <0 an error occurred during allocation, 61 * -EBUSY allocation is in the progress, 62 * 0 allocation made successfully. 63 */ 64 int error; 65 66 /* Private to the work thread, until error != -EBUSY, 67 * then protected by kvm->arch.mmu_setup_lock. 68 */ 69 struct kvm_hpt_info hpt; 70 }; 71 72 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 73 { 74 unsigned long hpt = 0; 75 int cma = 0; 76 struct page *page = NULL; 77 struct revmap_entry *rev; 78 unsigned long npte; 79 80 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 81 return -EINVAL; 82 83 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 84 if (page) { 85 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 86 memset((void *)hpt, 0, (1ul << order)); 87 cma = 1; 88 } 89 90 if (!hpt) 91 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 92 |__GFP_NOWARN, order - PAGE_SHIFT); 93 94 if (!hpt) 95 return -ENOMEM; 96 97 /* HPTEs are 2**4 bytes long */ 98 npte = 1ul << (order - 4); 99 100 /* Allocate reverse map array */ 101 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); 102 if (!rev) { 103 if (cma) 104 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 105 else 106 free_pages(hpt, order - PAGE_SHIFT); 107 return -ENOMEM; 108 } 109 110 info->order = order; 111 info->virt = hpt; 112 info->cma = cma; 113 info->rev = rev; 114 115 return 0; 116 } 117 118 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 119 { 120 atomic64_set(&kvm->arch.mmio_update, 0); 121 kvm->arch.hpt = *info; 122 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 123 124 pr_debug("KVM guest htab at %lx (order %ld), LPID %llx\n", 125 info->virt, (long)info->order, kvm->arch.lpid); 126 } 127 128 int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 129 { 130 int err = -EBUSY; 131 struct kvm_hpt_info info; 132 133 mutex_lock(&kvm->arch.mmu_setup_lock); 134 if (kvm->arch.mmu_ready) { 135 kvm->arch.mmu_ready = 0; 136 /* order mmu_ready vs. vcpus_running */ 137 smp_mb(); 138 if (atomic_read(&kvm->arch.vcpus_running)) { 139 kvm->arch.mmu_ready = 1; 140 goto out; 141 } 142 } 143 if (kvm_is_radix(kvm)) { 144 err = kvmppc_switch_mmu_to_hpt(kvm); 145 if (err) 146 goto out; 147 } 148 149 if (kvm->arch.hpt.order == order) { 150 /* We already have a suitable HPT */ 151 152 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 153 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 154 /* 155 * Reset all the reverse-mapping chains for all memslots 156 */ 157 kvmppc_rmap_reset(kvm); 158 err = 0; 159 goto out; 160 } 161 162 if (kvm->arch.hpt.virt) { 163 kvmppc_free_hpt(&kvm->arch.hpt); 164 kvmppc_rmap_reset(kvm); 165 } 166 167 err = kvmppc_allocate_hpt(&info, order); 168 if (err < 0) 169 goto out; 170 kvmppc_set_hpt(kvm, &info); 171 172 out: 173 if (err == 0) 174 /* Ensure that each vcpu will flush its TLB on next entry. */ 175 cpumask_setall(&kvm->arch.need_tlb_flush); 176 177 mutex_unlock(&kvm->arch.mmu_setup_lock); 178 return err; 179 } 180 181 void kvmppc_free_hpt(struct kvm_hpt_info *info) 182 { 183 vfree(info->rev); 184 info->rev = NULL; 185 if (info->cma) 186 kvm_free_hpt_cma(virt_to_page((void *)info->virt), 187 1 << (info->order - PAGE_SHIFT)); 188 else if (info->virt) 189 free_pages(info->virt, info->order - PAGE_SHIFT); 190 info->virt = 0; 191 info->order = 0; 192 } 193 194 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 195 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 196 { 197 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 198 } 199 200 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 201 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 202 { 203 return (pgsize == 0x10000) ? 0x1000 : 0; 204 } 205 206 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 207 unsigned long porder) 208 { 209 unsigned long i; 210 unsigned long npages; 211 unsigned long hp_v, hp_r; 212 unsigned long addr, hash; 213 unsigned long psize; 214 unsigned long hp0, hp1; 215 unsigned long idx_ret; 216 long ret; 217 struct kvm *kvm = vcpu->kvm; 218 219 psize = 1ul << porder; 220 npages = memslot->npages >> (porder - PAGE_SHIFT); 221 222 /* VRMA can't be > 1TB */ 223 if (npages > 1ul << (40 - porder)) 224 npages = 1ul << (40 - porder); 225 /* Can't use more than 1 HPTE per HPTEG */ 226 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 227 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 228 229 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 230 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 231 hp1 = hpte1_pgsize_encoding(psize) | 232 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 233 234 for (i = 0; i < npages; ++i) { 235 addr = i << porder; 236 /* can't use hpt_hash since va > 64 bits */ 237 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 238 & kvmppc_hpt_mask(&kvm->arch.hpt); 239 /* 240 * We assume that the hash table is empty and no 241 * vcpus are using it at this stage. Since we create 242 * at most one HPTE per HPTEG, we just assume entry 7 243 * is available and use it. 244 */ 245 hash = (hash << 3) + 7; 246 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 247 hp_r = hp1 | addr; 248 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 249 &idx_ret); 250 if (ret != H_SUCCESS) { 251 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 252 addr, ret); 253 break; 254 } 255 } 256 } 257 258 int kvmppc_mmu_hv_init(void) 259 { 260 unsigned long nr_lpids; 261 262 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) 263 return -EINVAL; 264 265 if (cpu_has_feature(CPU_FTR_HVMODE)) { 266 if (WARN_ON(mfspr(SPRN_LPID) != 0)) 267 return -EINVAL; 268 nr_lpids = 1UL << mmu_lpid_bits; 269 } else { 270 nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT; 271 } 272 273 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 274 /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */ 275 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 276 WARN_ON(nr_lpids != 1UL << 12); 277 else 278 WARN_ON(nr_lpids != 1UL << 10); 279 280 /* 281 * Reserve the last implemented LPID use in partition 282 * switching for POWER7 and POWER8. 283 */ 284 nr_lpids -= 1; 285 } 286 287 kvmppc_init_lpid(nr_lpids); 288 289 return 0; 290 } 291 292 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 293 long pte_index, unsigned long pteh, 294 unsigned long ptel, unsigned long *pte_idx_ret) 295 { 296 long ret; 297 298 preempt_disable(); 299 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 300 kvm->mm->pgd, false, pte_idx_ret); 301 preempt_enable(); 302 if (ret == H_TOO_HARD) { 303 /* this can't happen */ 304 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 305 ret = H_RESOURCE; /* or something */ 306 } 307 return ret; 308 309 } 310 311 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 312 gva_t eaddr) 313 { 314 u64 mask; 315 int i; 316 317 for (i = 0; i < vcpu->arch.slb_nr; i++) { 318 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 319 continue; 320 321 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 322 mask = ESID_MASK_1T; 323 else 324 mask = ESID_MASK; 325 326 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 327 return &vcpu->arch.slb[i]; 328 } 329 return NULL; 330 } 331 332 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 333 unsigned long ea) 334 { 335 unsigned long ra_mask; 336 337 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 338 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 339 } 340 341 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 342 struct kvmppc_pte *gpte, bool data, bool iswrite) 343 { 344 struct kvm *kvm = vcpu->kvm; 345 struct kvmppc_slb *slbe; 346 unsigned long slb_v; 347 unsigned long pp, key; 348 unsigned long v, orig_v, gr; 349 __be64 *hptep; 350 long int index; 351 int virtmode = __kvmppc_get_msr_hv(vcpu) & (data ? MSR_DR : MSR_IR); 352 353 if (kvm_is_radix(vcpu->kvm)) 354 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 355 356 /* Get SLB entry */ 357 if (virtmode) { 358 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 359 if (!slbe) 360 return -EINVAL; 361 slb_v = slbe->origv; 362 } else { 363 /* real mode access */ 364 slb_v = vcpu->kvm->arch.vrma_slb_v; 365 } 366 367 preempt_disable(); 368 /* Find the HPTE in the hash table */ 369 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 370 HPTE_V_VALID | HPTE_V_ABSENT); 371 if (index < 0) { 372 preempt_enable(); 373 return -ENOENT; 374 } 375 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 376 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 377 if (cpu_has_feature(CPU_FTR_ARCH_300)) 378 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 379 gr = kvm->arch.hpt.rev[index].guest_rpte; 380 381 unlock_hpte(hptep, orig_v); 382 preempt_enable(); 383 384 gpte->eaddr = eaddr; 385 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 386 387 /* Get PP bits and key for permission check */ 388 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 389 key = (__kvmppc_get_msr_hv(vcpu) & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 390 key &= slb_v; 391 392 /* Calculate permissions */ 393 gpte->may_read = hpte_read_permission(pp, key); 394 gpte->may_write = hpte_write_permission(pp, key); 395 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 396 397 /* Storage key permission check for POWER7 */ 398 if (data && virtmode) { 399 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 400 if (amrfield & 1) 401 gpte->may_read = 0; 402 if (amrfield & 2) 403 gpte->may_write = 0; 404 } 405 406 /* Get the guest physical address */ 407 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 408 return 0; 409 } 410 411 /* 412 * Quick test for whether an instruction is a load or a store. 413 * If the instruction is a load or a store, then this will indicate 414 * which it is, at least on server processors. (Embedded processors 415 * have some external PID instructions that don't follow the rule 416 * embodied here.) If the instruction isn't a load or store, then 417 * this doesn't return anything useful. 418 */ 419 static int instruction_is_store(ppc_inst_t instr) 420 { 421 unsigned int mask; 422 unsigned int suffix; 423 424 mask = 0x10000000; 425 suffix = ppc_inst_val(instr); 426 if (ppc_inst_prefixed(instr)) 427 suffix = ppc_inst_suffix(instr); 428 else if ((suffix & 0xfc000000) == 0x7c000000) 429 mask = 0x100; /* major opcode 31 */ 430 return (suffix & mask) != 0; 431 } 432 433 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, 434 unsigned long gpa, gva_t ea, int is_store) 435 { 436 ppc_inst_t last_inst; 437 bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED); 438 439 /* 440 * Fast path - check if the guest physical address corresponds to a 441 * device on the FAST_MMIO_BUS, if so we can avoid loading the 442 * instruction all together, then we can just handle it and return. 443 */ 444 if (is_store) { 445 int idx, ret; 446 447 idx = srcu_read_lock(&vcpu->kvm->srcu); 448 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, 449 NULL); 450 srcu_read_unlock(&vcpu->kvm->srcu, idx); 451 if (!ret) { 452 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4)); 453 return RESUME_GUEST; 454 } 455 } 456 457 /* 458 * If we fail, we just return to the guest and try executing it again. 459 */ 460 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 461 EMULATE_DONE) 462 return RESUME_GUEST; 463 464 /* 465 * WARNING: We do not know for sure whether the instruction we just 466 * read from memory is the same that caused the fault in the first 467 * place. 468 * 469 * If the fault is prefixed but the instruction is not or vice 470 * versa, try again so that we don't advance pc the wrong amount. 471 */ 472 if (ppc_inst_prefixed(last_inst) != is_prefixed) 473 return RESUME_GUEST; 474 475 /* 476 * If the instruction we read is neither an load or a store, 477 * then it can't access memory, so we don't need to worry about 478 * enforcing access permissions. So, assuming it is a load or 479 * store, we just check that its direction (load or store) is 480 * consistent with the original fault, since that's what we 481 * checked the access permissions against. If there is a mismatch 482 * we just return and retry the instruction. 483 */ 484 485 if (instruction_is_store(last_inst) != !!is_store) 486 return RESUME_GUEST; 487 488 /* 489 * Emulated accesses are emulated by looking at the hash for 490 * translation once, then performing the access later. The 491 * translation could be invalidated in the meantime in which 492 * point performing the subsequent memory access on the old 493 * physical address could possibly be a security hole for the 494 * guest (but not the host). 495 * 496 * This is less of an issue for MMIO stores since they aren't 497 * globally visible. It could be an issue for MMIO loads to 498 * a certain extent but we'll ignore it for now. 499 */ 500 501 vcpu->arch.paddr_accessed = gpa; 502 vcpu->arch.vaddr_accessed = ea; 503 return kvmppc_emulate_mmio(vcpu); 504 } 505 506 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, 507 unsigned long ea, unsigned long dsisr) 508 { 509 struct kvm *kvm = vcpu->kvm; 510 unsigned long hpte[3], r; 511 unsigned long hnow_v, hnow_r; 512 __be64 *hptep; 513 unsigned long mmu_seq, psize, pte_size; 514 unsigned long gpa_base, gfn_base; 515 unsigned long gpa, gfn, hva, pfn, hpa; 516 struct kvm_memory_slot *memslot; 517 unsigned long *rmap; 518 struct revmap_entry *rev; 519 struct page *page; 520 long index, ret; 521 bool is_ci; 522 bool writing, write_ok; 523 unsigned int shift; 524 unsigned long rcbits; 525 long mmio_update; 526 pte_t pte, *ptep; 527 528 if (kvm_is_radix(kvm)) 529 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr); 530 531 /* 532 * Real-mode code has already searched the HPT and found the 533 * entry we're interested in. Lock the entry and check that 534 * it hasn't changed. If it has, just return and re-execute the 535 * instruction. 536 */ 537 if (ea != vcpu->arch.pgfault_addr) 538 return RESUME_GUEST; 539 540 if (vcpu->arch.pgfault_cache) { 541 mmio_update = atomic64_read(&kvm->arch.mmio_update); 542 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 543 r = vcpu->arch.pgfault_cache->rpte; 544 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 545 r); 546 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 547 gfn_base = gpa_base >> PAGE_SHIFT; 548 gpa = gpa_base | (ea & (psize - 1)); 549 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, 550 dsisr & DSISR_ISSTORE); 551 } 552 } 553 index = vcpu->arch.pgfault_index; 554 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 555 rev = &kvm->arch.hpt.rev[index]; 556 preempt_disable(); 557 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 558 cpu_relax(); 559 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 560 hpte[1] = be64_to_cpu(hptep[1]); 561 hpte[2] = r = rev->guest_rpte; 562 unlock_hpte(hptep, hpte[0]); 563 preempt_enable(); 564 565 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 566 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 567 hpte[1] = hpte_new_to_old_r(hpte[1]); 568 } 569 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 570 hpte[1] != vcpu->arch.pgfault_hpte[1]) 571 return RESUME_GUEST; 572 573 /* Translate the logical address and get the page */ 574 psize = kvmppc_actual_pgsz(hpte[0], r); 575 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 576 gfn_base = gpa_base >> PAGE_SHIFT; 577 gpa = gpa_base | (ea & (psize - 1)); 578 gfn = gpa >> PAGE_SHIFT; 579 memslot = gfn_to_memslot(kvm, gfn); 580 581 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 582 583 /* No memslot means it's an emulated MMIO region */ 584 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 585 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, 586 dsisr & DSISR_ISSTORE); 587 588 /* 589 * This should never happen, because of the slot_is_aligned() 590 * check in kvmppc_do_h_enter(). 591 */ 592 if (gfn_base < memslot->base_gfn) 593 return -EFAULT; 594 595 /* used to check for invalidations in progress */ 596 mmu_seq = kvm->mmu_invalidate_seq; 597 smp_rmb(); 598 599 ret = -EFAULT; 600 page = NULL; 601 writing = (dsisr & DSISR_ISSTORE) != 0; 602 /* If writing != 0, then the HPTE must allow writing, if we get here */ 603 write_ok = writing; 604 hva = gfn_to_hva_memslot(memslot, gfn); 605 606 /* 607 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 608 * do it with !atomic && !async, which is how we call it. 609 * We always ask for write permission since the common case 610 * is that the page is writable. 611 */ 612 if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) { 613 write_ok = true; 614 } else { 615 /* Call KVM generic code to do the slow-path check */ 616 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 617 writing, &write_ok, NULL); 618 if (is_error_noslot_pfn(pfn)) 619 return -EFAULT; 620 page = NULL; 621 if (pfn_valid(pfn)) { 622 page = pfn_to_page(pfn); 623 if (PageReserved(page)) 624 page = NULL; 625 } 626 } 627 628 /* 629 * Read the PTE from the process' radix tree and use that 630 * so we get the shift and attribute bits. 631 */ 632 spin_lock(&kvm->mmu_lock); 633 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); 634 pte = __pte(0); 635 if (ptep) 636 pte = READ_ONCE(*ptep); 637 spin_unlock(&kvm->mmu_lock); 638 /* 639 * If the PTE disappeared temporarily due to a THP 640 * collapse, just return and let the guest try again. 641 */ 642 if (!pte_present(pte)) { 643 if (page) 644 put_page(page); 645 return RESUME_GUEST; 646 } 647 hpa = pte_pfn(pte) << PAGE_SHIFT; 648 pte_size = PAGE_SIZE; 649 if (shift) 650 pte_size = 1ul << shift; 651 is_ci = pte_ci(pte); 652 653 if (psize > pte_size) 654 goto out_put; 655 if (pte_size > psize) 656 hpa |= hva & (pte_size - psize); 657 658 /* Check WIMG vs. the actual page we're accessing */ 659 if (!hpte_cache_flags_ok(r, is_ci)) { 660 if (is_ci) 661 goto out_put; 662 /* 663 * Allow guest to map emulated device memory as 664 * uncacheable, but actually make it cacheable. 665 */ 666 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 667 } 668 669 /* 670 * Set the HPTE to point to hpa. 671 * Since the hpa is at PAGE_SIZE granularity, make sure we 672 * don't mask out lower-order bits if psize < PAGE_SIZE. 673 */ 674 if (psize < PAGE_SIZE) 675 psize = PAGE_SIZE; 676 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; 677 if (hpte_is_writable(r) && !write_ok) 678 r = hpte_make_readonly(r); 679 ret = RESUME_GUEST; 680 preempt_disable(); 681 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 682 cpu_relax(); 683 hnow_v = be64_to_cpu(hptep[0]); 684 hnow_r = be64_to_cpu(hptep[1]); 685 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 686 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 687 hnow_r = hpte_new_to_old_r(hnow_r); 688 } 689 690 /* 691 * If the HPT is being resized, don't update the HPTE, 692 * instead let the guest retry after the resize operation is complete. 693 * The synchronization for mmu_ready test vs. set is provided 694 * by the HPTE lock. 695 */ 696 if (!kvm->arch.mmu_ready) 697 goto out_unlock; 698 699 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 700 rev->guest_rpte != hpte[2]) 701 /* HPTE has been changed under us; let the guest retry */ 702 goto out_unlock; 703 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 704 705 /* Always put the HPTE in the rmap chain for the page base address */ 706 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 707 lock_rmap(rmap); 708 709 /* Check if we might have been invalidated; let the guest retry if so */ 710 ret = RESUME_GUEST; 711 if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) { 712 unlock_rmap(rmap); 713 goto out_unlock; 714 } 715 716 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 717 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 718 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 719 720 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 721 /* HPTE was previously valid, so we need to invalidate it */ 722 unlock_rmap(rmap); 723 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 724 kvmppc_invalidate_hpte(kvm, hptep, index); 725 /* don't lose previous R and C bits */ 726 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 727 } else { 728 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 729 } 730 731 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 732 r = hpte_old_to_new_r(hpte[0], r); 733 hpte[0] = hpte_old_to_new_v(hpte[0]); 734 } 735 hptep[1] = cpu_to_be64(r); 736 eieio(); 737 __unlock_hpte(hptep, hpte[0]); 738 asm volatile("ptesync" : : : "memory"); 739 preempt_enable(); 740 if (page && hpte_is_writable(r)) 741 set_page_dirty_lock(page); 742 743 out_put: 744 trace_kvm_page_fault_exit(vcpu, hpte, ret); 745 746 if (page) 747 put_page(page); 748 return ret; 749 750 out_unlock: 751 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 752 preempt_enable(); 753 goto out_put; 754 } 755 756 void kvmppc_rmap_reset(struct kvm *kvm) 757 { 758 struct kvm_memslots *slots; 759 struct kvm_memory_slot *memslot; 760 int srcu_idx, bkt; 761 762 srcu_idx = srcu_read_lock(&kvm->srcu); 763 slots = kvm_memslots(kvm); 764 kvm_for_each_memslot(memslot, bkt, slots) { 765 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 766 spin_lock(&kvm->mmu_lock); 767 /* 768 * This assumes it is acceptable to lose reference and 769 * change bits across a reset. 770 */ 771 memset(memslot->arch.rmap, 0, 772 memslot->npages * sizeof(*memslot->arch.rmap)); 773 spin_unlock(&kvm->mmu_lock); 774 } 775 srcu_read_unlock(&kvm->srcu, srcu_idx); 776 } 777 778 /* Must be called with both HPTE and rmap locked */ 779 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 780 struct kvm_memory_slot *memslot, 781 unsigned long *rmapp, unsigned long gfn) 782 { 783 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 784 struct revmap_entry *rev = kvm->arch.hpt.rev; 785 unsigned long j, h; 786 unsigned long ptel, psize, rcbits; 787 788 j = rev[i].forw; 789 if (j == i) { 790 /* chain is now empty */ 791 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 792 } else { 793 /* remove i from chain */ 794 h = rev[i].back; 795 rev[h].forw = j; 796 rev[j].back = h; 797 rev[i].forw = rev[i].back = i; 798 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 799 } 800 801 /* Now check and modify the HPTE */ 802 ptel = rev[i].guest_rpte; 803 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 804 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 805 hpte_rpn(ptel, psize) == gfn) { 806 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 807 kvmppc_invalidate_hpte(kvm, hptep, i); 808 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 809 /* Harvest R and C */ 810 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 811 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 812 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 813 kvmppc_update_dirty_map(memslot, gfn, psize); 814 if (rcbits & ~rev[i].guest_rpte) { 815 rev[i].guest_rpte = ptel | rcbits; 816 note_hpte_modification(kvm, &rev[i]); 817 } 818 } 819 } 820 821 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 822 unsigned long gfn) 823 { 824 unsigned long i; 825 __be64 *hptep; 826 unsigned long *rmapp; 827 828 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 829 for (;;) { 830 lock_rmap(rmapp); 831 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 832 unlock_rmap(rmapp); 833 break; 834 } 835 836 /* 837 * To avoid an ABBA deadlock with the HPTE lock bit, 838 * we can't spin on the HPTE lock while holding the 839 * rmap chain lock. 840 */ 841 i = *rmapp & KVMPPC_RMAP_INDEX; 842 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 843 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 844 /* unlock rmap before spinning on the HPTE lock */ 845 unlock_rmap(rmapp); 846 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 847 cpu_relax(); 848 continue; 849 } 850 851 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 852 unlock_rmap(rmapp); 853 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 854 } 855 } 856 857 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range) 858 { 859 gfn_t gfn; 860 861 if (kvm_is_radix(kvm)) { 862 for (gfn = range->start; gfn < range->end; gfn++) 863 kvm_unmap_radix(kvm, range->slot, gfn); 864 } else { 865 for (gfn = range->start; gfn < range->end; gfn++) 866 kvm_unmap_rmapp(kvm, range->slot, gfn); 867 } 868 869 return false; 870 } 871 872 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 873 struct kvm_memory_slot *memslot) 874 { 875 unsigned long gfn; 876 unsigned long n; 877 unsigned long *rmapp; 878 879 gfn = memslot->base_gfn; 880 rmapp = memslot->arch.rmap; 881 if (kvm_is_radix(kvm)) { 882 kvmppc_radix_flush_memslot(kvm, memslot); 883 return; 884 } 885 886 for (n = memslot->npages; n; --n, ++gfn) { 887 /* 888 * Testing the present bit without locking is OK because 889 * the memslot has been marked invalid already, and hence 890 * no new HPTEs referencing this page can be created, 891 * thus the present bit can't go from 0 to 1. 892 */ 893 if (*rmapp & KVMPPC_RMAP_PRESENT) 894 kvm_unmap_rmapp(kvm, memslot, gfn); 895 ++rmapp; 896 } 897 } 898 899 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 900 unsigned long gfn) 901 { 902 struct revmap_entry *rev = kvm->arch.hpt.rev; 903 unsigned long head, i, j; 904 __be64 *hptep; 905 bool ret = false; 906 unsigned long *rmapp; 907 908 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 909 retry: 910 lock_rmap(rmapp); 911 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 912 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 913 ret = true; 914 } 915 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 916 unlock_rmap(rmapp); 917 return ret; 918 } 919 920 i = head = *rmapp & KVMPPC_RMAP_INDEX; 921 do { 922 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 923 j = rev[i].forw; 924 925 /* If this HPTE isn't referenced, ignore it */ 926 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 927 continue; 928 929 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 930 /* unlock rmap before spinning on the HPTE lock */ 931 unlock_rmap(rmapp); 932 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 933 cpu_relax(); 934 goto retry; 935 } 936 937 /* Now check and modify the HPTE */ 938 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 939 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 940 kvmppc_clear_ref_hpte(kvm, hptep, i); 941 if (!(rev[i].guest_rpte & HPTE_R_R)) { 942 rev[i].guest_rpte |= HPTE_R_R; 943 note_hpte_modification(kvm, &rev[i]); 944 } 945 ret = true; 946 } 947 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 948 } while ((i = j) != head); 949 950 unlock_rmap(rmapp); 951 return ret; 952 } 953 954 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) 955 { 956 gfn_t gfn; 957 bool ret = false; 958 959 if (kvm_is_radix(kvm)) { 960 for (gfn = range->start; gfn < range->end; gfn++) 961 ret |= kvm_age_radix(kvm, range->slot, gfn); 962 } else { 963 for (gfn = range->start; gfn < range->end; gfn++) 964 ret |= kvm_age_rmapp(kvm, range->slot, gfn); 965 } 966 967 return ret; 968 } 969 970 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 971 unsigned long gfn) 972 { 973 struct revmap_entry *rev = kvm->arch.hpt.rev; 974 unsigned long head, i, j; 975 unsigned long *hp; 976 bool ret = true; 977 unsigned long *rmapp; 978 979 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 980 if (*rmapp & KVMPPC_RMAP_REFERENCED) 981 return true; 982 983 lock_rmap(rmapp); 984 if (*rmapp & KVMPPC_RMAP_REFERENCED) 985 goto out; 986 987 if (*rmapp & KVMPPC_RMAP_PRESENT) { 988 i = head = *rmapp & KVMPPC_RMAP_INDEX; 989 do { 990 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 991 j = rev[i].forw; 992 if (be64_to_cpu(hp[1]) & HPTE_R_R) 993 goto out; 994 } while ((i = j) != head); 995 } 996 ret = false; 997 998 out: 999 unlock_rmap(rmapp); 1000 return ret; 1001 } 1002 1003 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) 1004 { 1005 WARN_ON(range->start + 1 != range->end); 1006 1007 if (kvm_is_radix(kvm)) 1008 return kvm_test_age_radix(kvm, range->slot, range->start); 1009 else 1010 return kvm_test_age_rmapp(kvm, range->slot, range->start); 1011 } 1012 1013 bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) 1014 { 1015 WARN_ON(range->start + 1 != range->end); 1016 1017 if (kvm_is_radix(kvm)) 1018 kvm_unmap_radix(kvm, range->slot, range->start); 1019 else 1020 kvm_unmap_rmapp(kvm, range->slot, range->start); 1021 1022 return false; 1023 } 1024 1025 static int vcpus_running(struct kvm *kvm) 1026 { 1027 return atomic_read(&kvm->arch.vcpus_running) != 0; 1028 } 1029 1030 /* 1031 * Returns the number of system pages that are dirty. 1032 * This can be more than 1 if we find a huge-page HPTE. 1033 */ 1034 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1035 { 1036 struct revmap_entry *rev = kvm->arch.hpt.rev; 1037 unsigned long head, i, j; 1038 unsigned long n; 1039 unsigned long v, r; 1040 __be64 *hptep; 1041 int npages_dirty = 0; 1042 1043 retry: 1044 lock_rmap(rmapp); 1045 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1046 unlock_rmap(rmapp); 1047 return npages_dirty; 1048 } 1049 1050 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1051 do { 1052 unsigned long hptep1; 1053 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1054 j = rev[i].forw; 1055 1056 /* 1057 * Checking the C (changed) bit here is racy since there 1058 * is no guarantee about when the hardware writes it back. 1059 * If the HPTE is not writable then it is stable since the 1060 * page can't be written to, and we would have done a tlbie 1061 * (which forces the hardware to complete any writeback) 1062 * when making the HPTE read-only. 1063 * If vcpus are running then this call is racy anyway 1064 * since the page could get dirtied subsequently, so we 1065 * expect there to be a further call which would pick up 1066 * any delayed C bit writeback. 1067 * Otherwise we need to do the tlbie even if C==0 in 1068 * order to pick up any delayed writeback of C. 1069 */ 1070 hptep1 = be64_to_cpu(hptep[1]); 1071 if (!(hptep1 & HPTE_R_C) && 1072 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1073 continue; 1074 1075 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1076 /* unlock rmap before spinning on the HPTE lock */ 1077 unlock_rmap(rmapp); 1078 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1079 cpu_relax(); 1080 goto retry; 1081 } 1082 1083 /* Now check and modify the HPTE */ 1084 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1085 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1086 continue; 1087 } 1088 1089 /* need to make it temporarily absent so C is stable */ 1090 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1091 kvmppc_invalidate_hpte(kvm, hptep, i); 1092 v = be64_to_cpu(hptep[0]); 1093 r = be64_to_cpu(hptep[1]); 1094 if (r & HPTE_R_C) { 1095 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1096 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1097 rev[i].guest_rpte |= HPTE_R_C; 1098 note_hpte_modification(kvm, &rev[i]); 1099 } 1100 n = kvmppc_actual_pgsz(v, r); 1101 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1102 if (n > npages_dirty) 1103 npages_dirty = n; 1104 eieio(); 1105 } 1106 v &= ~HPTE_V_ABSENT; 1107 v |= HPTE_V_VALID; 1108 __unlock_hpte(hptep, v); 1109 } while ((i = j) != head); 1110 1111 unlock_rmap(rmapp); 1112 return npages_dirty; 1113 } 1114 1115 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1116 struct kvm_memory_slot *memslot, 1117 unsigned long *map) 1118 { 1119 unsigned long gfn; 1120 1121 if (!vpa->dirty || !vpa->pinned_addr) 1122 return; 1123 gfn = vpa->gpa >> PAGE_SHIFT; 1124 if (gfn < memslot->base_gfn || 1125 gfn >= memslot->base_gfn + memslot->npages) 1126 return; 1127 1128 vpa->dirty = false; 1129 if (map) 1130 __set_bit_le(gfn - memslot->base_gfn, map); 1131 } 1132 1133 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1134 struct kvm_memory_slot *memslot, unsigned long *map) 1135 { 1136 unsigned long i; 1137 unsigned long *rmapp; 1138 1139 preempt_disable(); 1140 rmapp = memslot->arch.rmap; 1141 for (i = 0; i < memslot->npages; ++i) { 1142 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1143 /* 1144 * Note that if npages > 0 then i must be a multiple of npages, 1145 * since we always put huge-page HPTEs in the rmap chain 1146 * corresponding to their page base address. 1147 */ 1148 if (npages) 1149 set_dirty_bits(map, i, npages); 1150 ++rmapp; 1151 } 1152 preempt_enable(); 1153 return 0; 1154 } 1155 1156 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1157 unsigned long *nb_ret) 1158 { 1159 struct kvm_memory_slot *memslot; 1160 unsigned long gfn = gpa >> PAGE_SHIFT; 1161 struct page *page, *pages[1]; 1162 int npages; 1163 unsigned long hva, offset; 1164 int srcu_idx; 1165 1166 srcu_idx = srcu_read_lock(&kvm->srcu); 1167 memslot = gfn_to_memslot(kvm, gfn); 1168 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1169 goto err; 1170 hva = gfn_to_hva_memslot(memslot, gfn); 1171 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); 1172 if (npages < 1) 1173 goto err; 1174 page = pages[0]; 1175 srcu_read_unlock(&kvm->srcu, srcu_idx); 1176 1177 offset = gpa & (PAGE_SIZE - 1); 1178 if (nb_ret) 1179 *nb_ret = PAGE_SIZE - offset; 1180 return page_address(page) + offset; 1181 1182 err: 1183 srcu_read_unlock(&kvm->srcu, srcu_idx); 1184 return NULL; 1185 } 1186 1187 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1188 bool dirty) 1189 { 1190 struct page *page = virt_to_page(va); 1191 struct kvm_memory_slot *memslot; 1192 unsigned long gfn; 1193 int srcu_idx; 1194 1195 put_page(page); 1196 1197 if (!dirty) 1198 return; 1199 1200 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1201 gfn = gpa >> PAGE_SHIFT; 1202 srcu_idx = srcu_read_lock(&kvm->srcu); 1203 memslot = gfn_to_memslot(kvm, gfn); 1204 if (memslot && memslot->dirty_bitmap) 1205 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1206 srcu_read_unlock(&kvm->srcu, srcu_idx); 1207 } 1208 1209 /* 1210 * HPT resizing 1211 */ 1212 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1213 { 1214 int rc; 1215 1216 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1217 if (rc < 0) 1218 return rc; 1219 1220 resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__, 1221 resize->hpt.virt); 1222 1223 return 0; 1224 } 1225 1226 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1227 unsigned long idx) 1228 { 1229 struct kvm *kvm = resize->kvm; 1230 struct kvm_hpt_info *old = &kvm->arch.hpt; 1231 struct kvm_hpt_info *new = &resize->hpt; 1232 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1233 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1234 __be64 *hptep, *new_hptep; 1235 unsigned long vpte, rpte, guest_rpte; 1236 int ret; 1237 struct revmap_entry *rev; 1238 unsigned long apsize, avpn, pteg, hash; 1239 unsigned long new_idx, new_pteg, replace_vpte; 1240 int pshift; 1241 1242 hptep = (__be64 *)(old->virt + (idx << 4)); 1243 1244 /* Guest is stopped, so new HPTEs can't be added or faulted 1245 * in, only unmapped or altered by host actions. So, it's 1246 * safe to check this before we take the HPTE lock */ 1247 vpte = be64_to_cpu(hptep[0]); 1248 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1249 return 0; /* nothing to do */ 1250 1251 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1252 cpu_relax(); 1253 1254 vpte = be64_to_cpu(hptep[0]); 1255 1256 ret = 0; 1257 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1258 /* Nothing to do */ 1259 goto out; 1260 1261 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1262 rpte = be64_to_cpu(hptep[1]); 1263 vpte = hpte_new_to_old_v(vpte, rpte); 1264 } 1265 1266 /* Unmap */ 1267 rev = &old->rev[idx]; 1268 guest_rpte = rev->guest_rpte; 1269 1270 ret = -EIO; 1271 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1272 if (!apsize) 1273 goto out; 1274 1275 if (vpte & HPTE_V_VALID) { 1276 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1277 int srcu_idx = srcu_read_lock(&kvm->srcu); 1278 struct kvm_memory_slot *memslot = 1279 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1280 1281 if (memslot) { 1282 unsigned long *rmapp; 1283 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1284 1285 lock_rmap(rmapp); 1286 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1287 unlock_rmap(rmapp); 1288 } 1289 1290 srcu_read_unlock(&kvm->srcu, srcu_idx); 1291 } 1292 1293 /* Reload PTE after unmap */ 1294 vpte = be64_to_cpu(hptep[0]); 1295 BUG_ON(vpte & HPTE_V_VALID); 1296 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1297 1298 ret = 0; 1299 if (!(vpte & HPTE_V_BOLTED)) 1300 goto out; 1301 1302 rpte = be64_to_cpu(hptep[1]); 1303 1304 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1305 vpte = hpte_new_to_old_v(vpte, rpte); 1306 rpte = hpte_new_to_old_r(rpte); 1307 } 1308 1309 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1310 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1311 pteg = idx / HPTES_PER_GROUP; 1312 if (vpte & HPTE_V_SECONDARY) 1313 pteg = ~pteg; 1314 1315 if (!(vpte & HPTE_V_1TB_SEG)) { 1316 unsigned long offset, vsid; 1317 1318 /* We only have 28 - 23 bits of offset in avpn */ 1319 offset = (avpn & 0x1f) << 23; 1320 vsid = avpn >> 5; 1321 /* We can find more bits from the pteg value */ 1322 if (pshift < 23) 1323 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1324 1325 hash = vsid ^ (offset >> pshift); 1326 } else { 1327 unsigned long offset, vsid; 1328 1329 /* We only have 40 - 23 bits of seg_off in avpn */ 1330 offset = (avpn & 0x1ffff) << 23; 1331 vsid = avpn >> 17; 1332 if (pshift < 23) 1333 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1334 1335 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1336 } 1337 1338 new_pteg = hash & new_hash_mask; 1339 if (vpte & HPTE_V_SECONDARY) 1340 new_pteg = ~hash & new_hash_mask; 1341 1342 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1343 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1344 1345 replace_vpte = be64_to_cpu(new_hptep[0]); 1346 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1347 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); 1348 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); 1349 } 1350 1351 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1352 BUG_ON(new->order >= old->order); 1353 1354 if (replace_vpte & HPTE_V_BOLTED) { 1355 if (vpte & HPTE_V_BOLTED) 1356 /* Bolted collision, nothing we can do */ 1357 ret = -ENOSPC; 1358 /* Discard the new HPTE */ 1359 goto out; 1360 } 1361 1362 /* Discard the previous HPTE */ 1363 } 1364 1365 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1366 rpte = hpte_old_to_new_r(vpte, rpte); 1367 vpte = hpte_old_to_new_v(vpte); 1368 } 1369 1370 new_hptep[1] = cpu_to_be64(rpte); 1371 new->rev[new_idx].guest_rpte = guest_rpte; 1372 /* No need for a barrier, since new HPT isn't active */ 1373 new_hptep[0] = cpu_to_be64(vpte); 1374 unlock_hpte(new_hptep, vpte); 1375 1376 out: 1377 unlock_hpte(hptep, vpte); 1378 return ret; 1379 } 1380 1381 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1382 { 1383 struct kvm *kvm = resize->kvm; 1384 unsigned long i; 1385 int rc; 1386 1387 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1388 rc = resize_hpt_rehash_hpte(resize, i); 1389 if (rc != 0) 1390 return rc; 1391 } 1392 1393 return 0; 1394 } 1395 1396 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1397 { 1398 struct kvm *kvm = resize->kvm; 1399 struct kvm_hpt_info hpt_tmp; 1400 1401 /* Exchange the pending tables in the resize structure with 1402 * the active tables */ 1403 1404 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1405 1406 spin_lock(&kvm->mmu_lock); 1407 asm volatile("ptesync" : : : "memory"); 1408 1409 hpt_tmp = kvm->arch.hpt; 1410 kvmppc_set_hpt(kvm, &resize->hpt); 1411 resize->hpt = hpt_tmp; 1412 1413 spin_unlock(&kvm->mmu_lock); 1414 1415 synchronize_srcu_expedited(&kvm->srcu); 1416 1417 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1418 kvmppc_setup_partition_table(kvm); 1419 1420 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1421 } 1422 1423 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1424 { 1425 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) 1426 return; 1427 1428 if (!resize) 1429 return; 1430 1431 if (resize->error != -EBUSY) { 1432 if (resize->hpt.virt) 1433 kvmppc_free_hpt(&resize->hpt); 1434 kfree(resize); 1435 } 1436 1437 if (kvm->arch.resize_hpt == resize) 1438 kvm->arch.resize_hpt = NULL; 1439 } 1440 1441 static void resize_hpt_prepare_work(struct work_struct *work) 1442 { 1443 struct kvm_resize_hpt *resize = container_of(work, 1444 struct kvm_resize_hpt, 1445 work); 1446 struct kvm *kvm = resize->kvm; 1447 int err = 0; 1448 1449 if (WARN_ON(resize->error != -EBUSY)) 1450 return; 1451 1452 mutex_lock(&kvm->arch.mmu_setup_lock); 1453 1454 /* Request is still current? */ 1455 if (kvm->arch.resize_hpt == resize) { 1456 /* We may request large allocations here: 1457 * do not sleep with kvm->arch.mmu_setup_lock held for a while. 1458 */ 1459 mutex_unlock(&kvm->arch.mmu_setup_lock); 1460 1461 resize_hpt_debug(resize, "%s(): order = %d\n", __func__, 1462 resize->order); 1463 1464 err = resize_hpt_allocate(resize); 1465 1466 /* We have strict assumption about -EBUSY 1467 * when preparing for HPT resize. 1468 */ 1469 if (WARN_ON(err == -EBUSY)) 1470 err = -EINPROGRESS; 1471 1472 mutex_lock(&kvm->arch.mmu_setup_lock); 1473 /* It is possible that kvm->arch.resize_hpt != resize 1474 * after we grab kvm->arch.mmu_setup_lock again. 1475 */ 1476 } 1477 1478 resize->error = err; 1479 1480 if (kvm->arch.resize_hpt != resize) 1481 resize_hpt_release(kvm, resize); 1482 1483 mutex_unlock(&kvm->arch.mmu_setup_lock); 1484 } 1485 1486 int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1487 struct kvm_ppc_resize_hpt *rhpt) 1488 { 1489 unsigned long flags = rhpt->flags; 1490 unsigned long shift = rhpt->shift; 1491 struct kvm_resize_hpt *resize; 1492 int ret; 1493 1494 if (flags != 0 || kvm_is_radix(kvm)) 1495 return -EINVAL; 1496 1497 if (shift && ((shift < 18) || (shift > 46))) 1498 return -EINVAL; 1499 1500 mutex_lock(&kvm->arch.mmu_setup_lock); 1501 1502 resize = kvm->arch.resize_hpt; 1503 1504 if (resize) { 1505 if (resize->order == shift) { 1506 /* Suitable resize in progress? */ 1507 ret = resize->error; 1508 if (ret == -EBUSY) 1509 ret = 100; /* estimated time in ms */ 1510 else if (ret) 1511 resize_hpt_release(kvm, resize); 1512 1513 goto out; 1514 } 1515 1516 /* not suitable, cancel it */ 1517 resize_hpt_release(kvm, resize); 1518 } 1519 1520 ret = 0; 1521 if (!shift) 1522 goto out; /* nothing to do */ 1523 1524 /* start new resize */ 1525 1526 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1527 if (!resize) { 1528 ret = -ENOMEM; 1529 goto out; 1530 } 1531 1532 resize->error = -EBUSY; 1533 resize->order = shift; 1534 resize->kvm = kvm; 1535 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1536 kvm->arch.resize_hpt = resize; 1537 1538 schedule_work(&resize->work); 1539 1540 ret = 100; /* estimated time in ms */ 1541 1542 out: 1543 mutex_unlock(&kvm->arch.mmu_setup_lock); 1544 return ret; 1545 } 1546 1547 static void resize_hpt_boot_vcpu(void *opaque) 1548 { 1549 /* Nothing to do, just force a KVM exit */ 1550 } 1551 1552 int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1553 struct kvm_ppc_resize_hpt *rhpt) 1554 { 1555 unsigned long flags = rhpt->flags; 1556 unsigned long shift = rhpt->shift; 1557 struct kvm_resize_hpt *resize; 1558 int ret; 1559 1560 if (flags != 0 || kvm_is_radix(kvm)) 1561 return -EINVAL; 1562 1563 if (shift && ((shift < 18) || (shift > 46))) 1564 return -EINVAL; 1565 1566 mutex_lock(&kvm->arch.mmu_setup_lock); 1567 1568 resize = kvm->arch.resize_hpt; 1569 1570 /* This shouldn't be possible */ 1571 ret = -EIO; 1572 if (WARN_ON(!kvm->arch.mmu_ready)) 1573 goto out_no_hpt; 1574 1575 /* Stop VCPUs from running while we mess with the HPT */ 1576 kvm->arch.mmu_ready = 0; 1577 smp_mb(); 1578 1579 /* Boot all CPUs out of the guest so they re-read 1580 * mmu_ready */ 1581 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1582 1583 ret = -ENXIO; 1584 if (!resize || (resize->order != shift)) 1585 goto out; 1586 1587 ret = resize->error; 1588 if (ret) 1589 goto out; 1590 1591 ret = resize_hpt_rehash(resize); 1592 if (ret) 1593 goto out; 1594 1595 resize_hpt_pivot(resize); 1596 1597 out: 1598 /* Let VCPUs run again */ 1599 kvm->arch.mmu_ready = 1; 1600 smp_mb(); 1601 out_no_hpt: 1602 resize_hpt_release(kvm, resize); 1603 mutex_unlock(&kvm->arch.mmu_setup_lock); 1604 return ret; 1605 } 1606 1607 /* 1608 * Functions for reading and writing the hash table via reads and 1609 * writes on a file descriptor. 1610 * 1611 * Reads return the guest view of the hash table, which has to be 1612 * pieced together from the real hash table and the guest_rpte 1613 * values in the revmap array. 1614 * 1615 * On writes, each HPTE written is considered in turn, and if it 1616 * is valid, it is written to the HPT as if an H_ENTER with the 1617 * exact flag set was done. When the invalid count is non-zero 1618 * in the header written to the stream, the kernel will make 1619 * sure that that many HPTEs are invalid, and invalidate them 1620 * if not. 1621 */ 1622 1623 struct kvm_htab_ctx { 1624 unsigned long index; 1625 unsigned long flags; 1626 struct kvm *kvm; 1627 int first_pass; 1628 }; 1629 1630 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1631 1632 /* 1633 * Returns 1 if this HPT entry has been modified or has pending 1634 * R/C bit changes. 1635 */ 1636 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1637 { 1638 unsigned long rcbits_unset; 1639 1640 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1641 return 1; 1642 1643 /* Also need to consider changes in reference and changed bits */ 1644 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1645 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1646 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1647 return 1; 1648 1649 return 0; 1650 } 1651 1652 static long record_hpte(unsigned long flags, __be64 *hptp, 1653 unsigned long *hpte, struct revmap_entry *revp, 1654 int want_valid, int first_pass) 1655 { 1656 unsigned long v, r, hr; 1657 unsigned long rcbits_unset; 1658 int ok = 1; 1659 int valid, dirty; 1660 1661 /* Unmodified entries are uninteresting except on the first pass */ 1662 dirty = hpte_dirty(revp, hptp); 1663 if (!first_pass && !dirty) 1664 return 0; 1665 1666 valid = 0; 1667 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1668 valid = 1; 1669 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1670 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1671 valid = 0; 1672 } 1673 if (valid != want_valid) 1674 return 0; 1675 1676 v = r = 0; 1677 if (valid || dirty) { 1678 /* lock the HPTE so it's stable and read it */ 1679 preempt_disable(); 1680 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1681 cpu_relax(); 1682 v = be64_to_cpu(hptp[0]); 1683 hr = be64_to_cpu(hptp[1]); 1684 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1685 v = hpte_new_to_old_v(v, hr); 1686 hr = hpte_new_to_old_r(hr); 1687 } 1688 1689 /* re-evaluate valid and dirty from synchronized HPTE value */ 1690 valid = !!(v & HPTE_V_VALID); 1691 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1692 1693 /* Harvest R and C into guest view if necessary */ 1694 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1695 if (valid && (rcbits_unset & hr)) { 1696 revp->guest_rpte |= (hr & 1697 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1698 dirty = 1; 1699 } 1700 1701 if (v & HPTE_V_ABSENT) { 1702 v &= ~HPTE_V_ABSENT; 1703 v |= HPTE_V_VALID; 1704 valid = 1; 1705 } 1706 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1707 valid = 0; 1708 1709 r = revp->guest_rpte; 1710 /* only clear modified if this is the right sort of entry */ 1711 if (valid == want_valid && dirty) { 1712 r &= ~HPTE_GR_MODIFIED; 1713 revp->guest_rpte = r; 1714 } 1715 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1716 preempt_enable(); 1717 if (!(valid == want_valid && (first_pass || dirty))) 1718 ok = 0; 1719 } 1720 hpte[0] = cpu_to_be64(v); 1721 hpte[1] = cpu_to_be64(r); 1722 return ok; 1723 } 1724 1725 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1726 size_t count, loff_t *ppos) 1727 { 1728 struct kvm_htab_ctx *ctx = file->private_data; 1729 struct kvm *kvm = ctx->kvm; 1730 struct kvm_get_htab_header hdr; 1731 __be64 *hptp; 1732 struct revmap_entry *revp; 1733 unsigned long i, nb, nw; 1734 unsigned long __user *lbuf; 1735 struct kvm_get_htab_header __user *hptr; 1736 unsigned long flags; 1737 int first_pass; 1738 unsigned long hpte[2]; 1739 1740 if (!access_ok(buf, count)) 1741 return -EFAULT; 1742 if (kvm_is_radix(kvm)) 1743 return 0; 1744 1745 first_pass = ctx->first_pass; 1746 flags = ctx->flags; 1747 1748 i = ctx->index; 1749 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1750 revp = kvm->arch.hpt.rev + i; 1751 lbuf = (unsigned long __user *)buf; 1752 1753 nb = 0; 1754 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1755 /* Initialize header */ 1756 hptr = (struct kvm_get_htab_header __user *)buf; 1757 hdr.n_valid = 0; 1758 hdr.n_invalid = 0; 1759 nw = nb; 1760 nb += sizeof(hdr); 1761 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1762 1763 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1764 if (!first_pass) { 1765 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1766 !hpte_dirty(revp, hptp)) { 1767 ++i; 1768 hptp += 2; 1769 ++revp; 1770 } 1771 } 1772 hdr.index = i; 1773 1774 /* Grab a series of valid entries */ 1775 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1776 hdr.n_valid < 0xffff && 1777 nb + HPTE_SIZE < count && 1778 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1779 /* valid entry, write it out */ 1780 ++hdr.n_valid; 1781 if (__put_user(hpte[0], lbuf) || 1782 __put_user(hpte[1], lbuf + 1)) 1783 return -EFAULT; 1784 nb += HPTE_SIZE; 1785 lbuf += 2; 1786 ++i; 1787 hptp += 2; 1788 ++revp; 1789 } 1790 /* Now skip invalid entries while we can */ 1791 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1792 hdr.n_invalid < 0xffff && 1793 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1794 /* found an invalid entry */ 1795 ++hdr.n_invalid; 1796 ++i; 1797 hptp += 2; 1798 ++revp; 1799 } 1800 1801 if (hdr.n_valid || hdr.n_invalid) { 1802 /* write back the header */ 1803 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1804 return -EFAULT; 1805 nw = nb; 1806 buf = (char __user *)lbuf; 1807 } else { 1808 nb = nw; 1809 } 1810 1811 /* Check if we've wrapped around the hash table */ 1812 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1813 i = 0; 1814 ctx->first_pass = 0; 1815 break; 1816 } 1817 } 1818 1819 ctx->index = i; 1820 1821 return nb; 1822 } 1823 1824 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1825 size_t count, loff_t *ppos) 1826 { 1827 struct kvm_htab_ctx *ctx = file->private_data; 1828 struct kvm *kvm = ctx->kvm; 1829 struct kvm_get_htab_header hdr; 1830 unsigned long i, j; 1831 unsigned long v, r; 1832 unsigned long __user *lbuf; 1833 __be64 *hptp; 1834 unsigned long tmp[2]; 1835 ssize_t nb; 1836 long int err, ret; 1837 int mmu_ready; 1838 int pshift; 1839 1840 if (!access_ok(buf, count)) 1841 return -EFAULT; 1842 if (kvm_is_radix(kvm)) 1843 return -EINVAL; 1844 1845 /* lock out vcpus from running while we're doing this */ 1846 mutex_lock(&kvm->arch.mmu_setup_lock); 1847 mmu_ready = kvm->arch.mmu_ready; 1848 if (mmu_ready) { 1849 kvm->arch.mmu_ready = 0; /* temporarily */ 1850 /* order mmu_ready vs. vcpus_running */ 1851 smp_mb(); 1852 if (atomic_read(&kvm->arch.vcpus_running)) { 1853 kvm->arch.mmu_ready = 1; 1854 mutex_unlock(&kvm->arch.mmu_setup_lock); 1855 return -EBUSY; 1856 } 1857 } 1858 1859 err = 0; 1860 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1861 err = -EFAULT; 1862 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1863 break; 1864 1865 err = 0; 1866 if (nb + hdr.n_valid * HPTE_SIZE > count) 1867 break; 1868 1869 nb += sizeof(hdr); 1870 buf += sizeof(hdr); 1871 1872 err = -EINVAL; 1873 i = hdr.index; 1874 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1875 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1876 break; 1877 1878 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1879 lbuf = (unsigned long __user *)buf; 1880 for (j = 0; j < hdr.n_valid; ++j) { 1881 __be64 hpte_v; 1882 __be64 hpte_r; 1883 1884 err = -EFAULT; 1885 if (__get_user(hpte_v, lbuf) || 1886 __get_user(hpte_r, lbuf + 1)) 1887 goto out; 1888 v = be64_to_cpu(hpte_v); 1889 r = be64_to_cpu(hpte_r); 1890 err = -EINVAL; 1891 if (!(v & HPTE_V_VALID)) 1892 goto out; 1893 pshift = kvmppc_hpte_base_page_shift(v, r); 1894 if (pshift <= 0) 1895 goto out; 1896 lbuf += 2; 1897 nb += HPTE_SIZE; 1898 1899 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1900 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1901 err = -EIO; 1902 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1903 tmp); 1904 if (ret != H_SUCCESS) { 1905 pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r); 1906 goto out; 1907 } 1908 if (!mmu_ready && is_vrma_hpte(v)) { 1909 unsigned long senc, lpcr; 1910 1911 senc = slb_pgsize_encoding(1ul << pshift); 1912 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1913 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1914 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1915 lpcr = senc << (LPCR_VRMASD_SH - 4); 1916 kvmppc_update_lpcr(kvm, lpcr, 1917 LPCR_VRMASD); 1918 } else { 1919 kvmppc_setup_partition_table(kvm); 1920 } 1921 mmu_ready = 1; 1922 } 1923 ++i; 1924 hptp += 2; 1925 } 1926 1927 for (j = 0; j < hdr.n_invalid; ++j) { 1928 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1929 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1930 ++i; 1931 hptp += 2; 1932 } 1933 err = 0; 1934 } 1935 1936 out: 1937 /* Order HPTE updates vs. mmu_ready */ 1938 smp_wmb(); 1939 kvm->arch.mmu_ready = mmu_ready; 1940 mutex_unlock(&kvm->arch.mmu_setup_lock); 1941 1942 if (err) 1943 return err; 1944 return nb; 1945 } 1946 1947 static int kvm_htab_release(struct inode *inode, struct file *filp) 1948 { 1949 struct kvm_htab_ctx *ctx = filp->private_data; 1950 1951 filp->private_data = NULL; 1952 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1953 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1954 kvm_put_kvm(ctx->kvm); 1955 kfree(ctx); 1956 return 0; 1957 } 1958 1959 static const struct file_operations kvm_htab_fops = { 1960 .read = kvm_htab_read, 1961 .write = kvm_htab_write, 1962 .llseek = default_llseek, 1963 .release = kvm_htab_release, 1964 }; 1965 1966 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1967 { 1968 int ret; 1969 struct kvm_htab_ctx *ctx; 1970 int rwflag; 1971 1972 /* reject flags we don't recognize */ 1973 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1974 return -EINVAL; 1975 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1976 if (!ctx) 1977 return -ENOMEM; 1978 kvm_get_kvm(kvm); 1979 ctx->kvm = kvm; 1980 ctx->index = ghf->start_index; 1981 ctx->flags = ghf->flags; 1982 ctx->first_pass = 1; 1983 1984 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1985 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1986 if (ret < 0) { 1987 kfree(ctx); 1988 kvm_put_kvm_no_destroy(kvm); 1989 return ret; 1990 } 1991 1992 if (rwflag == O_RDONLY) { 1993 mutex_lock(&kvm->slots_lock); 1994 atomic_inc(&kvm->arch.hpte_mod_interest); 1995 /* make sure kvmppc_do_h_enter etc. see the increment */ 1996 synchronize_srcu_expedited(&kvm->srcu); 1997 mutex_unlock(&kvm->slots_lock); 1998 } 1999 2000 return ret; 2001 } 2002 2003 struct debugfs_htab_state { 2004 struct kvm *kvm; 2005 struct mutex mutex; 2006 unsigned long hpt_index; 2007 int chars_left; 2008 int buf_index; 2009 char buf[64]; 2010 }; 2011 2012 static int debugfs_htab_open(struct inode *inode, struct file *file) 2013 { 2014 struct kvm *kvm = inode->i_private; 2015 struct debugfs_htab_state *p; 2016 2017 p = kzalloc(sizeof(*p), GFP_KERNEL); 2018 if (!p) 2019 return -ENOMEM; 2020 2021 kvm_get_kvm(kvm); 2022 p->kvm = kvm; 2023 mutex_init(&p->mutex); 2024 file->private_data = p; 2025 2026 return nonseekable_open(inode, file); 2027 } 2028 2029 static int debugfs_htab_release(struct inode *inode, struct file *file) 2030 { 2031 struct debugfs_htab_state *p = file->private_data; 2032 2033 kvm_put_kvm(p->kvm); 2034 kfree(p); 2035 return 0; 2036 } 2037 2038 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2039 size_t len, loff_t *ppos) 2040 { 2041 struct debugfs_htab_state *p = file->private_data; 2042 ssize_t ret, r; 2043 unsigned long i, n; 2044 unsigned long v, hr, gr; 2045 struct kvm *kvm; 2046 __be64 *hptp; 2047 2048 kvm = p->kvm; 2049 if (kvm_is_radix(kvm)) 2050 return 0; 2051 2052 ret = mutex_lock_interruptible(&p->mutex); 2053 if (ret) 2054 return ret; 2055 2056 if (p->chars_left) { 2057 n = p->chars_left; 2058 if (n > len) 2059 n = len; 2060 r = copy_to_user(buf, p->buf + p->buf_index, n); 2061 n -= r; 2062 p->chars_left -= n; 2063 p->buf_index += n; 2064 buf += n; 2065 len -= n; 2066 ret = n; 2067 if (r) { 2068 if (!n) 2069 ret = -EFAULT; 2070 goto out; 2071 } 2072 } 2073 2074 i = p->hpt_index; 2075 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2076 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2077 ++i, hptp += 2) { 2078 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2079 continue; 2080 2081 /* lock the HPTE so it's stable and read it */ 2082 preempt_disable(); 2083 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2084 cpu_relax(); 2085 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2086 hr = be64_to_cpu(hptp[1]); 2087 gr = kvm->arch.hpt.rev[i].guest_rpte; 2088 unlock_hpte(hptp, v); 2089 preempt_enable(); 2090 2091 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2092 continue; 2093 2094 n = scnprintf(p->buf, sizeof(p->buf), 2095 "%6lx %.16lx %.16lx %.16lx\n", 2096 i, v, hr, gr); 2097 p->chars_left = n; 2098 if (n > len) 2099 n = len; 2100 r = copy_to_user(buf, p->buf, n); 2101 n -= r; 2102 p->chars_left -= n; 2103 p->buf_index = n; 2104 buf += n; 2105 len -= n; 2106 ret += n; 2107 if (r) { 2108 if (!ret) 2109 ret = -EFAULT; 2110 goto out; 2111 } 2112 } 2113 p->hpt_index = i; 2114 2115 out: 2116 mutex_unlock(&p->mutex); 2117 return ret; 2118 } 2119 2120 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2121 size_t len, loff_t *ppos) 2122 { 2123 return -EACCES; 2124 } 2125 2126 static const struct file_operations debugfs_htab_fops = { 2127 .owner = THIS_MODULE, 2128 .open = debugfs_htab_open, 2129 .release = debugfs_htab_release, 2130 .read = debugfs_htab_read, 2131 .write = debugfs_htab_write, 2132 .llseek = generic_file_llseek, 2133 }; 2134 2135 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2136 { 2137 debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm, 2138 &debugfs_htab_fops); 2139 } 2140 2141 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2142 { 2143 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2144 2145 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2146 2147 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2148 2149 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2150 } 2151