1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 16 */ 17 18 #include <linux/types.h> 19 #include <linux/string.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_host.h> 22 #include <linux/highmem.h> 23 #include <linux/gfp.h> 24 #include <linux/slab.h> 25 #include <linux/hugetlb.h> 26 #include <linux/vmalloc.h> 27 #include <linux/srcu.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/file.h> 30 #include <linux/debugfs.h> 31 32 #include <asm/tlbflush.h> 33 #include <asm/kvm_ppc.h> 34 #include <asm/kvm_book3s.h> 35 #include <asm/book3s/64/mmu-hash.h> 36 #include <asm/hvcall.h> 37 #include <asm/synch.h> 38 #include <asm/ppc-opcode.h> 39 #include <asm/cputable.h> 40 #include <asm/pte-walk.h> 41 42 #include "trace_hv.h" 43 44 //#define DEBUG_RESIZE_HPT 1 45 46 #ifdef DEBUG_RESIZE_HPT 47 #define resize_hpt_debug(resize, ...) \ 48 do { \ 49 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ 50 printk(__VA_ARGS__); \ 51 } while (0) 52 #else 53 #define resize_hpt_debug(resize, ...) \ 54 do { } while (0) 55 #endif 56 57 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 58 long pte_index, unsigned long pteh, 59 unsigned long ptel, unsigned long *pte_idx_ret); 60 61 struct kvm_resize_hpt { 62 /* These fields read-only after init */ 63 struct kvm *kvm; 64 struct work_struct work; 65 u32 order; 66 67 /* These fields protected by kvm->lock */ 68 69 /* Possible values and their usage: 70 * <0 an error occurred during allocation, 71 * -EBUSY allocation is in the progress, 72 * 0 allocation made successfuly. 73 */ 74 int error; 75 76 /* Private to the work thread, until error != -EBUSY, 77 * then protected by kvm->lock. 78 */ 79 struct kvm_hpt_info hpt; 80 }; 81 82 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) 83 { 84 unsigned long hpt = 0; 85 int cma = 0; 86 struct page *page = NULL; 87 struct revmap_entry *rev; 88 unsigned long npte; 89 90 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) 91 return -EINVAL; 92 93 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); 94 if (page) { 95 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 96 memset((void *)hpt, 0, (1ul << order)); 97 cma = 1; 98 } 99 100 if (!hpt) 101 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL 102 |__GFP_NOWARN, order - PAGE_SHIFT); 103 104 if (!hpt) 105 return -ENOMEM; 106 107 /* HPTEs are 2**4 bytes long */ 108 npte = 1ul << (order - 4); 109 110 /* Allocate reverse map array */ 111 rev = vmalloc(sizeof(struct revmap_entry) * npte); 112 if (!rev) { 113 if (cma) 114 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); 115 else 116 free_pages(hpt, order - PAGE_SHIFT); 117 return -ENOMEM; 118 } 119 120 info->order = order; 121 info->virt = hpt; 122 info->cma = cma; 123 info->rev = rev; 124 125 return 0; 126 } 127 128 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) 129 { 130 atomic64_set(&kvm->arch.mmio_update, 0); 131 kvm->arch.hpt = *info; 132 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); 133 134 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", 135 info->virt, (long)info->order, kvm->arch.lpid); 136 } 137 138 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) 139 { 140 long err = -EBUSY; 141 struct kvm_hpt_info info; 142 143 mutex_lock(&kvm->lock); 144 if (kvm->arch.mmu_ready) { 145 kvm->arch.mmu_ready = 0; 146 /* order mmu_ready vs. vcpus_running */ 147 smp_mb(); 148 if (atomic_read(&kvm->arch.vcpus_running)) { 149 kvm->arch.mmu_ready = 1; 150 goto out; 151 } 152 } 153 if (kvm_is_radix(kvm)) { 154 err = kvmppc_switch_mmu_to_hpt(kvm); 155 if (err) 156 goto out; 157 } 158 159 if (kvm->arch.hpt.order == order) { 160 /* We already have a suitable HPT */ 161 162 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 163 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); 164 /* 165 * Reset all the reverse-mapping chains for all memslots 166 */ 167 kvmppc_rmap_reset(kvm); 168 err = 0; 169 goto out; 170 } 171 172 if (kvm->arch.hpt.virt) { 173 kvmppc_free_hpt(&kvm->arch.hpt); 174 kvmppc_rmap_reset(kvm); 175 } 176 177 err = kvmppc_allocate_hpt(&info, order); 178 if (err < 0) 179 goto out; 180 kvmppc_set_hpt(kvm, &info); 181 182 out: 183 if (err == 0) 184 /* Ensure that each vcpu will flush its TLB on next entry. */ 185 cpumask_setall(&kvm->arch.need_tlb_flush); 186 187 mutex_unlock(&kvm->lock); 188 return err; 189 } 190 191 void kvmppc_free_hpt(struct kvm_hpt_info *info) 192 { 193 vfree(info->rev); 194 info->rev = NULL; 195 if (info->cma) 196 kvm_free_hpt_cma(virt_to_page(info->virt), 197 1 << (info->order - PAGE_SHIFT)); 198 else if (info->virt) 199 free_pages(info->virt, info->order - PAGE_SHIFT); 200 info->virt = 0; 201 info->order = 0; 202 } 203 204 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 205 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 206 { 207 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 208 } 209 210 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 211 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 212 { 213 return (pgsize == 0x10000) ? 0x1000 : 0; 214 } 215 216 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 217 unsigned long porder) 218 { 219 unsigned long i; 220 unsigned long npages; 221 unsigned long hp_v, hp_r; 222 unsigned long addr, hash; 223 unsigned long psize; 224 unsigned long hp0, hp1; 225 unsigned long idx_ret; 226 long ret; 227 struct kvm *kvm = vcpu->kvm; 228 229 psize = 1ul << porder; 230 npages = memslot->npages >> (porder - PAGE_SHIFT); 231 232 /* VRMA can't be > 1TB */ 233 if (npages > 1ul << (40 - porder)) 234 npages = 1ul << (40 - porder); 235 /* Can't use more than 1 HPTE per HPTEG */ 236 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) 237 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; 238 239 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 240 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 241 hp1 = hpte1_pgsize_encoding(psize) | 242 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 243 244 for (i = 0; i < npages; ++i) { 245 addr = i << porder; 246 /* can't use hpt_hash since va > 64 bits */ 247 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) 248 & kvmppc_hpt_mask(&kvm->arch.hpt); 249 /* 250 * We assume that the hash table is empty and no 251 * vcpus are using it at this stage. Since we create 252 * at most one HPTE per HPTEG, we just assume entry 7 253 * is available and use it. 254 */ 255 hash = (hash << 3) + 7; 256 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 257 hp_r = hp1 | addr; 258 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 259 &idx_ret); 260 if (ret != H_SUCCESS) { 261 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 262 addr, ret); 263 break; 264 } 265 } 266 } 267 268 int kvmppc_mmu_hv_init(void) 269 { 270 unsigned long host_lpid, rsvd_lpid; 271 272 if (!cpu_has_feature(CPU_FTR_HVMODE)) 273 return -EINVAL; 274 275 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 276 host_lpid = mfspr(SPRN_LPID); 277 rsvd_lpid = LPID_RSVD; 278 279 kvmppc_init_lpid(rsvd_lpid + 1); 280 281 kvmppc_claim_lpid(host_lpid); 282 /* rsvd_lpid is reserved for use in partition switching */ 283 kvmppc_claim_lpid(rsvd_lpid); 284 285 return 0; 286 } 287 288 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu) 289 { 290 unsigned long msr = vcpu->arch.intr_msr; 291 292 /* If transactional, change to suspend mode on IRQ delivery */ 293 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 294 msr |= MSR_TS_S; 295 else 296 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK; 297 kvmppc_set_msr(vcpu, msr); 298 } 299 300 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 301 long pte_index, unsigned long pteh, 302 unsigned long ptel, unsigned long *pte_idx_ret) 303 { 304 long ret; 305 306 /* Protect linux PTE lookup from page table destruction */ 307 rcu_read_lock_sched(); /* this disables preemption too */ 308 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 309 current->mm->pgd, false, pte_idx_ret); 310 rcu_read_unlock_sched(); 311 if (ret == H_TOO_HARD) { 312 /* this can't happen */ 313 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 314 ret = H_RESOURCE; /* or something */ 315 } 316 return ret; 317 318 } 319 320 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 321 gva_t eaddr) 322 { 323 u64 mask; 324 int i; 325 326 for (i = 0; i < vcpu->arch.slb_nr; i++) { 327 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 328 continue; 329 330 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 331 mask = ESID_MASK_1T; 332 else 333 mask = ESID_MASK; 334 335 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 336 return &vcpu->arch.slb[i]; 337 } 338 return NULL; 339 } 340 341 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 342 unsigned long ea) 343 { 344 unsigned long ra_mask; 345 346 ra_mask = kvmppc_actual_pgsz(v, r) - 1; 347 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 348 } 349 350 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 351 struct kvmppc_pte *gpte, bool data, bool iswrite) 352 { 353 struct kvm *kvm = vcpu->kvm; 354 struct kvmppc_slb *slbe; 355 unsigned long slb_v; 356 unsigned long pp, key; 357 unsigned long v, orig_v, gr; 358 __be64 *hptep; 359 int index; 360 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 361 362 if (kvm_is_radix(vcpu->kvm)) 363 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); 364 365 /* Get SLB entry */ 366 if (virtmode) { 367 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 368 if (!slbe) 369 return -EINVAL; 370 slb_v = slbe->origv; 371 } else { 372 /* real mode access */ 373 slb_v = vcpu->kvm->arch.vrma_slb_v; 374 } 375 376 preempt_disable(); 377 /* Find the HPTE in the hash table */ 378 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 379 HPTE_V_VALID | HPTE_V_ABSENT); 380 if (index < 0) { 381 preempt_enable(); 382 return -ENOENT; 383 } 384 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 385 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 386 if (cpu_has_feature(CPU_FTR_ARCH_300)) 387 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); 388 gr = kvm->arch.hpt.rev[index].guest_rpte; 389 390 unlock_hpte(hptep, orig_v); 391 preempt_enable(); 392 393 gpte->eaddr = eaddr; 394 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 395 396 /* Get PP bits and key for permission check */ 397 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 398 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 399 key &= slb_v; 400 401 /* Calculate permissions */ 402 gpte->may_read = hpte_read_permission(pp, key); 403 gpte->may_write = hpte_write_permission(pp, key); 404 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 405 406 /* Storage key permission check for POWER7 */ 407 if (data && virtmode) { 408 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 409 if (amrfield & 1) 410 gpte->may_read = 0; 411 if (amrfield & 2) 412 gpte->may_write = 0; 413 } 414 415 /* Get the guest physical address */ 416 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 417 return 0; 418 } 419 420 /* 421 * Quick test for whether an instruction is a load or a store. 422 * If the instruction is a load or a store, then this will indicate 423 * which it is, at least on server processors. (Embedded processors 424 * have some external PID instructions that don't follow the rule 425 * embodied here.) If the instruction isn't a load or store, then 426 * this doesn't return anything useful. 427 */ 428 static int instruction_is_store(unsigned int instr) 429 { 430 unsigned int mask; 431 432 mask = 0x10000000; 433 if ((instr & 0xfc000000) == 0x7c000000) 434 mask = 0x100; /* major opcode 31 */ 435 return (instr & mask) != 0; 436 } 437 438 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 439 unsigned long gpa, gva_t ea, int is_store) 440 { 441 u32 last_inst; 442 443 /* 444 * If we fail, we just return to the guest and try executing it again. 445 */ 446 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 447 EMULATE_DONE) 448 return RESUME_GUEST; 449 450 /* 451 * WARNING: We do not know for sure whether the instruction we just 452 * read from memory is the same that caused the fault in the first 453 * place. If the instruction we read is neither an load or a store, 454 * then it can't access memory, so we don't need to worry about 455 * enforcing access permissions. So, assuming it is a load or 456 * store, we just check that its direction (load or store) is 457 * consistent with the original fault, since that's what we 458 * checked the access permissions against. If there is a mismatch 459 * we just return and retry the instruction. 460 */ 461 462 if (instruction_is_store(last_inst) != !!is_store) 463 return RESUME_GUEST; 464 465 /* 466 * Emulated accesses are emulated by looking at the hash for 467 * translation once, then performing the access later. The 468 * translation could be invalidated in the meantime in which 469 * point performing the subsequent memory access on the old 470 * physical address could possibly be a security hole for the 471 * guest (but not the host). 472 * 473 * This is less of an issue for MMIO stores since they aren't 474 * globally visible. It could be an issue for MMIO loads to 475 * a certain extent but we'll ignore it for now. 476 */ 477 478 vcpu->arch.paddr_accessed = gpa; 479 vcpu->arch.vaddr_accessed = ea; 480 return kvmppc_emulate_mmio(run, vcpu); 481 } 482 483 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 484 unsigned long ea, unsigned long dsisr) 485 { 486 struct kvm *kvm = vcpu->kvm; 487 unsigned long hpte[3], r; 488 unsigned long hnow_v, hnow_r; 489 __be64 *hptep; 490 unsigned long mmu_seq, psize, pte_size; 491 unsigned long gpa_base, gfn_base; 492 unsigned long gpa, gfn, hva, pfn; 493 struct kvm_memory_slot *memslot; 494 unsigned long *rmap; 495 struct revmap_entry *rev; 496 struct page *page, *pages[1]; 497 long index, ret, npages; 498 bool is_ci; 499 unsigned int writing, write_ok; 500 struct vm_area_struct *vma; 501 unsigned long rcbits; 502 long mmio_update; 503 504 if (kvm_is_radix(kvm)) 505 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr); 506 507 /* 508 * Real-mode code has already searched the HPT and found the 509 * entry we're interested in. Lock the entry and check that 510 * it hasn't changed. If it has, just return and re-execute the 511 * instruction. 512 */ 513 if (ea != vcpu->arch.pgfault_addr) 514 return RESUME_GUEST; 515 516 if (vcpu->arch.pgfault_cache) { 517 mmio_update = atomic64_read(&kvm->arch.mmio_update); 518 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { 519 r = vcpu->arch.pgfault_cache->rpte; 520 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], 521 r); 522 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 523 gfn_base = gpa_base >> PAGE_SHIFT; 524 gpa = gpa_base | (ea & (psize - 1)); 525 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 526 dsisr & DSISR_ISSTORE); 527 } 528 } 529 index = vcpu->arch.pgfault_index; 530 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); 531 rev = &kvm->arch.hpt.rev[index]; 532 preempt_disable(); 533 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 534 cpu_relax(); 535 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 536 hpte[1] = be64_to_cpu(hptep[1]); 537 hpte[2] = r = rev->guest_rpte; 538 unlock_hpte(hptep, hpte[0]); 539 preempt_enable(); 540 541 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 542 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); 543 hpte[1] = hpte_new_to_old_r(hpte[1]); 544 } 545 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 546 hpte[1] != vcpu->arch.pgfault_hpte[1]) 547 return RESUME_GUEST; 548 549 /* Translate the logical address and get the page */ 550 psize = kvmppc_actual_pgsz(hpte[0], r); 551 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 552 gfn_base = gpa_base >> PAGE_SHIFT; 553 gpa = gpa_base | (ea & (psize - 1)); 554 gfn = gpa >> PAGE_SHIFT; 555 memslot = gfn_to_memslot(kvm, gfn); 556 557 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 558 559 /* No memslot means it's an emulated MMIO region */ 560 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 561 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 562 dsisr & DSISR_ISSTORE); 563 564 /* 565 * This should never happen, because of the slot_is_aligned() 566 * check in kvmppc_do_h_enter(). 567 */ 568 if (gfn_base < memslot->base_gfn) 569 return -EFAULT; 570 571 /* used to check for invalidations in progress */ 572 mmu_seq = kvm->mmu_notifier_seq; 573 smp_rmb(); 574 575 ret = -EFAULT; 576 is_ci = false; 577 pfn = 0; 578 page = NULL; 579 pte_size = PAGE_SIZE; 580 writing = (dsisr & DSISR_ISSTORE) != 0; 581 /* If writing != 0, then the HPTE must allow writing, if we get here */ 582 write_ok = writing; 583 hva = gfn_to_hva_memslot(memslot, gfn); 584 npages = get_user_pages_fast(hva, 1, writing, pages); 585 if (npages < 1) { 586 /* Check if it's an I/O mapping */ 587 down_read(¤t->mm->mmap_sem); 588 vma = find_vma(current->mm, hva); 589 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end && 590 (vma->vm_flags & VM_PFNMAP)) { 591 pfn = vma->vm_pgoff + 592 ((hva - vma->vm_start) >> PAGE_SHIFT); 593 pte_size = psize; 594 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot)))); 595 write_ok = vma->vm_flags & VM_WRITE; 596 } 597 up_read(¤t->mm->mmap_sem); 598 if (!pfn) 599 goto out_put; 600 } else { 601 page = pages[0]; 602 pfn = page_to_pfn(page); 603 if (PageHuge(page)) { 604 page = compound_head(page); 605 pte_size <<= compound_order(page); 606 } 607 /* if the guest wants write access, see if that is OK */ 608 if (!writing && hpte_is_writable(r)) { 609 pte_t *ptep, pte; 610 unsigned long flags; 611 /* 612 * We need to protect against page table destruction 613 * hugepage split and collapse. 614 */ 615 local_irq_save(flags); 616 ptep = find_current_mm_pte(current->mm->pgd, 617 hva, NULL, NULL); 618 if (ptep) { 619 pte = kvmppc_read_update_linux_pte(ptep, 1); 620 if (__pte_write(pte)) 621 write_ok = 1; 622 } 623 local_irq_restore(flags); 624 } 625 } 626 627 if (psize > pte_size) 628 goto out_put; 629 630 /* Check WIMG vs. the actual page we're accessing */ 631 if (!hpte_cache_flags_ok(r, is_ci)) { 632 if (is_ci) 633 goto out_put; 634 /* 635 * Allow guest to map emulated device memory as 636 * uncacheable, but actually make it cacheable. 637 */ 638 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 639 } 640 641 /* 642 * Set the HPTE to point to pfn. 643 * Since the pfn is at PAGE_SIZE granularity, make sure we 644 * don't mask out lower-order bits if psize < PAGE_SIZE. 645 */ 646 if (psize < PAGE_SIZE) 647 psize = PAGE_SIZE; 648 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | 649 ((pfn << PAGE_SHIFT) & ~(psize - 1)); 650 if (hpte_is_writable(r) && !write_ok) 651 r = hpte_make_readonly(r); 652 ret = RESUME_GUEST; 653 preempt_disable(); 654 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 655 cpu_relax(); 656 hnow_v = be64_to_cpu(hptep[0]); 657 hnow_r = be64_to_cpu(hptep[1]); 658 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 659 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); 660 hnow_r = hpte_new_to_old_r(hnow_r); 661 } 662 663 /* 664 * If the HPT is being resized, don't update the HPTE, 665 * instead let the guest retry after the resize operation is complete. 666 * The synchronization for mmu_ready test vs. set is provided 667 * by the HPTE lock. 668 */ 669 if (!kvm->arch.mmu_ready) 670 goto out_unlock; 671 672 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || 673 rev->guest_rpte != hpte[2]) 674 /* HPTE has been changed under us; let the guest retry */ 675 goto out_unlock; 676 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 677 678 /* Always put the HPTE in the rmap chain for the page base address */ 679 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 680 lock_rmap(rmap); 681 682 /* Check if we might have been invalidated; let the guest retry if so */ 683 ret = RESUME_GUEST; 684 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 685 unlock_rmap(rmap); 686 goto out_unlock; 687 } 688 689 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 690 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 691 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 692 693 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 694 /* HPTE was previously valid, so we need to invalidate it */ 695 unlock_rmap(rmap); 696 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 697 kvmppc_invalidate_hpte(kvm, hptep, index); 698 /* don't lose previous R and C bits */ 699 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 700 } else { 701 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 702 } 703 704 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 705 r = hpte_old_to_new_r(hpte[0], r); 706 hpte[0] = hpte_old_to_new_v(hpte[0]); 707 } 708 hptep[1] = cpu_to_be64(r); 709 eieio(); 710 __unlock_hpte(hptep, hpte[0]); 711 asm volatile("ptesync" : : : "memory"); 712 preempt_enable(); 713 if (page && hpte_is_writable(r)) 714 SetPageDirty(page); 715 716 out_put: 717 trace_kvm_page_fault_exit(vcpu, hpte, ret); 718 719 if (page) { 720 /* 721 * We drop pages[0] here, not page because page might 722 * have been set to the head page of a compound, but 723 * we have to drop the reference on the correct tail 724 * page to match the get inside gup() 725 */ 726 put_page(pages[0]); 727 } 728 return ret; 729 730 out_unlock: 731 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 732 preempt_enable(); 733 goto out_put; 734 } 735 736 void kvmppc_rmap_reset(struct kvm *kvm) 737 { 738 struct kvm_memslots *slots; 739 struct kvm_memory_slot *memslot; 740 int srcu_idx; 741 742 srcu_idx = srcu_read_lock(&kvm->srcu); 743 slots = kvm_memslots(kvm); 744 kvm_for_each_memslot(memslot, slots) { 745 /* 746 * This assumes it is acceptable to lose reference and 747 * change bits across a reset. 748 */ 749 memset(memslot->arch.rmap, 0, 750 memslot->npages * sizeof(*memslot->arch.rmap)); 751 } 752 srcu_read_unlock(&kvm->srcu, srcu_idx); 753 } 754 755 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, 756 unsigned long gfn); 757 758 static int kvm_handle_hva_range(struct kvm *kvm, 759 unsigned long start, 760 unsigned long end, 761 hva_handler_fn handler) 762 { 763 int ret; 764 int retval = 0; 765 struct kvm_memslots *slots; 766 struct kvm_memory_slot *memslot; 767 768 slots = kvm_memslots(kvm); 769 kvm_for_each_memslot(memslot, slots) { 770 unsigned long hva_start, hva_end; 771 gfn_t gfn, gfn_end; 772 773 hva_start = max(start, memslot->userspace_addr); 774 hva_end = min(end, memslot->userspace_addr + 775 (memslot->npages << PAGE_SHIFT)); 776 if (hva_start >= hva_end) 777 continue; 778 /* 779 * {gfn(page) | page intersects with [hva_start, hva_end)} = 780 * {gfn, gfn+1, ..., gfn_end-1}. 781 */ 782 gfn = hva_to_gfn_memslot(hva_start, memslot); 783 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 784 785 for (; gfn < gfn_end; ++gfn) { 786 ret = handler(kvm, memslot, gfn); 787 retval |= ret; 788 } 789 } 790 791 return retval; 792 } 793 794 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 795 hva_handler_fn handler) 796 { 797 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 798 } 799 800 /* Must be called with both HPTE and rmap locked */ 801 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, 802 struct kvm_memory_slot *memslot, 803 unsigned long *rmapp, unsigned long gfn) 804 { 805 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 806 struct revmap_entry *rev = kvm->arch.hpt.rev; 807 unsigned long j, h; 808 unsigned long ptel, psize, rcbits; 809 810 j = rev[i].forw; 811 if (j == i) { 812 /* chain is now empty */ 813 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 814 } else { 815 /* remove i from chain */ 816 h = rev[i].back; 817 rev[h].forw = j; 818 rev[j].back = h; 819 rev[i].forw = rev[i].back = i; 820 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 821 } 822 823 /* Now check and modify the HPTE */ 824 ptel = rev[i].guest_rpte; 825 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); 826 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 827 hpte_rpn(ptel, psize) == gfn) { 828 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 829 kvmppc_invalidate_hpte(kvm, hptep, i); 830 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); 831 /* Harvest R and C */ 832 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 833 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 834 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) 835 kvmppc_update_dirty_map(memslot, gfn, psize); 836 if (rcbits & ~rev[i].guest_rpte) { 837 rev[i].guest_rpte = ptel | rcbits; 838 note_hpte_modification(kvm, &rev[i]); 839 } 840 } 841 } 842 843 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 844 unsigned long gfn) 845 { 846 unsigned long i; 847 __be64 *hptep; 848 unsigned long *rmapp; 849 850 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 851 for (;;) { 852 lock_rmap(rmapp); 853 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 854 unlock_rmap(rmapp); 855 break; 856 } 857 858 /* 859 * To avoid an ABBA deadlock with the HPTE lock bit, 860 * we can't spin on the HPTE lock while holding the 861 * rmap chain lock. 862 */ 863 i = *rmapp & KVMPPC_RMAP_INDEX; 864 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 865 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 866 /* unlock rmap before spinning on the HPTE lock */ 867 unlock_rmap(rmapp); 868 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 869 cpu_relax(); 870 continue; 871 } 872 873 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); 874 unlock_rmap(rmapp); 875 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 876 } 877 return 0; 878 } 879 880 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva) 881 { 882 hva_handler_fn handler; 883 884 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 885 kvm_handle_hva(kvm, hva, handler); 886 return 0; 887 } 888 889 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 890 { 891 hva_handler_fn handler; 892 893 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 894 kvm_handle_hva_range(kvm, start, end, handler); 895 return 0; 896 } 897 898 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 899 struct kvm_memory_slot *memslot) 900 { 901 unsigned long gfn; 902 unsigned long n; 903 unsigned long *rmapp; 904 905 gfn = memslot->base_gfn; 906 rmapp = memslot->arch.rmap; 907 for (n = memslot->npages; n; --n, ++gfn) { 908 if (kvm_is_radix(kvm)) { 909 kvm_unmap_radix(kvm, memslot, gfn); 910 continue; 911 } 912 /* 913 * Testing the present bit without locking is OK because 914 * the memslot has been marked invalid already, and hence 915 * no new HPTEs referencing this page can be created, 916 * thus the present bit can't go from 0 to 1. 917 */ 918 if (*rmapp & KVMPPC_RMAP_PRESENT) 919 kvm_unmap_rmapp(kvm, memslot, gfn); 920 ++rmapp; 921 } 922 } 923 924 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 925 unsigned long gfn) 926 { 927 struct revmap_entry *rev = kvm->arch.hpt.rev; 928 unsigned long head, i, j; 929 __be64 *hptep; 930 int ret = 0; 931 unsigned long *rmapp; 932 933 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 934 retry: 935 lock_rmap(rmapp); 936 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 937 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 938 ret = 1; 939 } 940 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 941 unlock_rmap(rmapp); 942 return ret; 943 } 944 945 i = head = *rmapp & KVMPPC_RMAP_INDEX; 946 do { 947 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 948 j = rev[i].forw; 949 950 /* If this HPTE isn't referenced, ignore it */ 951 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 952 continue; 953 954 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 955 /* unlock rmap before spinning on the HPTE lock */ 956 unlock_rmap(rmapp); 957 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 958 cpu_relax(); 959 goto retry; 960 } 961 962 /* Now check and modify the HPTE */ 963 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 964 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 965 kvmppc_clear_ref_hpte(kvm, hptep, i); 966 if (!(rev[i].guest_rpte & HPTE_R_R)) { 967 rev[i].guest_rpte |= HPTE_R_R; 968 note_hpte_modification(kvm, &rev[i]); 969 } 970 ret = 1; 971 } 972 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 973 } while ((i = j) != head); 974 975 unlock_rmap(rmapp); 976 return ret; 977 } 978 979 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 980 { 981 hva_handler_fn handler; 982 983 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; 984 return kvm_handle_hva_range(kvm, start, end, handler); 985 } 986 987 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, 988 unsigned long gfn) 989 { 990 struct revmap_entry *rev = kvm->arch.hpt.rev; 991 unsigned long head, i, j; 992 unsigned long *hp; 993 int ret = 1; 994 unsigned long *rmapp; 995 996 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 997 if (*rmapp & KVMPPC_RMAP_REFERENCED) 998 return 1; 999 1000 lock_rmap(rmapp); 1001 if (*rmapp & KVMPPC_RMAP_REFERENCED) 1002 goto out; 1003 1004 if (*rmapp & KVMPPC_RMAP_PRESENT) { 1005 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1006 do { 1007 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); 1008 j = rev[i].forw; 1009 if (be64_to_cpu(hp[1]) & HPTE_R_R) 1010 goto out; 1011 } while ((i = j) != head); 1012 } 1013 ret = 0; 1014 1015 out: 1016 unlock_rmap(rmapp); 1017 return ret; 1018 } 1019 1020 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 1021 { 1022 hva_handler_fn handler; 1023 1024 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; 1025 return kvm_handle_hva(kvm, hva, handler); 1026 } 1027 1028 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 1029 { 1030 hva_handler_fn handler; 1031 1032 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; 1033 kvm_handle_hva(kvm, hva, handler); 1034 } 1035 1036 static int vcpus_running(struct kvm *kvm) 1037 { 1038 return atomic_read(&kvm->arch.vcpus_running) != 0; 1039 } 1040 1041 /* 1042 * Returns the number of system pages that are dirty. 1043 * This can be more than 1 if we find a huge-page HPTE. 1044 */ 1045 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 1046 { 1047 struct revmap_entry *rev = kvm->arch.hpt.rev; 1048 unsigned long head, i, j; 1049 unsigned long n; 1050 unsigned long v, r; 1051 __be64 *hptep; 1052 int npages_dirty = 0; 1053 1054 retry: 1055 lock_rmap(rmapp); 1056 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 1057 unlock_rmap(rmapp); 1058 return npages_dirty; 1059 } 1060 1061 i = head = *rmapp & KVMPPC_RMAP_INDEX; 1062 do { 1063 unsigned long hptep1; 1064 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); 1065 j = rev[i].forw; 1066 1067 /* 1068 * Checking the C (changed) bit here is racy since there 1069 * is no guarantee about when the hardware writes it back. 1070 * If the HPTE is not writable then it is stable since the 1071 * page can't be written to, and we would have done a tlbie 1072 * (which forces the hardware to complete any writeback) 1073 * when making the HPTE read-only. 1074 * If vcpus are running then this call is racy anyway 1075 * since the page could get dirtied subsequently, so we 1076 * expect there to be a further call which would pick up 1077 * any delayed C bit writeback. 1078 * Otherwise we need to do the tlbie even if C==0 in 1079 * order to pick up any delayed writeback of C. 1080 */ 1081 hptep1 = be64_to_cpu(hptep[1]); 1082 if (!(hptep1 & HPTE_R_C) && 1083 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 1084 continue; 1085 1086 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 1087 /* unlock rmap before spinning on the HPTE lock */ 1088 unlock_rmap(rmapp); 1089 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 1090 cpu_relax(); 1091 goto retry; 1092 } 1093 1094 /* Now check and modify the HPTE */ 1095 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 1096 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 1097 continue; 1098 } 1099 1100 /* need to make it temporarily absent so C is stable */ 1101 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 1102 kvmppc_invalidate_hpte(kvm, hptep, i); 1103 v = be64_to_cpu(hptep[0]); 1104 r = be64_to_cpu(hptep[1]); 1105 if (r & HPTE_R_C) { 1106 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 1107 if (!(rev[i].guest_rpte & HPTE_R_C)) { 1108 rev[i].guest_rpte |= HPTE_R_C; 1109 note_hpte_modification(kvm, &rev[i]); 1110 } 1111 n = kvmppc_actual_pgsz(v, r); 1112 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 1113 if (n > npages_dirty) 1114 npages_dirty = n; 1115 eieio(); 1116 } 1117 v &= ~HPTE_V_ABSENT; 1118 v |= HPTE_V_VALID; 1119 __unlock_hpte(hptep, v); 1120 } while ((i = j) != head); 1121 1122 unlock_rmap(rmapp); 1123 return npages_dirty; 1124 } 1125 1126 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1127 struct kvm_memory_slot *memslot, 1128 unsigned long *map) 1129 { 1130 unsigned long gfn; 1131 1132 if (!vpa->dirty || !vpa->pinned_addr) 1133 return; 1134 gfn = vpa->gpa >> PAGE_SHIFT; 1135 if (gfn < memslot->base_gfn || 1136 gfn >= memslot->base_gfn + memslot->npages) 1137 return; 1138 1139 vpa->dirty = false; 1140 if (map) 1141 __set_bit_le(gfn - memslot->base_gfn, map); 1142 } 1143 1144 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, 1145 struct kvm_memory_slot *memslot, unsigned long *map) 1146 { 1147 unsigned long i; 1148 unsigned long *rmapp; 1149 1150 preempt_disable(); 1151 rmapp = memslot->arch.rmap; 1152 for (i = 0; i < memslot->npages; ++i) { 1153 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1154 /* 1155 * Note that if npages > 0 then i must be a multiple of npages, 1156 * since we always put huge-page HPTEs in the rmap chain 1157 * corresponding to their page base address. 1158 */ 1159 if (npages) 1160 set_dirty_bits(map, i, npages); 1161 ++rmapp; 1162 } 1163 preempt_enable(); 1164 return 0; 1165 } 1166 1167 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1168 unsigned long *nb_ret) 1169 { 1170 struct kvm_memory_slot *memslot; 1171 unsigned long gfn = gpa >> PAGE_SHIFT; 1172 struct page *page, *pages[1]; 1173 int npages; 1174 unsigned long hva, offset; 1175 int srcu_idx; 1176 1177 srcu_idx = srcu_read_lock(&kvm->srcu); 1178 memslot = gfn_to_memslot(kvm, gfn); 1179 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1180 goto err; 1181 hva = gfn_to_hva_memslot(memslot, gfn); 1182 npages = get_user_pages_fast(hva, 1, 1, pages); 1183 if (npages < 1) 1184 goto err; 1185 page = pages[0]; 1186 srcu_read_unlock(&kvm->srcu, srcu_idx); 1187 1188 offset = gpa & (PAGE_SIZE - 1); 1189 if (nb_ret) 1190 *nb_ret = PAGE_SIZE - offset; 1191 return page_address(page) + offset; 1192 1193 err: 1194 srcu_read_unlock(&kvm->srcu, srcu_idx); 1195 return NULL; 1196 } 1197 1198 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1199 bool dirty) 1200 { 1201 struct page *page = virt_to_page(va); 1202 struct kvm_memory_slot *memslot; 1203 unsigned long gfn; 1204 int srcu_idx; 1205 1206 put_page(page); 1207 1208 if (!dirty) 1209 return; 1210 1211 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ 1212 gfn = gpa >> PAGE_SHIFT; 1213 srcu_idx = srcu_read_lock(&kvm->srcu); 1214 memslot = gfn_to_memslot(kvm, gfn); 1215 if (memslot && memslot->dirty_bitmap) 1216 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); 1217 srcu_read_unlock(&kvm->srcu, srcu_idx); 1218 } 1219 1220 /* 1221 * HPT resizing 1222 */ 1223 static int resize_hpt_allocate(struct kvm_resize_hpt *resize) 1224 { 1225 int rc; 1226 1227 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); 1228 if (rc < 0) 1229 return rc; 1230 1231 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", 1232 resize->hpt.virt); 1233 1234 return 0; 1235 } 1236 1237 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, 1238 unsigned long idx) 1239 { 1240 struct kvm *kvm = resize->kvm; 1241 struct kvm_hpt_info *old = &kvm->arch.hpt; 1242 struct kvm_hpt_info *new = &resize->hpt; 1243 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; 1244 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; 1245 __be64 *hptep, *new_hptep; 1246 unsigned long vpte, rpte, guest_rpte; 1247 int ret; 1248 struct revmap_entry *rev; 1249 unsigned long apsize, avpn, pteg, hash; 1250 unsigned long new_idx, new_pteg, replace_vpte; 1251 int pshift; 1252 1253 hptep = (__be64 *)(old->virt + (idx << 4)); 1254 1255 /* Guest is stopped, so new HPTEs can't be added or faulted 1256 * in, only unmapped or altered by host actions. So, it's 1257 * safe to check this before we take the HPTE lock */ 1258 vpte = be64_to_cpu(hptep[0]); 1259 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1260 return 0; /* nothing to do */ 1261 1262 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 1263 cpu_relax(); 1264 1265 vpte = be64_to_cpu(hptep[0]); 1266 1267 ret = 0; 1268 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) 1269 /* Nothing to do */ 1270 goto out; 1271 1272 /* Unmap */ 1273 rev = &old->rev[idx]; 1274 guest_rpte = rev->guest_rpte; 1275 1276 ret = -EIO; 1277 apsize = kvmppc_actual_pgsz(vpte, guest_rpte); 1278 if (!apsize) 1279 goto out; 1280 1281 if (vpte & HPTE_V_VALID) { 1282 unsigned long gfn = hpte_rpn(guest_rpte, apsize); 1283 int srcu_idx = srcu_read_lock(&kvm->srcu); 1284 struct kvm_memory_slot *memslot = 1285 __gfn_to_memslot(kvm_memslots(kvm), gfn); 1286 1287 if (memslot) { 1288 unsigned long *rmapp; 1289 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1290 1291 lock_rmap(rmapp); 1292 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); 1293 unlock_rmap(rmapp); 1294 } 1295 1296 srcu_read_unlock(&kvm->srcu, srcu_idx); 1297 } 1298 1299 /* Reload PTE after unmap */ 1300 vpte = be64_to_cpu(hptep[0]); 1301 1302 BUG_ON(vpte & HPTE_V_VALID); 1303 BUG_ON(!(vpte & HPTE_V_ABSENT)); 1304 1305 ret = 0; 1306 if (!(vpte & HPTE_V_BOLTED)) 1307 goto out; 1308 1309 rpte = be64_to_cpu(hptep[1]); 1310 pshift = kvmppc_hpte_base_page_shift(vpte, rpte); 1311 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); 1312 pteg = idx / HPTES_PER_GROUP; 1313 if (vpte & HPTE_V_SECONDARY) 1314 pteg = ~pteg; 1315 1316 if (!(vpte & HPTE_V_1TB_SEG)) { 1317 unsigned long offset, vsid; 1318 1319 /* We only have 28 - 23 bits of offset in avpn */ 1320 offset = (avpn & 0x1f) << 23; 1321 vsid = avpn >> 5; 1322 /* We can find more bits from the pteg value */ 1323 if (pshift < 23) 1324 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; 1325 1326 hash = vsid ^ (offset >> pshift); 1327 } else { 1328 unsigned long offset, vsid; 1329 1330 /* We only have 40 - 23 bits of seg_off in avpn */ 1331 offset = (avpn & 0x1ffff) << 23; 1332 vsid = avpn >> 17; 1333 if (pshift < 23) 1334 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; 1335 1336 hash = vsid ^ (vsid << 25) ^ (offset >> pshift); 1337 } 1338 1339 new_pteg = hash & new_hash_mask; 1340 if (vpte & HPTE_V_SECONDARY) { 1341 BUG_ON(~pteg != (hash & old_hash_mask)); 1342 new_pteg = ~new_pteg; 1343 } else { 1344 BUG_ON(pteg != (hash & old_hash_mask)); 1345 } 1346 1347 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); 1348 new_hptep = (__be64 *)(new->virt + (new_idx << 4)); 1349 1350 replace_vpte = be64_to_cpu(new_hptep[0]); 1351 1352 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1353 BUG_ON(new->order >= old->order); 1354 1355 if (replace_vpte & HPTE_V_BOLTED) { 1356 if (vpte & HPTE_V_BOLTED) 1357 /* Bolted collision, nothing we can do */ 1358 ret = -ENOSPC; 1359 /* Discard the new HPTE */ 1360 goto out; 1361 } 1362 1363 /* Discard the previous HPTE */ 1364 } 1365 1366 new_hptep[1] = cpu_to_be64(rpte); 1367 new->rev[new_idx].guest_rpte = guest_rpte; 1368 /* No need for a barrier, since new HPT isn't active */ 1369 new_hptep[0] = cpu_to_be64(vpte); 1370 unlock_hpte(new_hptep, vpte); 1371 1372 out: 1373 unlock_hpte(hptep, vpte); 1374 return ret; 1375 } 1376 1377 static int resize_hpt_rehash(struct kvm_resize_hpt *resize) 1378 { 1379 struct kvm *kvm = resize->kvm; 1380 unsigned long i; 1381 int rc; 1382 1383 /* 1384 * resize_hpt_rehash_hpte() doesn't handle the new-format HPTEs 1385 * that POWER9 uses, and could well hit a BUG_ON on POWER9. 1386 */ 1387 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1388 return -EIO; 1389 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { 1390 rc = resize_hpt_rehash_hpte(resize, i); 1391 if (rc != 0) 1392 return rc; 1393 } 1394 1395 return 0; 1396 } 1397 1398 static void resize_hpt_pivot(struct kvm_resize_hpt *resize) 1399 { 1400 struct kvm *kvm = resize->kvm; 1401 struct kvm_hpt_info hpt_tmp; 1402 1403 /* Exchange the pending tables in the resize structure with 1404 * the active tables */ 1405 1406 resize_hpt_debug(resize, "resize_hpt_pivot()\n"); 1407 1408 spin_lock(&kvm->mmu_lock); 1409 asm volatile("ptesync" : : : "memory"); 1410 1411 hpt_tmp = kvm->arch.hpt; 1412 kvmppc_set_hpt(kvm, &resize->hpt); 1413 resize->hpt = hpt_tmp; 1414 1415 spin_unlock(&kvm->mmu_lock); 1416 1417 synchronize_srcu_expedited(&kvm->srcu); 1418 1419 resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); 1420 } 1421 1422 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) 1423 { 1424 if (WARN_ON(!mutex_is_locked(&kvm->lock))) 1425 return; 1426 1427 if (!resize) 1428 return; 1429 1430 if (resize->error != -EBUSY) { 1431 if (resize->hpt.virt) 1432 kvmppc_free_hpt(&resize->hpt); 1433 kfree(resize); 1434 } 1435 1436 if (kvm->arch.resize_hpt == resize) 1437 kvm->arch.resize_hpt = NULL; 1438 } 1439 1440 static void resize_hpt_prepare_work(struct work_struct *work) 1441 { 1442 struct kvm_resize_hpt *resize = container_of(work, 1443 struct kvm_resize_hpt, 1444 work); 1445 struct kvm *kvm = resize->kvm; 1446 int err = 0; 1447 1448 if (WARN_ON(resize->error != -EBUSY)) 1449 return; 1450 1451 mutex_lock(&kvm->lock); 1452 1453 /* Request is still current? */ 1454 if (kvm->arch.resize_hpt == resize) { 1455 /* We may request large allocations here: 1456 * do not sleep with kvm->lock held for a while. 1457 */ 1458 mutex_unlock(&kvm->lock); 1459 1460 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", 1461 resize->order); 1462 1463 err = resize_hpt_allocate(resize); 1464 1465 /* We have strict assumption about -EBUSY 1466 * when preparing for HPT resize. 1467 */ 1468 if (WARN_ON(err == -EBUSY)) 1469 err = -EINPROGRESS; 1470 1471 mutex_lock(&kvm->lock); 1472 /* It is possible that kvm->arch.resize_hpt != resize 1473 * after we grab kvm->lock again. 1474 */ 1475 } 1476 1477 resize->error = err; 1478 1479 if (kvm->arch.resize_hpt != resize) 1480 resize_hpt_release(kvm, resize); 1481 1482 mutex_unlock(&kvm->lock); 1483 } 1484 1485 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, 1486 struct kvm_ppc_resize_hpt *rhpt) 1487 { 1488 unsigned long flags = rhpt->flags; 1489 unsigned long shift = rhpt->shift; 1490 struct kvm_resize_hpt *resize; 1491 int ret; 1492 1493 if (flags != 0 || kvm_is_radix(kvm)) 1494 return -EINVAL; 1495 1496 if (shift && ((shift < 18) || (shift > 46))) 1497 return -EINVAL; 1498 1499 mutex_lock(&kvm->lock); 1500 1501 resize = kvm->arch.resize_hpt; 1502 1503 if (resize) { 1504 if (resize->order == shift) { 1505 /* Suitable resize in progress? */ 1506 ret = resize->error; 1507 if (ret == -EBUSY) 1508 ret = 100; /* estimated time in ms */ 1509 else if (ret) 1510 resize_hpt_release(kvm, resize); 1511 1512 goto out; 1513 } 1514 1515 /* not suitable, cancel it */ 1516 resize_hpt_release(kvm, resize); 1517 } 1518 1519 ret = 0; 1520 if (!shift) 1521 goto out; /* nothing to do */ 1522 1523 /* start new resize */ 1524 1525 resize = kzalloc(sizeof(*resize), GFP_KERNEL); 1526 if (!resize) { 1527 ret = -ENOMEM; 1528 goto out; 1529 } 1530 1531 resize->error = -EBUSY; 1532 resize->order = shift; 1533 resize->kvm = kvm; 1534 INIT_WORK(&resize->work, resize_hpt_prepare_work); 1535 kvm->arch.resize_hpt = resize; 1536 1537 schedule_work(&resize->work); 1538 1539 ret = 100; /* estimated time in ms */ 1540 1541 out: 1542 mutex_unlock(&kvm->lock); 1543 return ret; 1544 } 1545 1546 static void resize_hpt_boot_vcpu(void *opaque) 1547 { 1548 /* Nothing to do, just force a KVM exit */ 1549 } 1550 1551 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, 1552 struct kvm_ppc_resize_hpt *rhpt) 1553 { 1554 unsigned long flags = rhpt->flags; 1555 unsigned long shift = rhpt->shift; 1556 struct kvm_resize_hpt *resize; 1557 long ret; 1558 1559 if (flags != 0 || kvm_is_radix(kvm)) 1560 return -EINVAL; 1561 1562 if (shift && ((shift < 18) || (shift > 46))) 1563 return -EINVAL; 1564 1565 mutex_lock(&kvm->lock); 1566 1567 resize = kvm->arch.resize_hpt; 1568 1569 /* This shouldn't be possible */ 1570 ret = -EIO; 1571 if (WARN_ON(!kvm->arch.mmu_ready)) 1572 goto out_no_hpt; 1573 1574 /* Stop VCPUs from running while we mess with the HPT */ 1575 kvm->arch.mmu_ready = 0; 1576 smp_mb(); 1577 1578 /* Boot all CPUs out of the guest so they re-read 1579 * mmu_ready */ 1580 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); 1581 1582 ret = -ENXIO; 1583 if (!resize || (resize->order != shift)) 1584 goto out; 1585 1586 ret = resize->error; 1587 if (ret) 1588 goto out; 1589 1590 ret = resize_hpt_rehash(resize); 1591 if (ret) 1592 goto out; 1593 1594 resize_hpt_pivot(resize); 1595 1596 out: 1597 /* Let VCPUs run again */ 1598 kvm->arch.mmu_ready = 1; 1599 smp_mb(); 1600 out_no_hpt: 1601 resize_hpt_release(kvm, resize); 1602 mutex_unlock(&kvm->lock); 1603 return ret; 1604 } 1605 1606 /* 1607 * Functions for reading and writing the hash table via reads and 1608 * writes on a file descriptor. 1609 * 1610 * Reads return the guest view of the hash table, which has to be 1611 * pieced together from the real hash table and the guest_rpte 1612 * values in the revmap array. 1613 * 1614 * On writes, each HPTE written is considered in turn, and if it 1615 * is valid, it is written to the HPT as if an H_ENTER with the 1616 * exact flag set was done. When the invalid count is non-zero 1617 * in the header written to the stream, the kernel will make 1618 * sure that that many HPTEs are invalid, and invalidate them 1619 * if not. 1620 */ 1621 1622 struct kvm_htab_ctx { 1623 unsigned long index; 1624 unsigned long flags; 1625 struct kvm *kvm; 1626 int first_pass; 1627 }; 1628 1629 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1630 1631 /* 1632 * Returns 1 if this HPT entry has been modified or has pending 1633 * R/C bit changes. 1634 */ 1635 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1636 { 1637 unsigned long rcbits_unset; 1638 1639 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1640 return 1; 1641 1642 /* Also need to consider changes in reference and changed bits */ 1643 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1644 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1645 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1646 return 1; 1647 1648 return 0; 1649 } 1650 1651 static long record_hpte(unsigned long flags, __be64 *hptp, 1652 unsigned long *hpte, struct revmap_entry *revp, 1653 int want_valid, int first_pass) 1654 { 1655 unsigned long v, r, hr; 1656 unsigned long rcbits_unset; 1657 int ok = 1; 1658 int valid, dirty; 1659 1660 /* Unmodified entries are uninteresting except on the first pass */ 1661 dirty = hpte_dirty(revp, hptp); 1662 if (!first_pass && !dirty) 1663 return 0; 1664 1665 valid = 0; 1666 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1667 valid = 1; 1668 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1669 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1670 valid = 0; 1671 } 1672 if (valid != want_valid) 1673 return 0; 1674 1675 v = r = 0; 1676 if (valid || dirty) { 1677 /* lock the HPTE so it's stable and read it */ 1678 preempt_disable(); 1679 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1680 cpu_relax(); 1681 v = be64_to_cpu(hptp[0]); 1682 hr = be64_to_cpu(hptp[1]); 1683 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1684 v = hpte_new_to_old_v(v, hr); 1685 hr = hpte_new_to_old_r(hr); 1686 } 1687 1688 /* re-evaluate valid and dirty from synchronized HPTE value */ 1689 valid = !!(v & HPTE_V_VALID); 1690 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1691 1692 /* Harvest R and C into guest view if necessary */ 1693 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1694 if (valid && (rcbits_unset & hr)) { 1695 revp->guest_rpte |= (hr & 1696 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1697 dirty = 1; 1698 } 1699 1700 if (v & HPTE_V_ABSENT) { 1701 v &= ~HPTE_V_ABSENT; 1702 v |= HPTE_V_VALID; 1703 valid = 1; 1704 } 1705 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1706 valid = 0; 1707 1708 r = revp->guest_rpte; 1709 /* only clear modified if this is the right sort of entry */ 1710 if (valid == want_valid && dirty) { 1711 r &= ~HPTE_GR_MODIFIED; 1712 revp->guest_rpte = r; 1713 } 1714 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1715 preempt_enable(); 1716 if (!(valid == want_valid && (first_pass || dirty))) 1717 ok = 0; 1718 } 1719 hpte[0] = cpu_to_be64(v); 1720 hpte[1] = cpu_to_be64(r); 1721 return ok; 1722 } 1723 1724 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1725 size_t count, loff_t *ppos) 1726 { 1727 struct kvm_htab_ctx *ctx = file->private_data; 1728 struct kvm *kvm = ctx->kvm; 1729 struct kvm_get_htab_header hdr; 1730 __be64 *hptp; 1731 struct revmap_entry *revp; 1732 unsigned long i, nb, nw; 1733 unsigned long __user *lbuf; 1734 struct kvm_get_htab_header __user *hptr; 1735 unsigned long flags; 1736 int first_pass; 1737 unsigned long hpte[2]; 1738 1739 if (!access_ok(VERIFY_WRITE, buf, count)) 1740 return -EFAULT; 1741 if (kvm_is_radix(kvm)) 1742 return 0; 1743 1744 first_pass = ctx->first_pass; 1745 flags = ctx->flags; 1746 1747 i = ctx->index; 1748 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1749 revp = kvm->arch.hpt.rev + i; 1750 lbuf = (unsigned long __user *)buf; 1751 1752 nb = 0; 1753 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1754 /* Initialize header */ 1755 hptr = (struct kvm_get_htab_header __user *)buf; 1756 hdr.n_valid = 0; 1757 hdr.n_invalid = 0; 1758 nw = nb; 1759 nb += sizeof(hdr); 1760 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1761 1762 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1763 if (!first_pass) { 1764 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1765 !hpte_dirty(revp, hptp)) { 1766 ++i; 1767 hptp += 2; 1768 ++revp; 1769 } 1770 } 1771 hdr.index = i; 1772 1773 /* Grab a series of valid entries */ 1774 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1775 hdr.n_valid < 0xffff && 1776 nb + HPTE_SIZE < count && 1777 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1778 /* valid entry, write it out */ 1779 ++hdr.n_valid; 1780 if (__put_user(hpte[0], lbuf) || 1781 __put_user(hpte[1], lbuf + 1)) 1782 return -EFAULT; 1783 nb += HPTE_SIZE; 1784 lbuf += 2; 1785 ++i; 1786 hptp += 2; 1787 ++revp; 1788 } 1789 /* Now skip invalid entries while we can */ 1790 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && 1791 hdr.n_invalid < 0xffff && 1792 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1793 /* found an invalid entry */ 1794 ++hdr.n_invalid; 1795 ++i; 1796 hptp += 2; 1797 ++revp; 1798 } 1799 1800 if (hdr.n_valid || hdr.n_invalid) { 1801 /* write back the header */ 1802 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1803 return -EFAULT; 1804 nw = nb; 1805 buf = (char __user *)lbuf; 1806 } else { 1807 nb = nw; 1808 } 1809 1810 /* Check if we've wrapped around the hash table */ 1811 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { 1812 i = 0; 1813 ctx->first_pass = 0; 1814 break; 1815 } 1816 } 1817 1818 ctx->index = i; 1819 1820 return nb; 1821 } 1822 1823 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1824 size_t count, loff_t *ppos) 1825 { 1826 struct kvm_htab_ctx *ctx = file->private_data; 1827 struct kvm *kvm = ctx->kvm; 1828 struct kvm_get_htab_header hdr; 1829 unsigned long i, j; 1830 unsigned long v, r; 1831 unsigned long __user *lbuf; 1832 __be64 *hptp; 1833 unsigned long tmp[2]; 1834 ssize_t nb; 1835 long int err, ret; 1836 int mmu_ready; 1837 int pshift; 1838 1839 if (!access_ok(VERIFY_READ, buf, count)) 1840 return -EFAULT; 1841 if (kvm_is_radix(kvm)) 1842 return -EINVAL; 1843 1844 /* lock out vcpus from running while we're doing this */ 1845 mutex_lock(&kvm->lock); 1846 mmu_ready = kvm->arch.mmu_ready; 1847 if (mmu_ready) { 1848 kvm->arch.mmu_ready = 0; /* temporarily */ 1849 /* order mmu_ready vs. vcpus_running */ 1850 smp_mb(); 1851 if (atomic_read(&kvm->arch.vcpus_running)) { 1852 kvm->arch.mmu_ready = 1; 1853 mutex_unlock(&kvm->lock); 1854 return -EBUSY; 1855 } 1856 } 1857 1858 err = 0; 1859 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1860 err = -EFAULT; 1861 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1862 break; 1863 1864 err = 0; 1865 if (nb + hdr.n_valid * HPTE_SIZE > count) 1866 break; 1867 1868 nb += sizeof(hdr); 1869 buf += sizeof(hdr); 1870 1871 err = -EINVAL; 1872 i = hdr.index; 1873 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || 1874 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) 1875 break; 1876 1877 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 1878 lbuf = (unsigned long __user *)buf; 1879 for (j = 0; j < hdr.n_valid; ++j) { 1880 __be64 hpte_v; 1881 __be64 hpte_r; 1882 1883 err = -EFAULT; 1884 if (__get_user(hpte_v, lbuf) || 1885 __get_user(hpte_r, lbuf + 1)) 1886 goto out; 1887 v = be64_to_cpu(hpte_v); 1888 r = be64_to_cpu(hpte_r); 1889 err = -EINVAL; 1890 if (!(v & HPTE_V_VALID)) 1891 goto out; 1892 pshift = kvmppc_hpte_base_page_shift(v, r); 1893 if (pshift <= 0) 1894 goto out; 1895 lbuf += 2; 1896 nb += HPTE_SIZE; 1897 1898 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1899 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1900 err = -EIO; 1901 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1902 tmp); 1903 if (ret != H_SUCCESS) { 1904 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1905 "r=%lx\n", ret, i, v, r); 1906 goto out; 1907 } 1908 if (!mmu_ready && is_vrma_hpte(v)) { 1909 unsigned long senc, lpcr; 1910 1911 senc = slb_pgsize_encoding(1ul << pshift); 1912 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1913 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1914 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1915 lpcr = senc << (LPCR_VRMASD_SH - 4); 1916 kvmppc_update_lpcr(kvm, lpcr, 1917 LPCR_VRMASD); 1918 } else { 1919 kvmppc_setup_partition_table(kvm); 1920 } 1921 mmu_ready = 1; 1922 } 1923 ++i; 1924 hptp += 2; 1925 } 1926 1927 for (j = 0; j < hdr.n_invalid; ++j) { 1928 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1929 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1930 ++i; 1931 hptp += 2; 1932 } 1933 err = 0; 1934 } 1935 1936 out: 1937 /* Order HPTE updates vs. mmu_ready */ 1938 smp_wmb(); 1939 kvm->arch.mmu_ready = mmu_ready; 1940 mutex_unlock(&kvm->lock); 1941 1942 if (err) 1943 return err; 1944 return nb; 1945 } 1946 1947 static int kvm_htab_release(struct inode *inode, struct file *filp) 1948 { 1949 struct kvm_htab_ctx *ctx = filp->private_data; 1950 1951 filp->private_data = NULL; 1952 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1953 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1954 kvm_put_kvm(ctx->kvm); 1955 kfree(ctx); 1956 return 0; 1957 } 1958 1959 static const struct file_operations kvm_htab_fops = { 1960 .read = kvm_htab_read, 1961 .write = kvm_htab_write, 1962 .llseek = default_llseek, 1963 .release = kvm_htab_release, 1964 }; 1965 1966 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1967 { 1968 int ret; 1969 struct kvm_htab_ctx *ctx; 1970 int rwflag; 1971 1972 /* reject flags we don't recognize */ 1973 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1974 return -EINVAL; 1975 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1976 if (!ctx) 1977 return -ENOMEM; 1978 kvm_get_kvm(kvm); 1979 ctx->kvm = kvm; 1980 ctx->index = ghf->start_index; 1981 ctx->flags = ghf->flags; 1982 ctx->first_pass = 1; 1983 1984 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1985 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1986 if (ret < 0) { 1987 kfree(ctx); 1988 kvm_put_kvm(kvm); 1989 return ret; 1990 } 1991 1992 if (rwflag == O_RDONLY) { 1993 mutex_lock(&kvm->slots_lock); 1994 atomic_inc(&kvm->arch.hpte_mod_interest); 1995 /* make sure kvmppc_do_h_enter etc. see the increment */ 1996 synchronize_srcu_expedited(&kvm->srcu); 1997 mutex_unlock(&kvm->slots_lock); 1998 } 1999 2000 return ret; 2001 } 2002 2003 struct debugfs_htab_state { 2004 struct kvm *kvm; 2005 struct mutex mutex; 2006 unsigned long hpt_index; 2007 int chars_left; 2008 int buf_index; 2009 char buf[64]; 2010 }; 2011 2012 static int debugfs_htab_open(struct inode *inode, struct file *file) 2013 { 2014 struct kvm *kvm = inode->i_private; 2015 struct debugfs_htab_state *p; 2016 2017 p = kzalloc(sizeof(*p), GFP_KERNEL); 2018 if (!p) 2019 return -ENOMEM; 2020 2021 kvm_get_kvm(kvm); 2022 p->kvm = kvm; 2023 mutex_init(&p->mutex); 2024 file->private_data = p; 2025 2026 return nonseekable_open(inode, file); 2027 } 2028 2029 static int debugfs_htab_release(struct inode *inode, struct file *file) 2030 { 2031 struct debugfs_htab_state *p = file->private_data; 2032 2033 kvm_put_kvm(p->kvm); 2034 kfree(p); 2035 return 0; 2036 } 2037 2038 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 2039 size_t len, loff_t *ppos) 2040 { 2041 struct debugfs_htab_state *p = file->private_data; 2042 ssize_t ret, r; 2043 unsigned long i, n; 2044 unsigned long v, hr, gr; 2045 struct kvm *kvm; 2046 __be64 *hptp; 2047 2048 kvm = p->kvm; 2049 if (kvm_is_radix(kvm)) 2050 return 0; 2051 2052 ret = mutex_lock_interruptible(&p->mutex); 2053 if (ret) 2054 return ret; 2055 2056 if (p->chars_left) { 2057 n = p->chars_left; 2058 if (n > len) 2059 n = len; 2060 r = copy_to_user(buf, p->buf + p->buf_index, n); 2061 n -= r; 2062 p->chars_left -= n; 2063 p->buf_index += n; 2064 buf += n; 2065 len -= n; 2066 ret = n; 2067 if (r) { 2068 if (!n) 2069 ret = -EFAULT; 2070 goto out; 2071 } 2072 } 2073 2074 i = p->hpt_index; 2075 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); 2076 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); 2077 ++i, hptp += 2) { 2078 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 2079 continue; 2080 2081 /* lock the HPTE so it's stable and read it */ 2082 preempt_disable(); 2083 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 2084 cpu_relax(); 2085 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 2086 hr = be64_to_cpu(hptp[1]); 2087 gr = kvm->arch.hpt.rev[i].guest_rpte; 2088 unlock_hpte(hptp, v); 2089 preempt_enable(); 2090 2091 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 2092 continue; 2093 2094 n = scnprintf(p->buf, sizeof(p->buf), 2095 "%6lx %.16lx %.16lx %.16lx\n", 2096 i, v, hr, gr); 2097 p->chars_left = n; 2098 if (n > len) 2099 n = len; 2100 r = copy_to_user(buf, p->buf, n); 2101 n -= r; 2102 p->chars_left -= n; 2103 p->buf_index = n; 2104 buf += n; 2105 len -= n; 2106 ret += n; 2107 if (r) { 2108 if (!ret) 2109 ret = -EFAULT; 2110 goto out; 2111 } 2112 } 2113 p->hpt_index = i; 2114 2115 out: 2116 mutex_unlock(&p->mutex); 2117 return ret; 2118 } 2119 2120 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 2121 size_t len, loff_t *ppos) 2122 { 2123 return -EACCES; 2124 } 2125 2126 static const struct file_operations debugfs_htab_fops = { 2127 .owner = THIS_MODULE, 2128 .open = debugfs_htab_open, 2129 .release = debugfs_htab_release, 2130 .read = debugfs_htab_read, 2131 .write = debugfs_htab_write, 2132 .llseek = generic_file_llseek, 2133 }; 2134 2135 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 2136 { 2137 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400, 2138 kvm->arch.debugfs_dir, kvm, 2139 &debugfs_htab_fops); 2140 } 2141 2142 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 2143 { 2144 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 2145 2146 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 2147 2148 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 2149 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr; 2150 2151 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 2152 } 2153