1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 16 */ 17 18 #include <linux/types.h> 19 #include <linux/string.h> 20 #include <linux/kvm.h> 21 #include <linux/kvm_host.h> 22 #include <linux/highmem.h> 23 #include <linux/gfp.h> 24 #include <linux/slab.h> 25 #include <linux/hugetlb.h> 26 #include <linux/vmalloc.h> 27 #include <linux/srcu.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/file.h> 30 #include <linux/debugfs.h> 31 32 #include <asm/tlbflush.h> 33 #include <asm/kvm_ppc.h> 34 #include <asm/kvm_book3s.h> 35 #include <asm/book3s/64/mmu-hash.h> 36 #include <asm/hvcall.h> 37 #include <asm/synch.h> 38 #include <asm/ppc-opcode.h> 39 #include <asm/cputable.h> 40 41 #include "trace_hv.h" 42 43 /* Power architecture requires HPT is at least 256kB */ 44 #define PPC_MIN_HPT_ORDER 18 45 46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 47 long pte_index, unsigned long pteh, 48 unsigned long ptel, unsigned long *pte_idx_ret); 49 static void kvmppc_rmap_reset(struct kvm *kvm); 50 51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp) 52 { 53 unsigned long hpt = 0; 54 struct revmap_entry *rev; 55 struct page *page = NULL; 56 long order = KVM_DEFAULT_HPT_ORDER; 57 58 if (htab_orderp) { 59 order = *htab_orderp; 60 if (order < PPC_MIN_HPT_ORDER) 61 order = PPC_MIN_HPT_ORDER; 62 } 63 64 kvm->arch.hpt_cma_alloc = 0; 65 page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT)); 66 if (page) { 67 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); 68 memset((void *)hpt, 0, (1ul << order)); 69 kvm->arch.hpt_cma_alloc = 1; 70 } 71 72 /* Lastly try successively smaller sizes from the page allocator */ 73 /* Only do this if userspace didn't specify a size via ioctl */ 74 while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) { 75 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT| 76 __GFP_NOWARN, order - PAGE_SHIFT); 77 if (!hpt) 78 --order; 79 } 80 81 if (!hpt) 82 return -ENOMEM; 83 84 kvm->arch.hpt_virt = hpt; 85 kvm->arch.hpt_order = order; 86 /* HPTEs are 2**4 bytes long */ 87 kvm->arch.hpt_npte = 1ul << (order - 4); 88 /* 128 (2**7) bytes in each HPTEG */ 89 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1; 90 91 /* Allocate reverse map array */ 92 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte); 93 if (!rev) { 94 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n"); 95 goto out_freehpt; 96 } 97 kvm->arch.revmap = rev; 98 kvm->arch.sdr1 = __pa(hpt) | (order - 18); 99 100 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n", 101 hpt, order, kvm->arch.lpid); 102 103 if (htab_orderp) 104 *htab_orderp = order; 105 return 0; 106 107 out_freehpt: 108 if (kvm->arch.hpt_cma_alloc) 109 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT)); 110 else 111 free_pages(hpt, order - PAGE_SHIFT); 112 return -ENOMEM; 113 } 114 115 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp) 116 { 117 long err = -EBUSY; 118 long order; 119 120 mutex_lock(&kvm->lock); 121 if (kvm->arch.hpte_setup_done) { 122 kvm->arch.hpte_setup_done = 0; 123 /* order hpte_setup_done vs. vcpus_running */ 124 smp_mb(); 125 if (atomic_read(&kvm->arch.vcpus_running)) { 126 kvm->arch.hpte_setup_done = 1; 127 goto out; 128 } 129 } 130 if (kvm->arch.hpt_virt) { 131 order = kvm->arch.hpt_order; 132 /* Set the entire HPT to 0, i.e. invalid HPTEs */ 133 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order); 134 /* 135 * Reset all the reverse-mapping chains for all memslots 136 */ 137 kvmppc_rmap_reset(kvm); 138 /* Ensure that each vcpu will flush its TLB on next entry. */ 139 cpumask_setall(&kvm->arch.need_tlb_flush); 140 *htab_orderp = order; 141 err = 0; 142 } else { 143 err = kvmppc_alloc_hpt(kvm, htab_orderp); 144 order = *htab_orderp; 145 } 146 out: 147 mutex_unlock(&kvm->lock); 148 return err; 149 } 150 151 void kvmppc_free_hpt(struct kvm *kvm) 152 { 153 kvmppc_free_lpid(kvm->arch.lpid); 154 vfree(kvm->arch.revmap); 155 if (kvm->arch.hpt_cma_alloc) 156 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt), 157 1 << (kvm->arch.hpt_order - PAGE_SHIFT)); 158 else 159 free_pages(kvm->arch.hpt_virt, 160 kvm->arch.hpt_order - PAGE_SHIFT); 161 } 162 163 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ 164 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) 165 { 166 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; 167 } 168 169 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ 170 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) 171 { 172 return (pgsize == 0x10000) ? 0x1000 : 0; 173 } 174 175 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, 176 unsigned long porder) 177 { 178 unsigned long i; 179 unsigned long npages; 180 unsigned long hp_v, hp_r; 181 unsigned long addr, hash; 182 unsigned long psize; 183 unsigned long hp0, hp1; 184 unsigned long idx_ret; 185 long ret; 186 struct kvm *kvm = vcpu->kvm; 187 188 psize = 1ul << porder; 189 npages = memslot->npages >> (porder - PAGE_SHIFT); 190 191 /* VRMA can't be > 1TB */ 192 if (npages > 1ul << (40 - porder)) 193 npages = 1ul << (40 - porder); 194 /* Can't use more than 1 HPTE per HPTEG */ 195 if (npages > kvm->arch.hpt_mask + 1) 196 npages = kvm->arch.hpt_mask + 1; 197 198 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | 199 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); 200 hp1 = hpte1_pgsize_encoding(psize) | 201 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; 202 203 for (i = 0; i < npages; ++i) { 204 addr = i << porder; 205 /* can't use hpt_hash since va > 64 bits */ 206 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask; 207 /* 208 * We assume that the hash table is empty and no 209 * vcpus are using it at this stage. Since we create 210 * at most one HPTE per HPTEG, we just assume entry 7 211 * is available and use it. 212 */ 213 hash = (hash << 3) + 7; 214 hp_v = hp0 | ((addr >> 16) & ~0x7fUL); 215 hp_r = hp1 | addr; 216 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, 217 &idx_ret); 218 if (ret != H_SUCCESS) { 219 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", 220 addr, ret); 221 break; 222 } 223 } 224 } 225 226 int kvmppc_mmu_hv_init(void) 227 { 228 unsigned long host_lpid, rsvd_lpid; 229 230 if (!cpu_has_feature(CPU_FTR_HVMODE)) 231 return -EINVAL; 232 233 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */ 234 host_lpid = mfspr(SPRN_LPID); 235 rsvd_lpid = LPID_RSVD; 236 237 kvmppc_init_lpid(rsvd_lpid + 1); 238 239 kvmppc_claim_lpid(host_lpid); 240 /* rsvd_lpid is reserved for use in partition switching */ 241 kvmppc_claim_lpid(rsvd_lpid); 242 243 return 0; 244 } 245 246 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu) 247 { 248 unsigned long msr = vcpu->arch.intr_msr; 249 250 /* If transactional, change to suspend mode on IRQ delivery */ 251 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 252 msr |= MSR_TS_S; 253 else 254 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK; 255 kvmppc_set_msr(vcpu, msr); 256 } 257 258 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, 259 long pte_index, unsigned long pteh, 260 unsigned long ptel, unsigned long *pte_idx_ret) 261 { 262 long ret; 263 264 /* Protect linux PTE lookup from page table destruction */ 265 rcu_read_lock_sched(); /* this disables preemption too */ 266 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, 267 current->mm->pgd, false, pte_idx_ret); 268 rcu_read_unlock_sched(); 269 if (ret == H_TOO_HARD) { 270 /* this can't happen */ 271 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); 272 ret = H_RESOURCE; /* or something */ 273 } 274 return ret; 275 276 } 277 278 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, 279 gva_t eaddr) 280 { 281 u64 mask; 282 int i; 283 284 for (i = 0; i < vcpu->arch.slb_nr; i++) { 285 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) 286 continue; 287 288 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) 289 mask = ESID_MASK_1T; 290 else 291 mask = ESID_MASK; 292 293 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) 294 return &vcpu->arch.slb[i]; 295 } 296 return NULL; 297 } 298 299 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, 300 unsigned long ea) 301 { 302 unsigned long ra_mask; 303 304 ra_mask = hpte_page_size(v, r) - 1; 305 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); 306 } 307 308 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 309 struct kvmppc_pte *gpte, bool data, bool iswrite) 310 { 311 struct kvm *kvm = vcpu->kvm; 312 struct kvmppc_slb *slbe; 313 unsigned long slb_v; 314 unsigned long pp, key; 315 unsigned long v, gr; 316 __be64 *hptep; 317 int index; 318 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); 319 320 /* Get SLB entry */ 321 if (virtmode) { 322 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); 323 if (!slbe) 324 return -EINVAL; 325 slb_v = slbe->origv; 326 } else { 327 /* real mode access */ 328 slb_v = vcpu->kvm->arch.vrma_slb_v; 329 } 330 331 preempt_disable(); 332 /* Find the HPTE in the hash table */ 333 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, 334 HPTE_V_VALID | HPTE_V_ABSENT); 335 if (index < 0) { 336 preempt_enable(); 337 return -ENOENT; 338 } 339 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4)); 340 v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 341 gr = kvm->arch.revmap[index].guest_rpte; 342 343 unlock_hpte(hptep, v); 344 preempt_enable(); 345 346 gpte->eaddr = eaddr; 347 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); 348 349 /* Get PP bits and key for permission check */ 350 pp = gr & (HPTE_R_PP0 | HPTE_R_PP); 351 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; 352 key &= slb_v; 353 354 /* Calculate permissions */ 355 gpte->may_read = hpte_read_permission(pp, key); 356 gpte->may_write = hpte_write_permission(pp, key); 357 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); 358 359 /* Storage key permission check for POWER7 */ 360 if (data && virtmode) { 361 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); 362 if (amrfield & 1) 363 gpte->may_read = 0; 364 if (amrfield & 2) 365 gpte->may_write = 0; 366 } 367 368 /* Get the guest physical address */ 369 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); 370 return 0; 371 } 372 373 /* 374 * Quick test for whether an instruction is a load or a store. 375 * If the instruction is a load or a store, then this will indicate 376 * which it is, at least on server processors. (Embedded processors 377 * have some external PID instructions that don't follow the rule 378 * embodied here.) If the instruction isn't a load or store, then 379 * this doesn't return anything useful. 380 */ 381 static int instruction_is_store(unsigned int instr) 382 { 383 unsigned int mask; 384 385 mask = 0x10000000; 386 if ((instr & 0xfc000000) == 0x7c000000) 387 mask = 0x100; /* major opcode 31 */ 388 return (instr & mask) != 0; 389 } 390 391 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu, 392 unsigned long gpa, gva_t ea, int is_store) 393 { 394 u32 last_inst; 395 396 /* 397 * If we fail, we just return to the guest and try executing it again. 398 */ 399 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 400 EMULATE_DONE) 401 return RESUME_GUEST; 402 403 /* 404 * WARNING: We do not know for sure whether the instruction we just 405 * read from memory is the same that caused the fault in the first 406 * place. If the instruction we read is neither an load or a store, 407 * then it can't access memory, so we don't need to worry about 408 * enforcing access permissions. So, assuming it is a load or 409 * store, we just check that its direction (load or store) is 410 * consistent with the original fault, since that's what we 411 * checked the access permissions against. If there is a mismatch 412 * we just return and retry the instruction. 413 */ 414 415 if (instruction_is_store(last_inst) != !!is_store) 416 return RESUME_GUEST; 417 418 /* 419 * Emulated accesses are emulated by looking at the hash for 420 * translation once, then performing the access later. The 421 * translation could be invalidated in the meantime in which 422 * point performing the subsequent memory access on the old 423 * physical address could possibly be a security hole for the 424 * guest (but not the host). 425 * 426 * This is less of an issue for MMIO stores since they aren't 427 * globally visible. It could be an issue for MMIO loads to 428 * a certain extent but we'll ignore it for now. 429 */ 430 431 vcpu->arch.paddr_accessed = gpa; 432 vcpu->arch.vaddr_accessed = ea; 433 return kvmppc_emulate_mmio(run, vcpu); 434 } 435 436 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, 437 unsigned long ea, unsigned long dsisr) 438 { 439 struct kvm *kvm = vcpu->kvm; 440 unsigned long hpte[3], r; 441 __be64 *hptep; 442 unsigned long mmu_seq, psize, pte_size; 443 unsigned long gpa_base, gfn_base; 444 unsigned long gpa, gfn, hva, pfn; 445 struct kvm_memory_slot *memslot; 446 unsigned long *rmap; 447 struct revmap_entry *rev; 448 struct page *page, *pages[1]; 449 long index, ret, npages; 450 bool is_ci; 451 unsigned int writing, write_ok; 452 struct vm_area_struct *vma; 453 unsigned long rcbits; 454 455 /* 456 * Real-mode code has already searched the HPT and found the 457 * entry we're interested in. Lock the entry and check that 458 * it hasn't changed. If it has, just return and re-execute the 459 * instruction. 460 */ 461 if (ea != vcpu->arch.pgfault_addr) 462 return RESUME_GUEST; 463 index = vcpu->arch.pgfault_index; 464 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4)); 465 rev = &kvm->arch.revmap[index]; 466 preempt_disable(); 467 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 468 cpu_relax(); 469 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; 470 hpte[1] = be64_to_cpu(hptep[1]); 471 hpte[2] = r = rev->guest_rpte; 472 unlock_hpte(hptep, hpte[0]); 473 preempt_enable(); 474 475 if (hpte[0] != vcpu->arch.pgfault_hpte[0] || 476 hpte[1] != vcpu->arch.pgfault_hpte[1]) 477 return RESUME_GUEST; 478 479 /* Translate the logical address and get the page */ 480 psize = hpte_page_size(hpte[0], r); 481 gpa_base = r & HPTE_R_RPN & ~(psize - 1); 482 gfn_base = gpa_base >> PAGE_SHIFT; 483 gpa = gpa_base | (ea & (psize - 1)); 484 gfn = gpa >> PAGE_SHIFT; 485 memslot = gfn_to_memslot(kvm, gfn); 486 487 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); 488 489 /* No memslot means it's an emulated MMIO region */ 490 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 491 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, 492 dsisr & DSISR_ISSTORE); 493 494 /* 495 * This should never happen, because of the slot_is_aligned() 496 * check in kvmppc_do_h_enter(). 497 */ 498 if (gfn_base < memslot->base_gfn) 499 return -EFAULT; 500 501 /* used to check for invalidations in progress */ 502 mmu_seq = kvm->mmu_notifier_seq; 503 smp_rmb(); 504 505 ret = -EFAULT; 506 is_ci = false; 507 pfn = 0; 508 page = NULL; 509 pte_size = PAGE_SIZE; 510 writing = (dsisr & DSISR_ISSTORE) != 0; 511 /* If writing != 0, then the HPTE must allow writing, if we get here */ 512 write_ok = writing; 513 hva = gfn_to_hva_memslot(memslot, gfn); 514 npages = get_user_pages_fast(hva, 1, writing, pages); 515 if (npages < 1) { 516 /* Check if it's an I/O mapping */ 517 down_read(¤t->mm->mmap_sem); 518 vma = find_vma(current->mm, hva); 519 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end && 520 (vma->vm_flags & VM_PFNMAP)) { 521 pfn = vma->vm_pgoff + 522 ((hva - vma->vm_start) >> PAGE_SHIFT); 523 pte_size = psize; 524 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot)))); 525 write_ok = vma->vm_flags & VM_WRITE; 526 } 527 up_read(¤t->mm->mmap_sem); 528 if (!pfn) 529 goto out_put; 530 } else { 531 page = pages[0]; 532 pfn = page_to_pfn(page); 533 if (PageHuge(page)) { 534 page = compound_head(page); 535 pte_size <<= compound_order(page); 536 } 537 /* if the guest wants write access, see if that is OK */ 538 if (!writing && hpte_is_writable(r)) { 539 pte_t *ptep, pte; 540 unsigned long flags; 541 /* 542 * We need to protect against page table destruction 543 * hugepage split and collapse. 544 */ 545 local_irq_save(flags); 546 ptep = find_linux_pte_or_hugepte(current->mm->pgd, 547 hva, NULL, NULL); 548 if (ptep) { 549 pte = kvmppc_read_update_linux_pte(ptep, 1); 550 if (pte_write(pte)) 551 write_ok = 1; 552 } 553 local_irq_restore(flags); 554 } 555 } 556 557 if (psize > pte_size) 558 goto out_put; 559 560 /* Check WIMG vs. the actual page we're accessing */ 561 if (!hpte_cache_flags_ok(r, is_ci)) { 562 if (is_ci) 563 goto out_put; 564 /* 565 * Allow guest to map emulated device memory as 566 * uncacheable, but actually make it cacheable. 567 */ 568 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; 569 } 570 571 /* 572 * Set the HPTE to point to pfn. 573 * Since the pfn is at PAGE_SIZE granularity, make sure we 574 * don't mask out lower-order bits if psize < PAGE_SIZE. 575 */ 576 if (psize < PAGE_SIZE) 577 psize = PAGE_SIZE; 578 r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1)); 579 if (hpte_is_writable(r) && !write_ok) 580 r = hpte_make_readonly(r); 581 ret = RESUME_GUEST; 582 preempt_disable(); 583 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) 584 cpu_relax(); 585 if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] || 586 be64_to_cpu(hptep[1]) != hpte[1] || 587 rev->guest_rpte != hpte[2]) 588 /* HPTE has been changed under us; let the guest retry */ 589 goto out_unlock; 590 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; 591 592 /* Always put the HPTE in the rmap chain for the page base address */ 593 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; 594 lock_rmap(rmap); 595 596 /* Check if we might have been invalidated; let the guest retry if so */ 597 ret = RESUME_GUEST; 598 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { 599 unlock_rmap(rmap); 600 goto out_unlock; 601 } 602 603 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ 604 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; 605 r &= rcbits | ~(HPTE_R_R | HPTE_R_C); 606 607 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { 608 /* HPTE was previously valid, so we need to invalidate it */ 609 unlock_rmap(rmap); 610 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 611 kvmppc_invalidate_hpte(kvm, hptep, index); 612 /* don't lose previous R and C bits */ 613 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 614 } else { 615 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); 616 } 617 618 hptep[1] = cpu_to_be64(r); 619 eieio(); 620 __unlock_hpte(hptep, hpte[0]); 621 asm volatile("ptesync" : : : "memory"); 622 preempt_enable(); 623 if (page && hpte_is_writable(r)) 624 SetPageDirty(page); 625 626 out_put: 627 trace_kvm_page_fault_exit(vcpu, hpte, ret); 628 629 if (page) { 630 /* 631 * We drop pages[0] here, not page because page might 632 * have been set to the head page of a compound, but 633 * we have to drop the reference on the correct tail 634 * page to match the get inside gup() 635 */ 636 put_page(pages[0]); 637 } 638 return ret; 639 640 out_unlock: 641 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 642 preempt_enable(); 643 goto out_put; 644 } 645 646 static void kvmppc_rmap_reset(struct kvm *kvm) 647 { 648 struct kvm_memslots *slots; 649 struct kvm_memory_slot *memslot; 650 int srcu_idx; 651 652 srcu_idx = srcu_read_lock(&kvm->srcu); 653 slots = kvm_memslots(kvm); 654 kvm_for_each_memslot(memslot, slots) { 655 /* 656 * This assumes it is acceptable to lose reference and 657 * change bits across a reset. 658 */ 659 memset(memslot->arch.rmap, 0, 660 memslot->npages * sizeof(*memslot->arch.rmap)); 661 } 662 srcu_read_unlock(&kvm->srcu, srcu_idx); 663 } 664 665 static int kvm_handle_hva_range(struct kvm *kvm, 666 unsigned long start, 667 unsigned long end, 668 int (*handler)(struct kvm *kvm, 669 unsigned long *rmapp, 670 unsigned long gfn)) 671 { 672 int ret; 673 int retval = 0; 674 struct kvm_memslots *slots; 675 struct kvm_memory_slot *memslot; 676 677 slots = kvm_memslots(kvm); 678 kvm_for_each_memslot(memslot, slots) { 679 unsigned long hva_start, hva_end; 680 gfn_t gfn, gfn_end; 681 682 hva_start = max(start, memslot->userspace_addr); 683 hva_end = min(end, memslot->userspace_addr + 684 (memslot->npages << PAGE_SHIFT)); 685 if (hva_start >= hva_end) 686 continue; 687 /* 688 * {gfn(page) | page intersects with [hva_start, hva_end)} = 689 * {gfn, gfn+1, ..., gfn_end-1}. 690 */ 691 gfn = hva_to_gfn_memslot(hva_start, memslot); 692 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 693 694 for (; gfn < gfn_end; ++gfn) { 695 gfn_t gfn_offset = gfn - memslot->base_gfn; 696 697 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn); 698 retval |= ret; 699 } 700 } 701 702 return retval; 703 } 704 705 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 706 int (*handler)(struct kvm *kvm, unsigned long *rmapp, 707 unsigned long gfn)) 708 { 709 return kvm_handle_hva_range(kvm, hva, hva + 1, handler); 710 } 711 712 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp, 713 unsigned long gfn) 714 { 715 struct revmap_entry *rev = kvm->arch.revmap; 716 unsigned long h, i, j; 717 __be64 *hptep; 718 unsigned long ptel, psize, rcbits; 719 720 for (;;) { 721 lock_rmap(rmapp); 722 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 723 unlock_rmap(rmapp); 724 break; 725 } 726 727 /* 728 * To avoid an ABBA deadlock with the HPTE lock bit, 729 * we can't spin on the HPTE lock while holding the 730 * rmap chain lock. 731 */ 732 i = *rmapp & KVMPPC_RMAP_INDEX; 733 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4)); 734 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 735 /* unlock rmap before spinning on the HPTE lock */ 736 unlock_rmap(rmapp); 737 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 738 cpu_relax(); 739 continue; 740 } 741 j = rev[i].forw; 742 if (j == i) { 743 /* chain is now empty */ 744 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); 745 } else { 746 /* remove i from chain */ 747 h = rev[i].back; 748 rev[h].forw = j; 749 rev[j].back = h; 750 rev[i].forw = rev[i].back = i; 751 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; 752 } 753 754 /* Now check and modify the HPTE */ 755 ptel = rev[i].guest_rpte; 756 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel); 757 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 758 hpte_rpn(ptel, psize) == gfn) { 759 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 760 kvmppc_invalidate_hpte(kvm, hptep, i); 761 /* Harvest R and C */ 762 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); 763 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; 764 if (rcbits & HPTE_R_C) 765 kvmppc_update_rmap_change(rmapp, psize); 766 if (rcbits & ~rev[i].guest_rpte) { 767 rev[i].guest_rpte = ptel | rcbits; 768 note_hpte_modification(kvm, &rev[i]); 769 } 770 } 771 unlock_rmap(rmapp); 772 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 773 } 774 return 0; 775 } 776 777 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva) 778 { 779 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp); 780 return 0; 781 } 782 783 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) 784 { 785 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp); 786 return 0; 787 } 788 789 void kvmppc_core_flush_memslot_hv(struct kvm *kvm, 790 struct kvm_memory_slot *memslot) 791 { 792 unsigned long *rmapp; 793 unsigned long gfn; 794 unsigned long n; 795 796 rmapp = memslot->arch.rmap; 797 gfn = memslot->base_gfn; 798 for (n = memslot->npages; n; --n) { 799 /* 800 * Testing the present bit without locking is OK because 801 * the memslot has been marked invalid already, and hence 802 * no new HPTEs referencing this page can be created, 803 * thus the present bit can't go from 0 to 1. 804 */ 805 if (*rmapp & KVMPPC_RMAP_PRESENT) 806 kvm_unmap_rmapp(kvm, rmapp, gfn); 807 ++rmapp; 808 ++gfn; 809 } 810 } 811 812 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp, 813 unsigned long gfn) 814 { 815 struct revmap_entry *rev = kvm->arch.revmap; 816 unsigned long head, i, j; 817 __be64 *hptep; 818 int ret = 0; 819 820 retry: 821 lock_rmap(rmapp); 822 if (*rmapp & KVMPPC_RMAP_REFERENCED) { 823 *rmapp &= ~KVMPPC_RMAP_REFERENCED; 824 ret = 1; 825 } 826 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 827 unlock_rmap(rmapp); 828 return ret; 829 } 830 831 i = head = *rmapp & KVMPPC_RMAP_INDEX; 832 do { 833 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4)); 834 j = rev[i].forw; 835 836 /* If this HPTE isn't referenced, ignore it */ 837 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) 838 continue; 839 840 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 841 /* unlock rmap before spinning on the HPTE lock */ 842 unlock_rmap(rmapp); 843 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) 844 cpu_relax(); 845 goto retry; 846 } 847 848 /* Now check and modify the HPTE */ 849 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && 850 (be64_to_cpu(hptep[1]) & HPTE_R_R)) { 851 kvmppc_clear_ref_hpte(kvm, hptep, i); 852 if (!(rev[i].guest_rpte & HPTE_R_R)) { 853 rev[i].guest_rpte |= HPTE_R_R; 854 note_hpte_modification(kvm, &rev[i]); 855 } 856 ret = 1; 857 } 858 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 859 } while ((i = j) != head); 860 861 unlock_rmap(rmapp); 862 return ret; 863 } 864 865 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) 866 { 867 return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp); 868 } 869 870 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp, 871 unsigned long gfn) 872 { 873 struct revmap_entry *rev = kvm->arch.revmap; 874 unsigned long head, i, j; 875 unsigned long *hp; 876 int ret = 1; 877 878 if (*rmapp & KVMPPC_RMAP_REFERENCED) 879 return 1; 880 881 lock_rmap(rmapp); 882 if (*rmapp & KVMPPC_RMAP_REFERENCED) 883 goto out; 884 885 if (*rmapp & KVMPPC_RMAP_PRESENT) { 886 i = head = *rmapp & KVMPPC_RMAP_INDEX; 887 do { 888 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4)); 889 j = rev[i].forw; 890 if (be64_to_cpu(hp[1]) & HPTE_R_R) 891 goto out; 892 } while ((i = j) != head); 893 } 894 ret = 0; 895 896 out: 897 unlock_rmap(rmapp); 898 return ret; 899 } 900 901 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) 902 { 903 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp); 904 } 905 906 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) 907 { 908 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp); 909 } 910 911 static int vcpus_running(struct kvm *kvm) 912 { 913 return atomic_read(&kvm->arch.vcpus_running) != 0; 914 } 915 916 /* 917 * Returns the number of system pages that are dirty. 918 * This can be more than 1 if we find a huge-page HPTE. 919 */ 920 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) 921 { 922 struct revmap_entry *rev = kvm->arch.revmap; 923 unsigned long head, i, j; 924 unsigned long n; 925 unsigned long v, r; 926 __be64 *hptep; 927 int npages_dirty = 0; 928 929 retry: 930 lock_rmap(rmapp); 931 if (*rmapp & KVMPPC_RMAP_CHANGED) { 932 long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER) 933 >> KVMPPC_RMAP_CHG_SHIFT; 934 *rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER); 935 npages_dirty = 1; 936 if (change_order > PAGE_SHIFT) 937 npages_dirty = 1ul << (change_order - PAGE_SHIFT); 938 } 939 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { 940 unlock_rmap(rmapp); 941 return npages_dirty; 942 } 943 944 i = head = *rmapp & KVMPPC_RMAP_INDEX; 945 do { 946 unsigned long hptep1; 947 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4)); 948 j = rev[i].forw; 949 950 /* 951 * Checking the C (changed) bit here is racy since there 952 * is no guarantee about when the hardware writes it back. 953 * If the HPTE is not writable then it is stable since the 954 * page can't be written to, and we would have done a tlbie 955 * (which forces the hardware to complete any writeback) 956 * when making the HPTE read-only. 957 * If vcpus are running then this call is racy anyway 958 * since the page could get dirtied subsequently, so we 959 * expect there to be a further call which would pick up 960 * any delayed C bit writeback. 961 * Otherwise we need to do the tlbie even if C==0 in 962 * order to pick up any delayed writeback of C. 963 */ 964 hptep1 = be64_to_cpu(hptep[1]); 965 if (!(hptep1 & HPTE_R_C) && 966 (!hpte_is_writable(hptep1) || vcpus_running(kvm))) 967 continue; 968 969 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { 970 /* unlock rmap before spinning on the HPTE lock */ 971 unlock_rmap(rmapp); 972 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) 973 cpu_relax(); 974 goto retry; 975 } 976 977 /* Now check and modify the HPTE */ 978 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { 979 __unlock_hpte(hptep, be64_to_cpu(hptep[0])); 980 continue; 981 } 982 983 /* need to make it temporarily absent so C is stable */ 984 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); 985 kvmppc_invalidate_hpte(kvm, hptep, i); 986 v = be64_to_cpu(hptep[0]); 987 r = be64_to_cpu(hptep[1]); 988 if (r & HPTE_R_C) { 989 hptep[1] = cpu_to_be64(r & ~HPTE_R_C); 990 if (!(rev[i].guest_rpte & HPTE_R_C)) { 991 rev[i].guest_rpte |= HPTE_R_C; 992 note_hpte_modification(kvm, &rev[i]); 993 } 994 n = hpte_page_size(v, r); 995 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; 996 if (n > npages_dirty) 997 npages_dirty = n; 998 eieio(); 999 } 1000 v &= ~HPTE_V_ABSENT; 1001 v |= HPTE_V_VALID; 1002 __unlock_hpte(hptep, v); 1003 } while ((i = j) != head); 1004 1005 unlock_rmap(rmapp); 1006 return npages_dirty; 1007 } 1008 1009 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa, 1010 struct kvm_memory_slot *memslot, 1011 unsigned long *map) 1012 { 1013 unsigned long gfn; 1014 1015 if (!vpa->dirty || !vpa->pinned_addr) 1016 return; 1017 gfn = vpa->gpa >> PAGE_SHIFT; 1018 if (gfn < memslot->base_gfn || 1019 gfn >= memslot->base_gfn + memslot->npages) 1020 return; 1021 1022 vpa->dirty = false; 1023 if (map) 1024 __set_bit_le(gfn - memslot->base_gfn, map); 1025 } 1026 1027 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot, 1028 unsigned long *map) 1029 { 1030 unsigned long i, j; 1031 unsigned long *rmapp; 1032 struct kvm_vcpu *vcpu; 1033 1034 preempt_disable(); 1035 rmapp = memslot->arch.rmap; 1036 for (i = 0; i < memslot->npages; ++i) { 1037 int npages = kvm_test_clear_dirty_npages(kvm, rmapp); 1038 /* 1039 * Note that if npages > 0 then i must be a multiple of npages, 1040 * since we always put huge-page HPTEs in the rmap chain 1041 * corresponding to their page base address. 1042 */ 1043 if (npages && map) 1044 for (j = i; npages; ++j, --npages) 1045 __set_bit_le(j, map); 1046 ++rmapp; 1047 } 1048 1049 /* Harvest dirty bits from VPA and DTL updates */ 1050 /* Note: we never modify the SLB shadow buffer areas */ 1051 kvm_for_each_vcpu(i, vcpu, kvm) { 1052 spin_lock(&vcpu->arch.vpa_update_lock); 1053 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map); 1054 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map); 1055 spin_unlock(&vcpu->arch.vpa_update_lock); 1056 } 1057 preempt_enable(); 1058 return 0; 1059 } 1060 1061 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, 1062 unsigned long *nb_ret) 1063 { 1064 struct kvm_memory_slot *memslot; 1065 unsigned long gfn = gpa >> PAGE_SHIFT; 1066 struct page *page, *pages[1]; 1067 int npages; 1068 unsigned long hva, offset; 1069 int srcu_idx; 1070 1071 srcu_idx = srcu_read_lock(&kvm->srcu); 1072 memslot = gfn_to_memslot(kvm, gfn); 1073 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1074 goto err; 1075 hva = gfn_to_hva_memslot(memslot, gfn); 1076 npages = get_user_pages_fast(hva, 1, 1, pages); 1077 if (npages < 1) 1078 goto err; 1079 page = pages[0]; 1080 srcu_read_unlock(&kvm->srcu, srcu_idx); 1081 1082 offset = gpa & (PAGE_SIZE - 1); 1083 if (nb_ret) 1084 *nb_ret = PAGE_SIZE - offset; 1085 return page_address(page) + offset; 1086 1087 err: 1088 srcu_read_unlock(&kvm->srcu, srcu_idx); 1089 return NULL; 1090 } 1091 1092 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, 1093 bool dirty) 1094 { 1095 struct page *page = virt_to_page(va); 1096 struct kvm_memory_slot *memslot; 1097 unsigned long gfn; 1098 unsigned long *rmap; 1099 int srcu_idx; 1100 1101 put_page(page); 1102 1103 if (!dirty) 1104 return; 1105 1106 /* We need to mark this page dirty in the rmap chain */ 1107 gfn = gpa >> PAGE_SHIFT; 1108 srcu_idx = srcu_read_lock(&kvm->srcu); 1109 memslot = gfn_to_memslot(kvm, gfn); 1110 if (memslot) { 1111 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1112 lock_rmap(rmap); 1113 *rmap |= KVMPPC_RMAP_CHANGED; 1114 unlock_rmap(rmap); 1115 } 1116 srcu_read_unlock(&kvm->srcu, srcu_idx); 1117 } 1118 1119 /* 1120 * Functions for reading and writing the hash table via reads and 1121 * writes on a file descriptor. 1122 * 1123 * Reads return the guest view of the hash table, which has to be 1124 * pieced together from the real hash table and the guest_rpte 1125 * values in the revmap array. 1126 * 1127 * On writes, each HPTE written is considered in turn, and if it 1128 * is valid, it is written to the HPT as if an H_ENTER with the 1129 * exact flag set was done. When the invalid count is non-zero 1130 * in the header written to the stream, the kernel will make 1131 * sure that that many HPTEs are invalid, and invalidate them 1132 * if not. 1133 */ 1134 1135 struct kvm_htab_ctx { 1136 unsigned long index; 1137 unsigned long flags; 1138 struct kvm *kvm; 1139 int first_pass; 1140 }; 1141 1142 #define HPTE_SIZE (2 * sizeof(unsigned long)) 1143 1144 /* 1145 * Returns 1 if this HPT entry has been modified or has pending 1146 * R/C bit changes. 1147 */ 1148 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) 1149 { 1150 unsigned long rcbits_unset; 1151 1152 if (revp->guest_rpte & HPTE_GR_MODIFIED) 1153 return 1; 1154 1155 /* Also need to consider changes in reference and changed bits */ 1156 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1157 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && 1158 (be64_to_cpu(hptp[1]) & rcbits_unset)) 1159 return 1; 1160 1161 return 0; 1162 } 1163 1164 static long record_hpte(unsigned long flags, __be64 *hptp, 1165 unsigned long *hpte, struct revmap_entry *revp, 1166 int want_valid, int first_pass) 1167 { 1168 unsigned long v, r; 1169 unsigned long rcbits_unset; 1170 int ok = 1; 1171 int valid, dirty; 1172 1173 /* Unmodified entries are uninteresting except on the first pass */ 1174 dirty = hpte_dirty(revp, hptp); 1175 if (!first_pass && !dirty) 1176 return 0; 1177 1178 valid = 0; 1179 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { 1180 valid = 1; 1181 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && 1182 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) 1183 valid = 0; 1184 } 1185 if (valid != want_valid) 1186 return 0; 1187 1188 v = r = 0; 1189 if (valid || dirty) { 1190 /* lock the HPTE so it's stable and read it */ 1191 preempt_disable(); 1192 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1193 cpu_relax(); 1194 v = be64_to_cpu(hptp[0]); 1195 1196 /* re-evaluate valid and dirty from synchronized HPTE value */ 1197 valid = !!(v & HPTE_V_VALID); 1198 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); 1199 1200 /* Harvest R and C into guest view if necessary */ 1201 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); 1202 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) { 1203 revp->guest_rpte |= (be64_to_cpu(hptp[1]) & 1204 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; 1205 dirty = 1; 1206 } 1207 1208 if (v & HPTE_V_ABSENT) { 1209 v &= ~HPTE_V_ABSENT; 1210 v |= HPTE_V_VALID; 1211 valid = 1; 1212 } 1213 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) 1214 valid = 0; 1215 1216 r = revp->guest_rpte; 1217 /* only clear modified if this is the right sort of entry */ 1218 if (valid == want_valid && dirty) { 1219 r &= ~HPTE_GR_MODIFIED; 1220 revp->guest_rpte = r; 1221 } 1222 unlock_hpte(hptp, be64_to_cpu(hptp[0])); 1223 preempt_enable(); 1224 if (!(valid == want_valid && (first_pass || dirty))) 1225 ok = 0; 1226 } 1227 hpte[0] = cpu_to_be64(v); 1228 hpte[1] = cpu_to_be64(r); 1229 return ok; 1230 } 1231 1232 static ssize_t kvm_htab_read(struct file *file, char __user *buf, 1233 size_t count, loff_t *ppos) 1234 { 1235 struct kvm_htab_ctx *ctx = file->private_data; 1236 struct kvm *kvm = ctx->kvm; 1237 struct kvm_get_htab_header hdr; 1238 __be64 *hptp; 1239 struct revmap_entry *revp; 1240 unsigned long i, nb, nw; 1241 unsigned long __user *lbuf; 1242 struct kvm_get_htab_header __user *hptr; 1243 unsigned long flags; 1244 int first_pass; 1245 unsigned long hpte[2]; 1246 1247 if (!access_ok(VERIFY_WRITE, buf, count)) 1248 return -EFAULT; 1249 1250 first_pass = ctx->first_pass; 1251 flags = ctx->flags; 1252 1253 i = ctx->index; 1254 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE)); 1255 revp = kvm->arch.revmap + i; 1256 lbuf = (unsigned long __user *)buf; 1257 1258 nb = 0; 1259 while (nb + sizeof(hdr) + HPTE_SIZE < count) { 1260 /* Initialize header */ 1261 hptr = (struct kvm_get_htab_header __user *)buf; 1262 hdr.n_valid = 0; 1263 hdr.n_invalid = 0; 1264 nw = nb; 1265 nb += sizeof(hdr); 1266 lbuf = (unsigned long __user *)(buf + sizeof(hdr)); 1267 1268 /* Skip uninteresting entries, i.e. clean on not-first pass */ 1269 if (!first_pass) { 1270 while (i < kvm->arch.hpt_npte && 1271 !hpte_dirty(revp, hptp)) { 1272 ++i; 1273 hptp += 2; 1274 ++revp; 1275 } 1276 } 1277 hdr.index = i; 1278 1279 /* Grab a series of valid entries */ 1280 while (i < kvm->arch.hpt_npte && 1281 hdr.n_valid < 0xffff && 1282 nb + HPTE_SIZE < count && 1283 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { 1284 /* valid entry, write it out */ 1285 ++hdr.n_valid; 1286 if (__put_user(hpte[0], lbuf) || 1287 __put_user(hpte[1], lbuf + 1)) 1288 return -EFAULT; 1289 nb += HPTE_SIZE; 1290 lbuf += 2; 1291 ++i; 1292 hptp += 2; 1293 ++revp; 1294 } 1295 /* Now skip invalid entries while we can */ 1296 while (i < kvm->arch.hpt_npte && 1297 hdr.n_invalid < 0xffff && 1298 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { 1299 /* found an invalid entry */ 1300 ++hdr.n_invalid; 1301 ++i; 1302 hptp += 2; 1303 ++revp; 1304 } 1305 1306 if (hdr.n_valid || hdr.n_invalid) { 1307 /* write back the header */ 1308 if (__copy_to_user(hptr, &hdr, sizeof(hdr))) 1309 return -EFAULT; 1310 nw = nb; 1311 buf = (char __user *)lbuf; 1312 } else { 1313 nb = nw; 1314 } 1315 1316 /* Check if we've wrapped around the hash table */ 1317 if (i >= kvm->arch.hpt_npte) { 1318 i = 0; 1319 ctx->first_pass = 0; 1320 break; 1321 } 1322 } 1323 1324 ctx->index = i; 1325 1326 return nb; 1327 } 1328 1329 static ssize_t kvm_htab_write(struct file *file, const char __user *buf, 1330 size_t count, loff_t *ppos) 1331 { 1332 struct kvm_htab_ctx *ctx = file->private_data; 1333 struct kvm *kvm = ctx->kvm; 1334 struct kvm_get_htab_header hdr; 1335 unsigned long i, j; 1336 unsigned long v, r; 1337 unsigned long __user *lbuf; 1338 __be64 *hptp; 1339 unsigned long tmp[2]; 1340 ssize_t nb; 1341 long int err, ret; 1342 int hpte_setup; 1343 1344 if (!access_ok(VERIFY_READ, buf, count)) 1345 return -EFAULT; 1346 1347 /* lock out vcpus from running while we're doing this */ 1348 mutex_lock(&kvm->lock); 1349 hpte_setup = kvm->arch.hpte_setup_done; 1350 if (hpte_setup) { 1351 kvm->arch.hpte_setup_done = 0; /* temporarily */ 1352 /* order hpte_setup_done vs. vcpus_running */ 1353 smp_mb(); 1354 if (atomic_read(&kvm->arch.vcpus_running)) { 1355 kvm->arch.hpte_setup_done = 1; 1356 mutex_unlock(&kvm->lock); 1357 return -EBUSY; 1358 } 1359 } 1360 1361 err = 0; 1362 for (nb = 0; nb + sizeof(hdr) <= count; ) { 1363 err = -EFAULT; 1364 if (__copy_from_user(&hdr, buf, sizeof(hdr))) 1365 break; 1366 1367 err = 0; 1368 if (nb + hdr.n_valid * HPTE_SIZE > count) 1369 break; 1370 1371 nb += sizeof(hdr); 1372 buf += sizeof(hdr); 1373 1374 err = -EINVAL; 1375 i = hdr.index; 1376 if (i >= kvm->arch.hpt_npte || 1377 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte) 1378 break; 1379 1380 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE)); 1381 lbuf = (unsigned long __user *)buf; 1382 for (j = 0; j < hdr.n_valid; ++j) { 1383 __be64 hpte_v; 1384 __be64 hpte_r; 1385 1386 err = -EFAULT; 1387 if (__get_user(hpte_v, lbuf) || 1388 __get_user(hpte_r, lbuf + 1)) 1389 goto out; 1390 v = be64_to_cpu(hpte_v); 1391 r = be64_to_cpu(hpte_r); 1392 err = -EINVAL; 1393 if (!(v & HPTE_V_VALID)) 1394 goto out; 1395 lbuf += 2; 1396 nb += HPTE_SIZE; 1397 1398 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1399 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1400 err = -EIO; 1401 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, 1402 tmp); 1403 if (ret != H_SUCCESS) { 1404 pr_err("kvm_htab_write ret %ld i=%ld v=%lx " 1405 "r=%lx\n", ret, i, v, r); 1406 goto out; 1407 } 1408 if (!hpte_setup && is_vrma_hpte(v)) { 1409 unsigned long psize = hpte_base_page_size(v, r); 1410 unsigned long senc = slb_pgsize_encoding(psize); 1411 unsigned long lpcr; 1412 1413 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1414 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1415 lpcr = senc << (LPCR_VRMASD_SH - 4); 1416 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 1417 hpte_setup = 1; 1418 } 1419 ++i; 1420 hptp += 2; 1421 } 1422 1423 for (j = 0; j < hdr.n_invalid; ++j) { 1424 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) 1425 kvmppc_do_h_remove(kvm, 0, i, 0, tmp); 1426 ++i; 1427 hptp += 2; 1428 } 1429 err = 0; 1430 } 1431 1432 out: 1433 /* Order HPTE updates vs. hpte_setup_done */ 1434 smp_wmb(); 1435 kvm->arch.hpte_setup_done = hpte_setup; 1436 mutex_unlock(&kvm->lock); 1437 1438 if (err) 1439 return err; 1440 return nb; 1441 } 1442 1443 static int kvm_htab_release(struct inode *inode, struct file *filp) 1444 { 1445 struct kvm_htab_ctx *ctx = filp->private_data; 1446 1447 filp->private_data = NULL; 1448 if (!(ctx->flags & KVM_GET_HTAB_WRITE)) 1449 atomic_dec(&ctx->kvm->arch.hpte_mod_interest); 1450 kvm_put_kvm(ctx->kvm); 1451 kfree(ctx); 1452 return 0; 1453 } 1454 1455 static const struct file_operations kvm_htab_fops = { 1456 .read = kvm_htab_read, 1457 .write = kvm_htab_write, 1458 .llseek = default_llseek, 1459 .release = kvm_htab_release, 1460 }; 1461 1462 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) 1463 { 1464 int ret; 1465 struct kvm_htab_ctx *ctx; 1466 int rwflag; 1467 1468 /* reject flags we don't recognize */ 1469 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) 1470 return -EINVAL; 1471 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1472 if (!ctx) 1473 return -ENOMEM; 1474 kvm_get_kvm(kvm); 1475 ctx->kvm = kvm; 1476 ctx->index = ghf->start_index; 1477 ctx->flags = ghf->flags; 1478 ctx->first_pass = 1; 1479 1480 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; 1481 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); 1482 if (ret < 0) { 1483 kvm_put_kvm(kvm); 1484 return ret; 1485 } 1486 1487 if (rwflag == O_RDONLY) { 1488 mutex_lock(&kvm->slots_lock); 1489 atomic_inc(&kvm->arch.hpte_mod_interest); 1490 /* make sure kvmppc_do_h_enter etc. see the increment */ 1491 synchronize_srcu_expedited(&kvm->srcu); 1492 mutex_unlock(&kvm->slots_lock); 1493 } 1494 1495 return ret; 1496 } 1497 1498 struct debugfs_htab_state { 1499 struct kvm *kvm; 1500 struct mutex mutex; 1501 unsigned long hpt_index; 1502 int chars_left; 1503 int buf_index; 1504 char buf[64]; 1505 }; 1506 1507 static int debugfs_htab_open(struct inode *inode, struct file *file) 1508 { 1509 struct kvm *kvm = inode->i_private; 1510 struct debugfs_htab_state *p; 1511 1512 p = kzalloc(sizeof(*p), GFP_KERNEL); 1513 if (!p) 1514 return -ENOMEM; 1515 1516 kvm_get_kvm(kvm); 1517 p->kvm = kvm; 1518 mutex_init(&p->mutex); 1519 file->private_data = p; 1520 1521 return nonseekable_open(inode, file); 1522 } 1523 1524 static int debugfs_htab_release(struct inode *inode, struct file *file) 1525 { 1526 struct debugfs_htab_state *p = file->private_data; 1527 1528 kvm_put_kvm(p->kvm); 1529 kfree(p); 1530 return 0; 1531 } 1532 1533 static ssize_t debugfs_htab_read(struct file *file, char __user *buf, 1534 size_t len, loff_t *ppos) 1535 { 1536 struct debugfs_htab_state *p = file->private_data; 1537 ssize_t ret, r; 1538 unsigned long i, n; 1539 unsigned long v, hr, gr; 1540 struct kvm *kvm; 1541 __be64 *hptp; 1542 1543 ret = mutex_lock_interruptible(&p->mutex); 1544 if (ret) 1545 return ret; 1546 1547 if (p->chars_left) { 1548 n = p->chars_left; 1549 if (n > len) 1550 n = len; 1551 r = copy_to_user(buf, p->buf + p->buf_index, n); 1552 n -= r; 1553 p->chars_left -= n; 1554 p->buf_index += n; 1555 buf += n; 1556 len -= n; 1557 ret = n; 1558 if (r) { 1559 if (!n) 1560 ret = -EFAULT; 1561 goto out; 1562 } 1563 } 1564 1565 kvm = p->kvm; 1566 i = p->hpt_index; 1567 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE)); 1568 for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) { 1569 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) 1570 continue; 1571 1572 /* lock the HPTE so it's stable and read it */ 1573 preempt_disable(); 1574 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) 1575 cpu_relax(); 1576 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; 1577 hr = be64_to_cpu(hptp[1]); 1578 gr = kvm->arch.revmap[i].guest_rpte; 1579 unlock_hpte(hptp, v); 1580 preempt_enable(); 1581 1582 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) 1583 continue; 1584 1585 n = scnprintf(p->buf, sizeof(p->buf), 1586 "%6lx %.16lx %.16lx %.16lx\n", 1587 i, v, hr, gr); 1588 p->chars_left = n; 1589 if (n > len) 1590 n = len; 1591 r = copy_to_user(buf, p->buf, n); 1592 n -= r; 1593 p->chars_left -= n; 1594 p->buf_index = n; 1595 buf += n; 1596 len -= n; 1597 ret += n; 1598 if (r) { 1599 if (!ret) 1600 ret = -EFAULT; 1601 goto out; 1602 } 1603 } 1604 p->hpt_index = i; 1605 1606 out: 1607 mutex_unlock(&p->mutex); 1608 return ret; 1609 } 1610 1611 ssize_t debugfs_htab_write(struct file *file, const char __user *buf, 1612 size_t len, loff_t *ppos) 1613 { 1614 return -EACCES; 1615 } 1616 1617 static const struct file_operations debugfs_htab_fops = { 1618 .owner = THIS_MODULE, 1619 .open = debugfs_htab_open, 1620 .release = debugfs_htab_release, 1621 .read = debugfs_htab_read, 1622 .write = debugfs_htab_write, 1623 .llseek = generic_file_llseek, 1624 }; 1625 1626 void kvmppc_mmu_debugfs_init(struct kvm *kvm) 1627 { 1628 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400, 1629 kvm->arch.debugfs_dir, kvm, 1630 &debugfs_htab_fops); 1631 } 1632 1633 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) 1634 { 1635 struct kvmppc_mmu *mmu = &vcpu->arch.mmu; 1636 1637 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ 1638 1639 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; 1640 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr; 1641 1642 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; 1643 } 1644