xref: /linux/arch/powerpc/kvm/book3s_64_mmu_host.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
3  *
4  * Authors:
5  *     Alexander Graf <agraf@suse.de>
6  *     Kevin Wolf <mail@kevin-wolf.de>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License, version 2, as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
20  */
21 
22 #include <linux/kvm_host.h>
23 
24 #include <asm/kvm_ppc.h>
25 #include <asm/kvm_book3s.h>
26 #include <asm/mmu-hash64.h>
27 #include <asm/machdep.h>
28 #include <asm/mmu_context.h>
29 #include <asm/hw_irq.h>
30 #include "trace.h"
31 
32 #define PTE_SIZE 12
33 
34 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
35 {
36 	ppc_md.hpte_invalidate(pte->slot, pte->host_va,
37 			       MMU_PAGE_4K, MMU_SEGSIZE_256M,
38 			       false);
39 }
40 
41 /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
42  * a hash, so we don't waste cycles on looping */
43 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
44 {
45 	return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
46 		     ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
47 		     ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
48 		     ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
49 		     ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
50 		     ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
51 		     ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
52 		     ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
53 }
54 
55 
56 static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
57 {
58 	struct kvmppc_sid_map *map;
59 	u16 sid_map_mask;
60 
61 	if (vcpu->arch.shared->msr & MSR_PR)
62 		gvsid |= VSID_PR;
63 
64 	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
65 	map = &to_book3s(vcpu)->sid_map[sid_map_mask];
66 	if (map->valid && (map->guest_vsid == gvsid)) {
67 		trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
68 		return map;
69 	}
70 
71 	map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
72 	if (map->valid && (map->guest_vsid == gvsid)) {
73 		trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
74 		return map;
75 	}
76 
77 	trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
78 	return NULL;
79 }
80 
81 int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
82 {
83 	pfn_t hpaddr;
84 	ulong hash, hpteg, va;
85 	u64 vsid;
86 	int ret;
87 	int rflags = 0x192;
88 	int vflags = 0;
89 	int attempt = 0;
90 	struct kvmppc_sid_map *map;
91 	int r = 0;
92 
93 	/* Get host physical address for gpa */
94 	hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
95 	if (is_error_pfn(hpaddr)) {
96 		printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
97 		r = -EINVAL;
98 		goto out;
99 	}
100 	hpaddr <<= PAGE_SHIFT;
101 	hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
102 
103 	/* and write the mapping ea -> hpa into the pt */
104 	vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
105 	map = find_sid_vsid(vcpu, vsid);
106 	if (!map) {
107 		ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
108 		WARN_ON(ret < 0);
109 		map = find_sid_vsid(vcpu, vsid);
110 	}
111 	if (!map) {
112 		printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
113 				vsid, orig_pte->eaddr);
114 		WARN_ON(true);
115 		r = -EINVAL;
116 		goto out;
117 	}
118 
119 	vsid = map->host_vsid;
120 	va = hpt_va(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M);
121 
122 	if (!orig_pte->may_write)
123 		rflags |= HPTE_R_PP;
124 	else
125 		mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
126 
127 	if (!orig_pte->may_execute)
128 		rflags |= HPTE_R_N;
129 	else
130 		kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT);
131 
132 	hash = hpt_hash(va, PTE_SIZE, MMU_SEGSIZE_256M);
133 
134 map_again:
135 	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
136 
137 	/* In case we tried normal mapping already, let's nuke old entries */
138 	if (attempt > 1)
139 		if (ppc_md.hpte_remove(hpteg) < 0) {
140 			r = -1;
141 			goto out;
142 		}
143 
144 	ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M);
145 
146 	if (ret < 0) {
147 		/* If we couldn't map a primary PTE, try a secondary */
148 		hash = ~hash;
149 		vflags ^= HPTE_V_SECONDARY;
150 		attempt++;
151 		goto map_again;
152 	} else {
153 		struct hpte_cache *pte = kvmppc_mmu_hpte_cache_next(vcpu);
154 
155 		trace_kvm_book3s_64_mmu_map(rflags, hpteg, va, hpaddr, orig_pte);
156 
157 		/* The ppc_md code may give us a secondary entry even though we
158 		   asked for a primary. Fix up. */
159 		if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
160 			hash = ~hash;
161 			hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
162 		}
163 
164 		pte->slot = hpteg + (ret & 7);
165 		pte->host_va = va;
166 		pte->pte = *orig_pte;
167 		pte->pfn = hpaddr >> PAGE_SHIFT;
168 
169 		kvmppc_mmu_hpte_cache_map(vcpu, pte);
170 	}
171 
172 out:
173 	return r;
174 }
175 
176 static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
177 {
178 	struct kvmppc_sid_map *map;
179 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
180 	u16 sid_map_mask;
181 	static int backwards_map = 0;
182 
183 	if (vcpu->arch.shared->msr & MSR_PR)
184 		gvsid |= VSID_PR;
185 
186 	/* We might get collisions that trap in preceding order, so let's
187 	   map them differently */
188 
189 	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
190 	if (backwards_map)
191 		sid_map_mask = SID_MAP_MASK - sid_map_mask;
192 
193 	map = &to_book3s(vcpu)->sid_map[sid_map_mask];
194 
195 	/* Make sure we're taking the other map next time */
196 	backwards_map = !backwards_map;
197 
198 	/* Uh-oh ... out of mappings. Let's flush! */
199 	if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
200 		vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
201 		memset(vcpu_book3s->sid_map, 0,
202 		       sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
203 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
204 		kvmppc_mmu_flush_segments(vcpu);
205 	}
206 	map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, 256M);
207 
208 	map->guest_vsid = gvsid;
209 	map->valid = true;
210 
211 	trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
212 
213 	return map;
214 }
215 
216 static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
217 {
218 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
219 	int i;
220 	int max_slb_size = 64;
221 	int found_inval = -1;
222 	int r;
223 
224 	if (!svcpu->slb_max)
225 		svcpu->slb_max = 1;
226 
227 	/* Are we overwriting? */
228 	for (i = 1; i < svcpu->slb_max; i++) {
229 		if (!(svcpu->slb[i].esid & SLB_ESID_V))
230 			found_inval = i;
231 		else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
232 			r = i;
233 			goto out;
234 		}
235 	}
236 
237 	/* Found a spare entry that was invalidated before */
238 	if (found_inval > 0) {
239 		r = found_inval;
240 		goto out;
241 	}
242 
243 	/* No spare invalid entry, so create one */
244 
245 	if (mmu_slb_size < 64)
246 		max_slb_size = mmu_slb_size;
247 
248 	/* Overflowing -> purge */
249 	if ((svcpu->slb_max) == max_slb_size)
250 		kvmppc_mmu_flush_segments(vcpu);
251 
252 	r = svcpu->slb_max;
253 	svcpu->slb_max++;
254 
255 out:
256 	svcpu_put(svcpu);
257 	return r;
258 }
259 
260 int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
261 {
262 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
263 	u64 esid = eaddr >> SID_SHIFT;
264 	u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
265 	u64 slb_vsid = SLB_VSID_USER;
266 	u64 gvsid;
267 	int slb_index;
268 	struct kvmppc_sid_map *map;
269 	int r = 0;
270 
271 	slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
272 
273 	if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
274 		/* Invalidate an entry */
275 		svcpu->slb[slb_index].esid = 0;
276 		r = -ENOENT;
277 		goto out;
278 	}
279 
280 	map = find_sid_vsid(vcpu, gvsid);
281 	if (!map)
282 		map = create_sid_map(vcpu, gvsid);
283 
284 	map->guest_esid = esid;
285 
286 	slb_vsid |= (map->host_vsid << 12);
287 	slb_vsid &= ~SLB_VSID_KP;
288 	slb_esid |= slb_index;
289 
290 	svcpu->slb[slb_index].esid = slb_esid;
291 	svcpu->slb[slb_index].vsid = slb_vsid;
292 
293 	trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
294 
295 out:
296 	svcpu_put(svcpu);
297 	return r;
298 }
299 
300 void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
301 {
302 	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
303 	svcpu->slb_max = 1;
304 	svcpu->slb[0].esid = 0;
305 	svcpu_put(svcpu);
306 }
307 
308 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
309 {
310 	kvmppc_mmu_hpte_destroy(vcpu);
311 	__destroy_context(to_book3s(vcpu)->context_id[0]);
312 }
313 
314 int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
315 {
316 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
317 	int err;
318 
319 	err = __init_new_context();
320 	if (err < 0)
321 		return -1;
322 	vcpu3s->context_id[0] = err;
323 
324 	vcpu3s->proto_vsid_max = ((vcpu3s->context_id[0] + 1)
325 				  << USER_ESID_BITS) - 1;
326 	vcpu3s->proto_vsid_first = vcpu3s->context_id[0] << USER_ESID_BITS;
327 	vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
328 
329 	kvmppc_mmu_hpte_init(vcpu);
330 
331 	return 0;
332 }
333