xref: /linux/arch/powerpc/kexec/file_load_64.c (revision f14aa5ea415b8add245e976bfab96a12986c6843)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ppc64 code to implement the kexec_file_load syscall
4  *
5  * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
6  * Copyright (C) 2004  IBM Corp.
7  * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
8  * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
9  * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
10  * Copyright (C) 2020  IBM Corporation
11  *
12  * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13  * Heavily modified for the kernel by
14  * Hari Bathini, IBM Corporation.
15  */
16 
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <asm/setup.h>
25 #include <asm/drmem.h>
26 #include <asm/firmware.h>
27 #include <asm/kexec_ranges.h>
28 #include <asm/crashdump-ppc64.h>
29 #include <asm/mmzone.h>
30 #include <asm/iommu.h>
31 #include <asm/prom.h>
32 #include <asm/plpks.h>
33 #include <asm/cputhreads.h>
34 
35 struct umem_info {
36 	__be64 *buf;		/* data buffer for usable-memory property */
37 	u32 size;		/* size allocated for the data buffer */
38 	u32 max_entries;	/* maximum no. of entries */
39 	u32 idx;		/* index of current entry */
40 
41 	/* usable memory ranges to look up */
42 	unsigned int nr_ranges;
43 	const struct range *ranges;
44 };
45 
46 const struct kexec_file_ops * const kexec_file_loaders[] = {
47 	&kexec_elf64_ops,
48 	NULL
49 };
50 
51 /**
52  * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
53  *                              in the memory regions between buf_min & buf_max
54  *                              for the buffer. If found, sets kbuf->mem.
55  * @kbuf:                       Buffer contents and memory parameters.
56  * @buf_min:                    Minimum address for the buffer.
57  * @buf_max:                    Maximum address for the buffer.
58  *
59  * Returns 0 on success, negative errno on error.
60  */
61 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
62 				      u64 buf_min, u64 buf_max)
63 {
64 	int ret = -EADDRNOTAVAIL;
65 	phys_addr_t start, end;
66 	u64 i;
67 
68 	for_each_mem_range_rev(i, &start, &end) {
69 		/*
70 		 * memblock uses [start, end) convention while it is
71 		 * [start, end] here. Fix the off-by-one to have the
72 		 * same convention.
73 		 */
74 		end -= 1;
75 
76 		if (start > buf_max)
77 			continue;
78 
79 		/* Memory hole not found */
80 		if (end < buf_min)
81 			break;
82 
83 		/* Adjust memory region based on the given range */
84 		if (start < buf_min)
85 			start = buf_min;
86 		if (end > buf_max)
87 			end = buf_max;
88 
89 		start = ALIGN(start, kbuf->buf_align);
90 		if (start < end && (end - start + 1) >= kbuf->memsz) {
91 			/* Suitable memory range found. Set kbuf->mem */
92 			kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
93 					       kbuf->buf_align);
94 			ret = 0;
95 			break;
96 		}
97 	}
98 
99 	return ret;
100 }
101 
102 /**
103  * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
104  *                                  suitable buffer with top down approach.
105  * @kbuf:                           Buffer contents and memory parameters.
106  * @buf_min:                        Minimum address for the buffer.
107  * @buf_max:                        Maximum address for the buffer.
108  * @emem:                           Exclude memory ranges.
109  *
110  * Returns 0 on success, negative errno on error.
111  */
112 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
113 					  u64 buf_min, u64 buf_max,
114 					  const struct crash_mem *emem)
115 {
116 	int i, ret = 0, err = -EADDRNOTAVAIL;
117 	u64 start, end, tmin, tmax;
118 
119 	tmax = buf_max;
120 	for (i = (emem->nr_ranges - 1); i >= 0; i--) {
121 		start = emem->ranges[i].start;
122 		end = emem->ranges[i].end;
123 
124 		if (start > tmax)
125 			continue;
126 
127 		if (end < tmax) {
128 			tmin = (end < buf_min ? buf_min : end + 1);
129 			ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
130 			if (!ret)
131 				return 0;
132 		}
133 
134 		tmax = start - 1;
135 
136 		if (tmax < buf_min) {
137 			ret = err;
138 			break;
139 		}
140 		ret = 0;
141 	}
142 
143 	if (!ret) {
144 		tmin = buf_min;
145 		ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
146 	}
147 	return ret;
148 }
149 
150 /**
151  * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
152  *                               in the memory regions between buf_min & buf_max
153  *                               for the buffer. If found, sets kbuf->mem.
154  * @kbuf:                        Buffer contents and memory parameters.
155  * @buf_min:                     Minimum address for the buffer.
156  * @buf_max:                     Maximum address for the buffer.
157  *
158  * Returns 0 on success, negative errno on error.
159  */
160 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
161 				       u64 buf_min, u64 buf_max)
162 {
163 	int ret = -EADDRNOTAVAIL;
164 	phys_addr_t start, end;
165 	u64 i;
166 
167 	for_each_mem_range(i, &start, &end) {
168 		/*
169 		 * memblock uses [start, end) convention while it is
170 		 * [start, end] here. Fix the off-by-one to have the
171 		 * same convention.
172 		 */
173 		end -= 1;
174 
175 		if (end < buf_min)
176 			continue;
177 
178 		/* Memory hole not found */
179 		if (start > buf_max)
180 			break;
181 
182 		/* Adjust memory region based on the given range */
183 		if (start < buf_min)
184 			start = buf_min;
185 		if (end > buf_max)
186 			end = buf_max;
187 
188 		start = ALIGN(start, kbuf->buf_align);
189 		if (start < end && (end - start + 1) >= kbuf->memsz) {
190 			/* Suitable memory range found. Set kbuf->mem */
191 			kbuf->mem = start;
192 			ret = 0;
193 			break;
194 		}
195 	}
196 
197 	return ret;
198 }
199 
200 /**
201  * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
202  *                                   suitable buffer with bottom up approach.
203  * @kbuf:                            Buffer contents and memory parameters.
204  * @buf_min:                         Minimum address for the buffer.
205  * @buf_max:                         Maximum address for the buffer.
206  * @emem:                            Exclude memory ranges.
207  *
208  * Returns 0 on success, negative errno on error.
209  */
210 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
211 					   u64 buf_min, u64 buf_max,
212 					   const struct crash_mem *emem)
213 {
214 	int i, ret = 0, err = -EADDRNOTAVAIL;
215 	u64 start, end, tmin, tmax;
216 
217 	tmin = buf_min;
218 	for (i = 0; i < emem->nr_ranges; i++) {
219 		start = emem->ranges[i].start;
220 		end = emem->ranges[i].end;
221 
222 		if (end < tmin)
223 			continue;
224 
225 		if (start > tmin) {
226 			tmax = (start > buf_max ? buf_max : start - 1);
227 			ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
228 			if (!ret)
229 				return 0;
230 		}
231 
232 		tmin = end + 1;
233 
234 		if (tmin > buf_max) {
235 			ret = err;
236 			break;
237 		}
238 		ret = 0;
239 	}
240 
241 	if (!ret) {
242 		tmax = buf_max;
243 		ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
244 	}
245 	return ret;
246 }
247 
248 #ifdef CONFIG_CRASH_DUMP
249 /**
250  * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
251  * @um_info:                  Usable memory buffer and ranges info.
252  * @cnt:                      No. of entries to accommodate.
253  *
254  * Frees up the old buffer if memory reallocation fails.
255  *
256  * Returns buffer on success, NULL on error.
257  */
258 static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
259 {
260 	u32 new_size;
261 	__be64 *tbuf;
262 
263 	if ((um_info->idx + cnt) <= um_info->max_entries)
264 		return um_info->buf;
265 
266 	new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
267 	tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
268 	if (tbuf) {
269 		um_info->buf = tbuf;
270 		um_info->size = new_size;
271 		um_info->max_entries = (um_info->size / sizeof(u64));
272 	}
273 
274 	return tbuf;
275 }
276 
277 /**
278  * add_usable_mem - Add the usable memory ranges within the given memory range
279  *                  to the buffer
280  * @um_info:        Usable memory buffer and ranges info.
281  * @base:           Base address of memory range to look for.
282  * @end:            End address of memory range to look for.
283  *
284  * Returns 0 on success, negative errno on error.
285  */
286 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
287 {
288 	u64 loc_base, loc_end;
289 	bool add;
290 	int i;
291 
292 	for (i = 0; i < um_info->nr_ranges; i++) {
293 		add = false;
294 		loc_base = um_info->ranges[i].start;
295 		loc_end = um_info->ranges[i].end;
296 		if (loc_base >= base && loc_end <= end)
297 			add = true;
298 		else if (base < loc_end && end > loc_base) {
299 			if (loc_base < base)
300 				loc_base = base;
301 			if (loc_end > end)
302 				loc_end = end;
303 			add = true;
304 		}
305 
306 		if (add) {
307 			if (!check_realloc_usable_mem(um_info, 2))
308 				return -ENOMEM;
309 
310 			um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
311 			um_info->buf[um_info->idx++] =
312 					cpu_to_be64(loc_end - loc_base + 1);
313 		}
314 	}
315 
316 	return 0;
317 }
318 
319 /**
320  * kdump_setup_usable_lmb - This is a callback function that gets called by
321  *                          walk_drmem_lmbs for every LMB to set its
322  *                          usable memory ranges.
323  * @lmb:                    LMB info.
324  * @usm:                    linux,drconf-usable-memory property value.
325  * @data:                   Pointer to usable memory buffer and ranges info.
326  *
327  * Returns 0 on success, negative errno on error.
328  */
329 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
330 				  void *data)
331 {
332 	struct umem_info *um_info;
333 	int tmp_idx, ret;
334 	u64 base, end;
335 
336 	/*
337 	 * kdump load isn't supported on kernels already booted with
338 	 * linux,drconf-usable-memory property.
339 	 */
340 	if (*usm) {
341 		pr_err("linux,drconf-usable-memory property already exists!");
342 		return -EINVAL;
343 	}
344 
345 	um_info = data;
346 	tmp_idx = um_info->idx;
347 	if (!check_realloc_usable_mem(um_info, 1))
348 		return -ENOMEM;
349 
350 	um_info->idx++;
351 	base = lmb->base_addr;
352 	end = base + drmem_lmb_size() - 1;
353 	ret = add_usable_mem(um_info, base, end);
354 	if (!ret) {
355 		/*
356 		 * Update the no. of ranges added. Two entries (base & size)
357 		 * for every range added.
358 		 */
359 		um_info->buf[tmp_idx] =
360 				cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
361 	}
362 
363 	return ret;
364 }
365 
366 #define NODE_PATH_LEN		256
367 /**
368  * add_usable_mem_property - Add usable memory property for the given
369  *                           memory node.
370  * @fdt:                     Flattened device tree for the kdump kernel.
371  * @dn:                      Memory node.
372  * @um_info:                 Usable memory buffer and ranges info.
373  *
374  * Returns 0 on success, negative errno on error.
375  */
376 static int add_usable_mem_property(void *fdt, struct device_node *dn,
377 				   struct umem_info *um_info)
378 {
379 	int n_mem_addr_cells, n_mem_size_cells, node;
380 	char path[NODE_PATH_LEN];
381 	int i, len, ranges, ret;
382 	const __be32 *prop;
383 	u64 base, end;
384 
385 	of_node_get(dn);
386 
387 	if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
388 		pr_err("Buffer (%d) too small for memory node: %pOF\n",
389 		       NODE_PATH_LEN, dn);
390 		return -EOVERFLOW;
391 	}
392 	kexec_dprintk("Memory node path: %s\n", path);
393 
394 	/* Now that we know the path, find its offset in kdump kernel's fdt */
395 	node = fdt_path_offset(fdt, path);
396 	if (node < 0) {
397 		pr_err("Malformed device tree: error reading %s\n", path);
398 		ret = -EINVAL;
399 		goto out;
400 	}
401 
402 	/* Get the address & size cells */
403 	n_mem_addr_cells = of_n_addr_cells(dn);
404 	n_mem_size_cells = of_n_size_cells(dn);
405 	kexec_dprintk("address cells: %d, size cells: %d\n", n_mem_addr_cells,
406 		      n_mem_size_cells);
407 
408 	um_info->idx  = 0;
409 	if (!check_realloc_usable_mem(um_info, 2)) {
410 		ret = -ENOMEM;
411 		goto out;
412 	}
413 
414 	prop = of_get_property(dn, "reg", &len);
415 	if (!prop || len <= 0) {
416 		ret = 0;
417 		goto out;
418 	}
419 
420 	/*
421 	 * "reg" property represents sequence of (addr,size) tuples
422 	 * each representing a memory range.
423 	 */
424 	ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
425 
426 	for (i = 0; i < ranges; i++) {
427 		base = of_read_number(prop, n_mem_addr_cells);
428 		prop += n_mem_addr_cells;
429 		end = base + of_read_number(prop, n_mem_size_cells) - 1;
430 		prop += n_mem_size_cells;
431 
432 		ret = add_usable_mem(um_info, base, end);
433 		if (ret)
434 			goto out;
435 	}
436 
437 	/*
438 	 * No kdump kernel usable memory found in this memory node.
439 	 * Write (0,0) tuple in linux,usable-memory property for
440 	 * this region to be ignored.
441 	 */
442 	if (um_info->idx == 0) {
443 		um_info->buf[0] = 0;
444 		um_info->buf[1] = 0;
445 		um_info->idx = 2;
446 	}
447 
448 	ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
449 			  (um_info->idx * sizeof(u64)));
450 
451 out:
452 	of_node_put(dn);
453 	return ret;
454 }
455 
456 
457 /**
458  * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
459  *                         and linux,drconf-usable-memory DT properties as
460  *                         appropriate to restrict its memory usage.
461  * @fdt:                   Flattened device tree for the kdump kernel.
462  * @usable_mem:            Usable memory ranges for kdump kernel.
463  *
464  * Returns 0 on success, negative errno on error.
465  */
466 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
467 {
468 	struct umem_info um_info;
469 	struct device_node *dn;
470 	int node, ret = 0;
471 
472 	if (!usable_mem) {
473 		pr_err("Usable memory ranges for kdump kernel not found\n");
474 		return -ENOENT;
475 	}
476 
477 	node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
478 	if (node == -FDT_ERR_NOTFOUND)
479 		kexec_dprintk("No dynamic reconfiguration memory found\n");
480 	else if (node < 0) {
481 		pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
482 		return -EINVAL;
483 	}
484 
485 	um_info.buf  = NULL;
486 	um_info.size = 0;
487 	um_info.max_entries = 0;
488 	um_info.idx  = 0;
489 	/* Memory ranges to look up */
490 	um_info.ranges = &(usable_mem->ranges[0]);
491 	um_info.nr_ranges = usable_mem->nr_ranges;
492 
493 	dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
494 	if (dn) {
495 		ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
496 		of_node_put(dn);
497 
498 		if (ret) {
499 			pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
500 			goto out;
501 		}
502 
503 		ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
504 				  um_info.buf, (um_info.idx * sizeof(u64)));
505 		if (ret) {
506 			pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
507 			       fdt_strerror(ret));
508 			goto out;
509 		}
510 	}
511 
512 	/*
513 	 * Walk through each memory node and set linux,usable-memory property
514 	 * for the corresponding node in kdump kernel's fdt.
515 	 */
516 	for_each_node_by_type(dn, "memory") {
517 		ret = add_usable_mem_property(fdt, dn, &um_info);
518 		if (ret) {
519 			pr_err("Failed to set linux,usable-memory property for %s node",
520 			       dn->full_name);
521 			of_node_put(dn);
522 			goto out;
523 		}
524 	}
525 
526 out:
527 	kfree(um_info.buf);
528 	return ret;
529 }
530 
531 /**
532  * load_backup_segment - Locate a memory hole to place the backup region.
533  * @image:               Kexec image.
534  * @kbuf:                Buffer contents and memory parameters.
535  *
536  * Returns 0 on success, negative errno on error.
537  */
538 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
539 {
540 	void *buf;
541 	int ret;
542 
543 	/*
544 	 * Setup a source buffer for backup segment.
545 	 *
546 	 * A source buffer has no meaning for backup region as data will
547 	 * be copied from backup source, after crash, in the purgatory.
548 	 * But as load segment code doesn't recognize such segments,
549 	 * setup a dummy source buffer to keep it happy for now.
550 	 */
551 	buf = vzalloc(BACKUP_SRC_SIZE);
552 	if (!buf)
553 		return -ENOMEM;
554 
555 	kbuf->buffer = buf;
556 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
557 	kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
558 	kbuf->top_down = false;
559 
560 	ret = kexec_add_buffer(kbuf);
561 	if (ret) {
562 		vfree(buf);
563 		return ret;
564 	}
565 
566 	image->arch.backup_buf = buf;
567 	image->arch.backup_start = kbuf->mem;
568 	return 0;
569 }
570 
571 /**
572  * update_backup_region_phdr - Update backup region's offset for the core to
573  *                             export the region appropriately.
574  * @image:                     Kexec image.
575  * @ehdr:                      ELF core header.
576  *
577  * Assumes an exclusive program header is setup for the backup region
578  * in the ELF headers
579  *
580  * Returns nothing.
581  */
582 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
583 {
584 	Elf64_Phdr *phdr;
585 	unsigned int i;
586 
587 	phdr = (Elf64_Phdr *)(ehdr + 1);
588 	for (i = 0; i < ehdr->e_phnum; i++) {
589 		if (phdr->p_paddr == BACKUP_SRC_START) {
590 			phdr->p_offset = image->arch.backup_start;
591 			kexec_dprintk("Backup region offset updated to 0x%lx\n",
592 				      image->arch.backup_start);
593 			return;
594 		}
595 	}
596 }
597 
598 static unsigned int kdump_extra_elfcorehdr_size(struct crash_mem *cmem)
599 {
600 #if defined(CONFIG_CRASH_HOTPLUG) && defined(CONFIG_MEMORY_HOTPLUG)
601 	unsigned int extra_sz = 0;
602 
603 	if (CONFIG_CRASH_MAX_MEMORY_RANGES > (unsigned int)PN_XNUM)
604 		pr_warn("Number of Phdrs %u exceeds max\n", CONFIG_CRASH_MAX_MEMORY_RANGES);
605 	else if (cmem->nr_ranges >= CONFIG_CRASH_MAX_MEMORY_RANGES)
606 		pr_warn("Configured crash mem ranges may not be enough\n");
607 	else
608 		extra_sz = (CONFIG_CRASH_MAX_MEMORY_RANGES - cmem->nr_ranges) * sizeof(Elf64_Phdr);
609 
610 	return extra_sz;
611 #endif
612 	return 0;
613 }
614 
615 /**
616  * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
617  *                           segment needed to load kdump kernel.
618  * @image:                   Kexec image.
619  * @kbuf:                    Buffer contents and memory parameters.
620  *
621  * Returns 0 on success, negative errno on error.
622  */
623 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
624 {
625 	struct crash_mem *cmem = NULL;
626 	unsigned long headers_sz;
627 	void *headers = NULL;
628 	int ret;
629 
630 	ret = get_crash_memory_ranges(&cmem);
631 	if (ret)
632 		goto out;
633 
634 	/* Setup elfcorehdr segment */
635 	ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
636 	if (ret) {
637 		pr_err("Failed to prepare elf headers for the core\n");
638 		goto out;
639 	}
640 
641 	/* Fix the offset for backup region in the ELF header */
642 	update_backup_region_phdr(image, headers);
643 
644 	kbuf->buffer = headers;
645 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
646 	kbuf->bufsz = headers_sz;
647 	kbuf->memsz = headers_sz + kdump_extra_elfcorehdr_size(cmem);
648 	kbuf->top_down = false;
649 
650 	ret = kexec_add_buffer(kbuf);
651 	if (ret) {
652 		vfree(headers);
653 		goto out;
654 	}
655 
656 	image->elf_load_addr = kbuf->mem;
657 	image->elf_headers_sz = headers_sz;
658 	image->elf_headers = headers;
659 out:
660 	kfree(cmem);
661 	return ret;
662 }
663 
664 /**
665  * load_crashdump_segments_ppc64 - Initialize the additional segements needed
666  *                                 to load kdump kernel.
667  * @image:                         Kexec image.
668  * @kbuf:                          Buffer contents and memory parameters.
669  *
670  * Returns 0 on success, negative errno on error.
671  */
672 int load_crashdump_segments_ppc64(struct kimage *image,
673 				  struct kexec_buf *kbuf)
674 {
675 	int ret;
676 
677 	/* Load backup segment - first 64K bytes of the crashing kernel */
678 	ret = load_backup_segment(image, kbuf);
679 	if (ret) {
680 		pr_err("Failed to load backup segment\n");
681 		return ret;
682 	}
683 	kexec_dprintk("Loaded the backup region at 0x%lx\n", kbuf->mem);
684 
685 	/* Load elfcorehdr segment - to export crashing kernel's vmcore */
686 	ret = load_elfcorehdr_segment(image, kbuf);
687 	if (ret) {
688 		pr_err("Failed to load elfcorehdr segment\n");
689 		return ret;
690 	}
691 	kexec_dprintk("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
692 		      image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
693 
694 	return 0;
695 }
696 #endif
697 
698 /**
699  * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
700  *                         variables and call setup_purgatory() to initialize
701  *                         common global variable.
702  * @image:                 kexec image.
703  * @slave_code:            Slave code for the purgatory.
704  * @fdt:                   Flattened device tree for the next kernel.
705  * @kernel_load_addr:      Address where the kernel is loaded.
706  * @fdt_load_addr:         Address where the flattened device tree is loaded.
707  *
708  * Returns 0 on success, negative errno on error.
709  */
710 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
711 			  const void *fdt, unsigned long kernel_load_addr,
712 			  unsigned long fdt_load_addr)
713 {
714 	struct device_node *dn = NULL;
715 	int ret;
716 
717 	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
718 			      fdt_load_addr);
719 	if (ret)
720 		goto out;
721 
722 	if (image->type == KEXEC_TYPE_CRASH) {
723 		u32 my_run_at_load = 1;
724 
725 		/*
726 		 * Tell relocatable kernel to run at load address
727 		 * via the word meant for that at 0x5c.
728 		 */
729 		ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
730 						     &my_run_at_load,
731 						     sizeof(my_run_at_load),
732 						     false);
733 		if (ret)
734 			goto out;
735 	}
736 
737 	/* Tell purgatory where to look for backup region */
738 	ret = kexec_purgatory_get_set_symbol(image, "backup_start",
739 					     &image->arch.backup_start,
740 					     sizeof(image->arch.backup_start),
741 					     false);
742 	if (ret)
743 		goto out;
744 
745 	/* Setup OPAL base & entry values */
746 	dn = of_find_node_by_path("/ibm,opal");
747 	if (dn) {
748 		u64 val;
749 
750 		of_property_read_u64(dn, "opal-base-address", &val);
751 		ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
752 						     sizeof(val), false);
753 		if (ret)
754 			goto out;
755 
756 		of_property_read_u64(dn, "opal-entry-address", &val);
757 		ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
758 						     sizeof(val), false);
759 	}
760 out:
761 	if (ret)
762 		pr_err("Failed to setup purgatory symbols");
763 	of_node_put(dn);
764 	return ret;
765 }
766 
767 /**
768  * cpu_node_size - Compute the size of a CPU node in the FDT.
769  *                 This should be done only once and the value is stored in
770  *                 a static variable.
771  * Returns the max size of a CPU node in the FDT.
772  */
773 static unsigned int cpu_node_size(void)
774 {
775 	static unsigned int size;
776 	struct device_node *dn;
777 	struct property *pp;
778 
779 	/*
780 	 * Don't compute it twice, we are assuming that the per CPU node size
781 	 * doesn't change during the system's life.
782 	 */
783 	if (size)
784 		return size;
785 
786 	dn = of_find_node_by_type(NULL, "cpu");
787 	if (WARN_ON_ONCE(!dn)) {
788 		// Unlikely to happen
789 		return 0;
790 	}
791 
792 	/*
793 	 * We compute the sub node size for a CPU node, assuming it
794 	 * will be the same for all.
795 	 */
796 	size += strlen(dn->name) + 5;
797 	for_each_property_of_node(dn, pp) {
798 		size += strlen(pp->name);
799 		size += pp->length;
800 	}
801 
802 	of_node_put(dn);
803 	return size;
804 }
805 
806 static unsigned int kdump_extra_fdt_size_ppc64(struct kimage *image)
807 {
808 	unsigned int cpu_nodes, extra_size = 0;
809 	struct device_node *dn;
810 	u64 usm_entries;
811 #ifdef CONFIG_CRASH_HOTPLUG
812 	unsigned int possible_cpu_nodes;
813 #endif
814 
815 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || image->type != KEXEC_TYPE_CRASH)
816 		return 0;
817 
818 	/*
819 	 * For kdump kernel, account for linux,usable-memory and
820 	 * linux,drconf-usable-memory properties. Get an approximate on the
821 	 * number of usable memory entries and use for FDT size estimation.
822 	 */
823 	if (drmem_lmb_size()) {
824 		usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
825 			       (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
826 		extra_size += (unsigned int)(usm_entries * sizeof(u64));
827 	}
828 
829 	/*
830 	 * Get the number of CPU nodes in the current DT. This allows to
831 	 * reserve places for CPU nodes added since the boot time.
832 	 */
833 	cpu_nodes = 0;
834 	for_each_node_by_type(dn, "cpu") {
835 		cpu_nodes++;
836 	}
837 
838 	if (cpu_nodes > boot_cpu_node_count)
839 		extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
840 
841 #ifdef CONFIG_CRASH_HOTPLUG
842 	/*
843 	 * Make sure enough space is reserved to accommodate possible CPU nodes
844 	 * in the crash FDT. This allows packing possible CPU nodes which are
845 	 * not yet present in the system without regenerating the entire FDT.
846 	 */
847 	if (image->type == KEXEC_TYPE_CRASH) {
848 		possible_cpu_nodes = num_possible_cpus() / threads_per_core;
849 		if (possible_cpu_nodes > cpu_nodes)
850 			extra_size += (possible_cpu_nodes - cpu_nodes) * cpu_node_size();
851 	}
852 #endif
853 
854 	return extra_size;
855 }
856 
857 /**
858  * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
859  *                              setup FDT for kexec/kdump kernel.
860  * @image:                      kexec image being loaded.
861  *
862  * Returns the estimated extra size needed for kexec/kdump kernel FDT.
863  */
864 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
865 {
866 	unsigned int extra_size = 0;
867 
868 	// Budget some space for the password blob. There's already extra space
869 	// for the key name
870 	if (plpks_is_available())
871 		extra_size += (unsigned int)plpks_get_passwordlen();
872 
873 	return extra_size + kdump_extra_fdt_size_ppc64(image);
874 }
875 
876 static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
877 			 const char *propname)
878 {
879 	const void *prop, *fdtprop;
880 	int len = 0, fdtlen = 0;
881 
882 	prop = of_get_property(dn, propname, &len);
883 	fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
884 
885 	if (fdtprop && !prop)
886 		return fdt_delprop(fdt, node_offset, propname);
887 	else if (prop)
888 		return fdt_setprop(fdt, node_offset, propname, prop, len);
889 	else
890 		return -FDT_ERR_NOTFOUND;
891 }
892 
893 static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
894 {
895 	struct device_node *dn;
896 	int pci_offset, root_offset, ret = 0;
897 
898 	if (!firmware_has_feature(FW_FEATURE_LPAR))
899 		return 0;
900 
901 	root_offset = fdt_path_offset(fdt, "/");
902 	for_each_node_with_property(dn, dmapropname) {
903 		pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
904 		if (pci_offset < 0)
905 			continue;
906 
907 		ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
908 		if (ret < 0) {
909 			of_node_put(dn);
910 			break;
911 		}
912 		ret = copy_property(fdt, pci_offset, dn, dmapropname);
913 		if (ret < 0) {
914 			of_node_put(dn);
915 			break;
916 		}
917 	}
918 
919 	return ret;
920 }
921 
922 /**
923  * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
924  *                       being loaded.
925  * @image:               kexec image being loaded.
926  * @fdt:                 Flattened device tree for the next kernel.
927  * @initrd_load_addr:    Address where the next initrd will be loaded.
928  * @initrd_len:          Size of the next initrd, or 0 if there will be none.
929  * @cmdline:             Command line for the next kernel, or NULL if there will
930  *                       be none.
931  *
932  * Returns 0 on success, negative errno on error.
933  */
934 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
935 			unsigned long initrd_load_addr,
936 			unsigned long initrd_len, const char *cmdline)
937 {
938 	struct crash_mem *umem = NULL, *rmem = NULL;
939 	int i, nr_ranges, ret;
940 
941 #ifdef CONFIG_CRASH_DUMP
942 	/*
943 	 * Restrict memory usage for kdump kernel by setting up
944 	 * usable memory ranges and memory reserve map.
945 	 */
946 	if (image->type == KEXEC_TYPE_CRASH) {
947 		ret = get_usable_memory_ranges(&umem);
948 		if (ret)
949 			goto out;
950 
951 		ret = update_usable_mem_fdt(fdt, umem);
952 		if (ret) {
953 			pr_err("Error setting up usable-memory property for kdump kernel\n");
954 			goto out;
955 		}
956 
957 		/*
958 		 * Ensure we don't touch crashed kernel's memory except the
959 		 * first 64K of RAM, which will be backed up.
960 		 */
961 		ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
962 				      crashk_res.start - BACKUP_SRC_SIZE);
963 		if (ret) {
964 			pr_err("Error reserving crash memory: %s\n",
965 			       fdt_strerror(ret));
966 			goto out;
967 		}
968 
969 		/* Ensure backup region is not used by kdump/capture kernel */
970 		ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
971 				      BACKUP_SRC_SIZE);
972 		if (ret) {
973 			pr_err("Error reserving memory for backup: %s\n",
974 			       fdt_strerror(ret));
975 			goto out;
976 		}
977 	}
978 #endif
979 
980 	/* Update cpus nodes information to account hotplug CPUs. */
981 	ret =  update_cpus_node(fdt);
982 	if (ret < 0)
983 		goto out;
984 
985 	ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
986 	if (ret < 0)
987 		goto out;
988 
989 	ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
990 	if (ret < 0)
991 		goto out;
992 
993 	/* Update memory reserve map */
994 	ret = get_reserved_memory_ranges(&rmem);
995 	if (ret)
996 		goto out;
997 
998 	nr_ranges = rmem ? rmem->nr_ranges : 0;
999 	for (i = 0; i < nr_ranges; i++) {
1000 		u64 base, size;
1001 
1002 		base = rmem->ranges[i].start;
1003 		size = rmem->ranges[i].end - base + 1;
1004 		ret = fdt_add_mem_rsv(fdt, base, size);
1005 		if (ret) {
1006 			pr_err("Error updating memory reserve map: %s\n",
1007 			       fdt_strerror(ret));
1008 			goto out;
1009 		}
1010 	}
1011 
1012 	// If we have PLPKS active, we need to provide the password to the new kernel
1013 	if (plpks_is_available())
1014 		ret = plpks_populate_fdt(fdt);
1015 
1016 out:
1017 	kfree(rmem);
1018 	kfree(umem);
1019 	return ret;
1020 }
1021 
1022 /**
1023  * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1024  *                              tce-table, reserved-ranges & such (exclude
1025  *                              memory ranges) as they can't be used for kexec
1026  *                              segment buffer. Sets kbuf->mem when a suitable
1027  *                              memory hole is found.
1028  * @kbuf:                       Buffer contents and memory parameters.
1029  *
1030  * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1031  *
1032  * Returns 0 on success, negative errno on error.
1033  */
1034 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1035 {
1036 	struct crash_mem **emem;
1037 	u64 buf_min, buf_max;
1038 	int ret;
1039 
1040 	/* Look up the exclude ranges list while locating the memory hole */
1041 	emem = &(kbuf->image->arch.exclude_ranges);
1042 	if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1043 		pr_warn("No exclude range list. Using the default locate mem hole method\n");
1044 		return kexec_locate_mem_hole(kbuf);
1045 	}
1046 
1047 	buf_min = kbuf->buf_min;
1048 	buf_max = kbuf->buf_max;
1049 	/* Segments for kdump kernel should be within crashkernel region */
1050 	if (IS_ENABLED(CONFIG_CRASH_DUMP) && kbuf->image->type == KEXEC_TYPE_CRASH) {
1051 		buf_min = (buf_min < crashk_res.start ?
1052 			   crashk_res.start : buf_min);
1053 		buf_max = (buf_max > crashk_res.end ?
1054 			   crashk_res.end : buf_max);
1055 	}
1056 
1057 	if (buf_min > buf_max) {
1058 		pr_err("Invalid buffer min and/or max values\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	if (kbuf->top_down)
1063 		ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1064 						     *emem);
1065 	else
1066 		ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1067 						      *emem);
1068 
1069 	/* Add the buffer allocated to the exclude list for the next lookup */
1070 	if (!ret) {
1071 		add_mem_range(emem, kbuf->mem, kbuf->memsz);
1072 		sort_memory_ranges(*emem, true);
1073 	} else {
1074 		pr_err("Failed to locate memory buffer of size %lu\n",
1075 		       kbuf->memsz);
1076 	}
1077 	return ret;
1078 }
1079 
1080 /**
1081  * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1082  *                                 kexec segments.
1083  * @image:                         kexec image being loaded.
1084  * @buf:                           Buffer pointing to elf data.
1085  * @buf_len:                       Length of the buffer.
1086  *
1087  * Returns 0 on success, negative errno on error.
1088  */
1089 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1090 				  unsigned long buf_len)
1091 {
1092 	int ret;
1093 
1094 	/* Get exclude memory ranges needed for setting up kexec segments */
1095 	ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1096 	if (ret) {
1097 		pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1098 		return ret;
1099 	}
1100 
1101 	return kexec_image_probe_default(image, buf, buf_len);
1102 }
1103 
1104 /**
1105  * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1106  *                                      while loading the image.
1107  * @image:                              kexec image being loaded.
1108  *
1109  * Returns 0 on success, negative errno on error.
1110  */
1111 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1112 {
1113 	kfree(image->arch.exclude_ranges);
1114 	image->arch.exclude_ranges = NULL;
1115 
1116 	vfree(image->arch.backup_buf);
1117 	image->arch.backup_buf = NULL;
1118 
1119 	vfree(image->elf_headers);
1120 	image->elf_headers = NULL;
1121 	image->elf_headers_sz = 0;
1122 
1123 	kvfree(image->arch.fdt);
1124 	image->arch.fdt = NULL;
1125 
1126 	return kexec_image_post_load_cleanup_default(image);
1127 }
1128