xref: /linux/arch/powerpc/kexec/file_load_64.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ppc64 code to implement the kexec_file_load syscall
4  *
5  * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
6  * Copyright (C) 2004  IBM Corp.
7  * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
8  * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
9  * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
10  * Copyright (C) 2020  IBM Corporation
11  *
12  * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13  * Heavily modified for the kernel by
14  * Hari Bathini, IBM Corporation.
15  */
16 
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of_device.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <asm/drmem.h>
25 #include <asm/kexec_ranges.h>
26 #include <asm/crashdump-ppc64.h>
27 
28 struct umem_info {
29 	u64 *buf;		/* data buffer for usable-memory property */
30 	u32 size;		/* size allocated for the data buffer */
31 	u32 max_entries;	/* maximum no. of entries */
32 	u32 idx;		/* index of current entry */
33 
34 	/* usable memory ranges to look up */
35 	unsigned int nr_ranges;
36 	const struct crash_mem_range *ranges;
37 };
38 
39 const struct kexec_file_ops * const kexec_file_loaders[] = {
40 	&kexec_elf64_ops,
41 	NULL
42 };
43 
44 /**
45  * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
46  *                             regions like opal/rtas, tce-table, initrd,
47  *                             kernel, htab which should be avoided while
48  *                             setting up kexec load segments.
49  * @mem_ranges:                Range list to add the memory ranges to.
50  *
51  * Returns 0 on success, negative errno on error.
52  */
53 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
54 {
55 	int ret;
56 
57 	ret = add_tce_mem_ranges(mem_ranges);
58 	if (ret)
59 		goto out;
60 
61 	ret = add_initrd_mem_range(mem_ranges);
62 	if (ret)
63 		goto out;
64 
65 	ret = add_htab_mem_range(mem_ranges);
66 	if (ret)
67 		goto out;
68 
69 	ret = add_kernel_mem_range(mem_ranges);
70 	if (ret)
71 		goto out;
72 
73 	ret = add_rtas_mem_range(mem_ranges);
74 	if (ret)
75 		goto out;
76 
77 	ret = add_opal_mem_range(mem_ranges);
78 	if (ret)
79 		goto out;
80 
81 	ret = add_reserved_mem_ranges(mem_ranges);
82 	if (ret)
83 		goto out;
84 
85 	/* exclude memory ranges should be sorted for easy lookup */
86 	sort_memory_ranges(*mem_ranges, true);
87 out:
88 	if (ret)
89 		pr_err("Failed to setup exclude memory ranges\n");
90 	return ret;
91 }
92 
93 /**
94  * get_usable_memory_ranges - Get usable memory ranges. This list includes
95  *                            regions like crashkernel, opal/rtas & tce-table,
96  *                            that kdump kernel could use.
97  * @mem_ranges:               Range list to add the memory ranges to.
98  *
99  * Returns 0 on success, negative errno on error.
100  */
101 static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
102 {
103 	int ret;
104 
105 	/*
106 	 * Early boot failure observed on guests when low memory (first memory
107 	 * block?) is not added to usable memory. So, add [0, crashk_res.end]
108 	 * instead of [crashk_res.start, crashk_res.end] to workaround it.
109 	 * Also, crashed kernel's memory must be added to reserve map to
110 	 * avoid kdump kernel from using it.
111 	 */
112 	ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
113 	if (ret)
114 		goto out;
115 
116 	ret = add_rtas_mem_range(mem_ranges);
117 	if (ret)
118 		goto out;
119 
120 	ret = add_opal_mem_range(mem_ranges);
121 	if (ret)
122 		goto out;
123 
124 	ret = add_tce_mem_ranges(mem_ranges);
125 out:
126 	if (ret)
127 		pr_err("Failed to setup usable memory ranges\n");
128 	return ret;
129 }
130 
131 /**
132  * get_crash_memory_ranges - Get crash memory ranges. This list includes
133  *                           first/crashing kernel's memory regions that
134  *                           would be exported via an elfcore.
135  * @mem_ranges:              Range list to add the memory ranges to.
136  *
137  * Returns 0 on success, negative errno on error.
138  */
139 static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
140 {
141 	struct memblock_region *reg;
142 	struct crash_mem *tmem;
143 	int ret;
144 
145 	for_each_memblock(memory, reg) {
146 		u64 base, size;
147 
148 		base = (u64)reg->base;
149 		size = (u64)reg->size;
150 
151 		/* Skip backup memory region, which needs a separate entry */
152 		if (base == BACKUP_SRC_START) {
153 			if (size > BACKUP_SRC_SIZE) {
154 				base = BACKUP_SRC_END + 1;
155 				size -= BACKUP_SRC_SIZE;
156 			} else
157 				continue;
158 		}
159 
160 		ret = add_mem_range(mem_ranges, base, size);
161 		if (ret)
162 			goto out;
163 
164 		/* Try merging adjacent ranges before reallocation attempt */
165 		if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
166 			sort_memory_ranges(*mem_ranges, true);
167 	}
168 
169 	/* Reallocate memory ranges if there is no space to split ranges */
170 	tmem = *mem_ranges;
171 	if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
172 		tmem = realloc_mem_ranges(mem_ranges);
173 		if (!tmem)
174 			goto out;
175 	}
176 
177 	/* Exclude crashkernel region */
178 	ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
179 	if (ret)
180 		goto out;
181 
182 	/*
183 	 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
184 	 *        regions are exported to save their context at the time of
185 	 *        crash, they should actually be backed up just like the
186 	 *        first 64K bytes of memory.
187 	 */
188 	ret = add_rtas_mem_range(mem_ranges);
189 	if (ret)
190 		goto out;
191 
192 	ret = add_opal_mem_range(mem_ranges);
193 	if (ret)
194 		goto out;
195 
196 	/* create a separate program header for the backup region */
197 	ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
198 	if (ret)
199 		goto out;
200 
201 	sort_memory_ranges(*mem_ranges, false);
202 out:
203 	if (ret)
204 		pr_err("Failed to setup crash memory ranges\n");
205 	return ret;
206 }
207 
208 /**
209  * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
210  *                              memory regions that should be added to the
211  *                              memory reserve map to ensure the region is
212  *                              protected from any mischief.
213  * @mem_ranges:                 Range list to add the memory ranges to.
214  *
215  * Returns 0 on success, negative errno on error.
216  */
217 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
218 {
219 	int ret;
220 
221 	ret = add_rtas_mem_range(mem_ranges);
222 	if (ret)
223 		goto out;
224 
225 	ret = add_tce_mem_ranges(mem_ranges);
226 	if (ret)
227 		goto out;
228 
229 	ret = add_reserved_mem_ranges(mem_ranges);
230 out:
231 	if (ret)
232 		pr_err("Failed to setup reserved memory ranges\n");
233 	return ret;
234 }
235 
236 /**
237  * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
238  *                              in the memory regions between buf_min & buf_max
239  *                              for the buffer. If found, sets kbuf->mem.
240  * @kbuf:                       Buffer contents and memory parameters.
241  * @buf_min:                    Minimum address for the buffer.
242  * @buf_max:                    Maximum address for the buffer.
243  *
244  * Returns 0 on success, negative errno on error.
245  */
246 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
247 				      u64 buf_min, u64 buf_max)
248 {
249 	int ret = -EADDRNOTAVAIL;
250 	phys_addr_t start, end;
251 	u64 i;
252 
253 	for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE,
254 			       MEMBLOCK_NONE, &start, &end, NULL) {
255 		/*
256 		 * memblock uses [start, end) convention while it is
257 		 * [start, end] here. Fix the off-by-one to have the
258 		 * same convention.
259 		 */
260 		end -= 1;
261 
262 		if (start > buf_max)
263 			continue;
264 
265 		/* Memory hole not found */
266 		if (end < buf_min)
267 			break;
268 
269 		/* Adjust memory region based on the given range */
270 		if (start < buf_min)
271 			start = buf_min;
272 		if (end > buf_max)
273 			end = buf_max;
274 
275 		start = ALIGN(start, kbuf->buf_align);
276 		if (start < end && (end - start + 1) >= kbuf->memsz) {
277 			/* Suitable memory range found. Set kbuf->mem */
278 			kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
279 					       kbuf->buf_align);
280 			ret = 0;
281 			break;
282 		}
283 	}
284 
285 	return ret;
286 }
287 
288 /**
289  * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
290  *                                  suitable buffer with top down approach.
291  * @kbuf:                           Buffer contents and memory parameters.
292  * @buf_min:                        Minimum address for the buffer.
293  * @buf_max:                        Maximum address for the buffer.
294  * @emem:                           Exclude memory ranges.
295  *
296  * Returns 0 on success, negative errno on error.
297  */
298 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
299 					  u64 buf_min, u64 buf_max,
300 					  const struct crash_mem *emem)
301 {
302 	int i, ret = 0, err = -EADDRNOTAVAIL;
303 	u64 start, end, tmin, tmax;
304 
305 	tmax = buf_max;
306 	for (i = (emem->nr_ranges - 1); i >= 0; i--) {
307 		start = emem->ranges[i].start;
308 		end = emem->ranges[i].end;
309 
310 		if (start > tmax)
311 			continue;
312 
313 		if (end < tmax) {
314 			tmin = (end < buf_min ? buf_min : end + 1);
315 			ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
316 			if (!ret)
317 				return 0;
318 		}
319 
320 		tmax = start - 1;
321 
322 		if (tmax < buf_min) {
323 			ret = err;
324 			break;
325 		}
326 		ret = 0;
327 	}
328 
329 	if (!ret) {
330 		tmin = buf_min;
331 		ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
332 	}
333 	return ret;
334 }
335 
336 /**
337  * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
338  *                               in the memory regions between buf_min & buf_max
339  *                               for the buffer. If found, sets kbuf->mem.
340  * @kbuf:                        Buffer contents and memory parameters.
341  * @buf_min:                     Minimum address for the buffer.
342  * @buf_max:                     Maximum address for the buffer.
343  *
344  * Returns 0 on success, negative errno on error.
345  */
346 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
347 				       u64 buf_min, u64 buf_max)
348 {
349 	int ret = -EADDRNOTAVAIL;
350 	phys_addr_t start, end;
351 	u64 i;
352 
353 	for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
354 			   MEMBLOCK_NONE, &start, &end, NULL) {
355 		/*
356 		 * memblock uses [start, end) convention while it is
357 		 * [start, end] here. Fix the off-by-one to have the
358 		 * same convention.
359 		 */
360 		end -= 1;
361 
362 		if (end < buf_min)
363 			continue;
364 
365 		/* Memory hole not found */
366 		if (start > buf_max)
367 			break;
368 
369 		/* Adjust memory region based on the given range */
370 		if (start < buf_min)
371 			start = buf_min;
372 		if (end > buf_max)
373 			end = buf_max;
374 
375 		start = ALIGN(start, kbuf->buf_align);
376 		if (start < end && (end - start + 1) >= kbuf->memsz) {
377 			/* Suitable memory range found. Set kbuf->mem */
378 			kbuf->mem = start;
379 			ret = 0;
380 			break;
381 		}
382 	}
383 
384 	return ret;
385 }
386 
387 /**
388  * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
389  *                                   suitable buffer with bottom up approach.
390  * @kbuf:                            Buffer contents and memory parameters.
391  * @buf_min:                         Minimum address for the buffer.
392  * @buf_max:                         Maximum address for the buffer.
393  * @emem:                            Exclude memory ranges.
394  *
395  * Returns 0 on success, negative errno on error.
396  */
397 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
398 					   u64 buf_min, u64 buf_max,
399 					   const struct crash_mem *emem)
400 {
401 	int i, ret = 0, err = -EADDRNOTAVAIL;
402 	u64 start, end, tmin, tmax;
403 
404 	tmin = buf_min;
405 	for (i = 0; i < emem->nr_ranges; i++) {
406 		start = emem->ranges[i].start;
407 		end = emem->ranges[i].end;
408 
409 		if (end < tmin)
410 			continue;
411 
412 		if (start > tmin) {
413 			tmax = (start > buf_max ? buf_max : start - 1);
414 			ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
415 			if (!ret)
416 				return 0;
417 		}
418 
419 		tmin = end + 1;
420 
421 		if (tmin > buf_max) {
422 			ret = err;
423 			break;
424 		}
425 		ret = 0;
426 	}
427 
428 	if (!ret) {
429 		tmax = buf_max;
430 		ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
431 	}
432 	return ret;
433 }
434 
435 /**
436  * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
437  * @um_info:                  Usable memory buffer and ranges info.
438  * @cnt:                      No. of entries to accommodate.
439  *
440  * Frees up the old buffer if memory reallocation fails.
441  *
442  * Returns buffer on success, NULL on error.
443  */
444 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
445 {
446 	u32 new_size;
447 	u64 *tbuf;
448 
449 	if ((um_info->idx + cnt) <= um_info->max_entries)
450 		return um_info->buf;
451 
452 	new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
453 	tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
454 	if (tbuf) {
455 		um_info->buf = tbuf;
456 		um_info->size = new_size;
457 		um_info->max_entries = (um_info->size / sizeof(u64));
458 	}
459 
460 	return tbuf;
461 }
462 
463 /**
464  * add_usable_mem - Add the usable memory ranges within the given memory range
465  *                  to the buffer
466  * @um_info:        Usable memory buffer and ranges info.
467  * @base:           Base address of memory range to look for.
468  * @end:            End address of memory range to look for.
469  *
470  * Returns 0 on success, negative errno on error.
471  */
472 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
473 {
474 	u64 loc_base, loc_end;
475 	bool add;
476 	int i;
477 
478 	for (i = 0; i < um_info->nr_ranges; i++) {
479 		add = false;
480 		loc_base = um_info->ranges[i].start;
481 		loc_end = um_info->ranges[i].end;
482 		if (loc_base >= base && loc_end <= end)
483 			add = true;
484 		else if (base < loc_end && end > loc_base) {
485 			if (loc_base < base)
486 				loc_base = base;
487 			if (loc_end > end)
488 				loc_end = end;
489 			add = true;
490 		}
491 
492 		if (add) {
493 			if (!check_realloc_usable_mem(um_info, 2))
494 				return -ENOMEM;
495 
496 			um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
497 			um_info->buf[um_info->idx++] =
498 					cpu_to_be64(loc_end - loc_base + 1);
499 		}
500 	}
501 
502 	return 0;
503 }
504 
505 /**
506  * kdump_setup_usable_lmb - This is a callback function that gets called by
507  *                          walk_drmem_lmbs for every LMB to set its
508  *                          usable memory ranges.
509  * @lmb:                    LMB info.
510  * @usm:                    linux,drconf-usable-memory property value.
511  * @data:                   Pointer to usable memory buffer and ranges info.
512  *
513  * Returns 0 on success, negative errno on error.
514  */
515 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
516 				  void *data)
517 {
518 	struct umem_info *um_info;
519 	int tmp_idx, ret;
520 	u64 base, end;
521 
522 	/*
523 	 * kdump load isn't supported on kernels already booted with
524 	 * linux,drconf-usable-memory property.
525 	 */
526 	if (*usm) {
527 		pr_err("linux,drconf-usable-memory property already exists!");
528 		return -EINVAL;
529 	}
530 
531 	um_info = data;
532 	tmp_idx = um_info->idx;
533 	if (!check_realloc_usable_mem(um_info, 1))
534 		return -ENOMEM;
535 
536 	um_info->idx++;
537 	base = lmb->base_addr;
538 	end = base + drmem_lmb_size() - 1;
539 	ret = add_usable_mem(um_info, base, end);
540 	if (!ret) {
541 		/*
542 		 * Update the no. of ranges added. Two entries (base & size)
543 		 * for every range added.
544 		 */
545 		um_info->buf[tmp_idx] =
546 				cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
547 	}
548 
549 	return ret;
550 }
551 
552 #define NODE_PATH_LEN		256
553 /**
554  * add_usable_mem_property - Add usable memory property for the given
555  *                           memory node.
556  * @fdt:                     Flattened device tree for the kdump kernel.
557  * @dn:                      Memory node.
558  * @um_info:                 Usable memory buffer and ranges info.
559  *
560  * Returns 0 on success, negative errno on error.
561  */
562 static int add_usable_mem_property(void *fdt, struct device_node *dn,
563 				   struct umem_info *um_info)
564 {
565 	int n_mem_addr_cells, n_mem_size_cells, node;
566 	char path[NODE_PATH_LEN];
567 	int i, len, ranges, ret;
568 	const __be32 *prop;
569 	u64 base, end;
570 
571 	of_node_get(dn);
572 
573 	if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
574 		pr_err("Buffer (%d) too small for memory node: %pOF\n",
575 		       NODE_PATH_LEN, dn);
576 		return -EOVERFLOW;
577 	}
578 	pr_debug("Memory node path: %s\n", path);
579 
580 	/* Now that we know the path, find its offset in kdump kernel's fdt */
581 	node = fdt_path_offset(fdt, path);
582 	if (node < 0) {
583 		pr_err("Malformed device tree: error reading %s\n", path);
584 		ret = -EINVAL;
585 		goto out;
586 	}
587 
588 	/* Get the address & size cells */
589 	n_mem_addr_cells = of_n_addr_cells(dn);
590 	n_mem_size_cells = of_n_size_cells(dn);
591 	pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
592 		 n_mem_size_cells);
593 
594 	um_info->idx  = 0;
595 	if (!check_realloc_usable_mem(um_info, 2)) {
596 		ret = -ENOMEM;
597 		goto out;
598 	}
599 
600 	prop = of_get_property(dn, "reg", &len);
601 	if (!prop || len <= 0) {
602 		ret = 0;
603 		goto out;
604 	}
605 
606 	/*
607 	 * "reg" property represents sequence of (addr,size) tuples
608 	 * each representing a memory range.
609 	 */
610 	ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
611 
612 	for (i = 0; i < ranges; i++) {
613 		base = of_read_number(prop, n_mem_addr_cells);
614 		prop += n_mem_addr_cells;
615 		end = base + of_read_number(prop, n_mem_size_cells) - 1;
616 		prop += n_mem_size_cells;
617 
618 		ret = add_usable_mem(um_info, base, end);
619 		if (ret)
620 			goto out;
621 	}
622 
623 	/*
624 	 * No kdump kernel usable memory found in this memory node.
625 	 * Write (0,0) tuple in linux,usable-memory property for
626 	 * this region to be ignored.
627 	 */
628 	if (um_info->idx == 0) {
629 		um_info->buf[0] = 0;
630 		um_info->buf[1] = 0;
631 		um_info->idx = 2;
632 	}
633 
634 	ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
635 			  (um_info->idx * sizeof(u64)));
636 
637 out:
638 	of_node_put(dn);
639 	return ret;
640 }
641 
642 
643 /**
644  * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
645  *                         and linux,drconf-usable-memory DT properties as
646  *                         appropriate to restrict its memory usage.
647  * @fdt:                   Flattened device tree for the kdump kernel.
648  * @usable_mem:            Usable memory ranges for kdump kernel.
649  *
650  * Returns 0 on success, negative errno on error.
651  */
652 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
653 {
654 	struct umem_info um_info;
655 	struct device_node *dn;
656 	int node, ret = 0;
657 
658 	if (!usable_mem) {
659 		pr_err("Usable memory ranges for kdump kernel not found\n");
660 		return -ENOENT;
661 	}
662 
663 	node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
664 	if (node == -FDT_ERR_NOTFOUND)
665 		pr_debug("No dynamic reconfiguration memory found\n");
666 	else if (node < 0) {
667 		pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
668 		return -EINVAL;
669 	}
670 
671 	um_info.buf  = NULL;
672 	um_info.size = 0;
673 	um_info.max_entries = 0;
674 	um_info.idx  = 0;
675 	/* Memory ranges to look up */
676 	um_info.ranges = &(usable_mem->ranges[0]);
677 	um_info.nr_ranges = usable_mem->nr_ranges;
678 
679 	dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
680 	if (dn) {
681 		ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
682 		of_node_put(dn);
683 
684 		if (ret) {
685 			pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
686 			goto out;
687 		}
688 
689 		ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
690 				  um_info.buf, (um_info.idx * sizeof(u64)));
691 		if (ret) {
692 			pr_err("Failed to update fdt with linux,drconf-usable-memory property");
693 			goto out;
694 		}
695 	}
696 
697 	/*
698 	 * Walk through each memory node and set linux,usable-memory property
699 	 * for the corresponding node in kdump kernel's fdt.
700 	 */
701 	for_each_node_by_type(dn, "memory") {
702 		ret = add_usable_mem_property(fdt, dn, &um_info);
703 		if (ret) {
704 			pr_err("Failed to set linux,usable-memory property for %s node",
705 			       dn->full_name);
706 			goto out;
707 		}
708 	}
709 
710 out:
711 	kfree(um_info.buf);
712 	return ret;
713 }
714 
715 /**
716  * load_backup_segment - Locate a memory hole to place the backup region.
717  * @image:               Kexec image.
718  * @kbuf:                Buffer contents and memory parameters.
719  *
720  * Returns 0 on success, negative errno on error.
721  */
722 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
723 {
724 	void *buf;
725 	int ret;
726 
727 	/*
728 	 * Setup a source buffer for backup segment.
729 	 *
730 	 * A source buffer has no meaning for backup region as data will
731 	 * be copied from backup source, after crash, in the purgatory.
732 	 * But as load segment code doesn't recognize such segments,
733 	 * setup a dummy source buffer to keep it happy for now.
734 	 */
735 	buf = vzalloc(BACKUP_SRC_SIZE);
736 	if (!buf)
737 		return -ENOMEM;
738 
739 	kbuf->buffer = buf;
740 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
741 	kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
742 	kbuf->top_down = false;
743 
744 	ret = kexec_add_buffer(kbuf);
745 	if (ret) {
746 		vfree(buf);
747 		return ret;
748 	}
749 
750 	image->arch.backup_buf = buf;
751 	image->arch.backup_start = kbuf->mem;
752 	return 0;
753 }
754 
755 /**
756  * update_backup_region_phdr - Update backup region's offset for the core to
757  *                             export the region appropriately.
758  * @image:                     Kexec image.
759  * @ehdr:                      ELF core header.
760  *
761  * Assumes an exclusive program header is setup for the backup region
762  * in the ELF headers
763  *
764  * Returns nothing.
765  */
766 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
767 {
768 	Elf64_Phdr *phdr;
769 	unsigned int i;
770 
771 	phdr = (Elf64_Phdr *)(ehdr + 1);
772 	for (i = 0; i < ehdr->e_phnum; i++) {
773 		if (phdr->p_paddr == BACKUP_SRC_START) {
774 			phdr->p_offset = image->arch.backup_start;
775 			pr_debug("Backup region offset updated to 0x%lx\n",
776 				 image->arch.backup_start);
777 			return;
778 		}
779 	}
780 }
781 
782 /**
783  * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
784  *                           segment needed to load kdump kernel.
785  * @image:                   Kexec image.
786  * @kbuf:                    Buffer contents and memory parameters.
787  *
788  * Returns 0 on success, negative errno on error.
789  */
790 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
791 {
792 	struct crash_mem *cmem = NULL;
793 	unsigned long headers_sz;
794 	void *headers = NULL;
795 	int ret;
796 
797 	ret = get_crash_memory_ranges(&cmem);
798 	if (ret)
799 		goto out;
800 
801 	/* Setup elfcorehdr segment */
802 	ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
803 	if (ret) {
804 		pr_err("Failed to prepare elf headers for the core\n");
805 		goto out;
806 	}
807 
808 	/* Fix the offset for backup region in the ELF header */
809 	update_backup_region_phdr(image, headers);
810 
811 	kbuf->buffer = headers;
812 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
813 	kbuf->bufsz = kbuf->memsz = headers_sz;
814 	kbuf->top_down = false;
815 
816 	ret = kexec_add_buffer(kbuf);
817 	if (ret) {
818 		vfree(headers);
819 		goto out;
820 	}
821 
822 	image->arch.elfcorehdr_addr = kbuf->mem;
823 	image->arch.elf_headers_sz = headers_sz;
824 	image->arch.elf_headers = headers;
825 out:
826 	kfree(cmem);
827 	return ret;
828 }
829 
830 /**
831  * load_crashdump_segments_ppc64 - Initialize the additional segements needed
832  *                                 to load kdump kernel.
833  * @image:                         Kexec image.
834  * @kbuf:                          Buffer contents and memory parameters.
835  *
836  * Returns 0 on success, negative errno on error.
837  */
838 int load_crashdump_segments_ppc64(struct kimage *image,
839 				  struct kexec_buf *kbuf)
840 {
841 	int ret;
842 
843 	/* Load backup segment - first 64K bytes of the crashing kernel */
844 	ret = load_backup_segment(image, kbuf);
845 	if (ret) {
846 		pr_err("Failed to load backup segment\n");
847 		return ret;
848 	}
849 	pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
850 
851 	/* Load elfcorehdr segment - to export crashing kernel's vmcore */
852 	ret = load_elfcorehdr_segment(image, kbuf);
853 	if (ret) {
854 		pr_err("Failed to load elfcorehdr segment\n");
855 		return ret;
856 	}
857 	pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
858 		 image->arch.elfcorehdr_addr, kbuf->bufsz, kbuf->memsz);
859 
860 	return 0;
861 }
862 
863 /**
864  * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
865  *                         variables and call setup_purgatory() to initialize
866  *                         common global variable.
867  * @image:                 kexec image.
868  * @slave_code:            Slave code for the purgatory.
869  * @fdt:                   Flattened device tree for the next kernel.
870  * @kernel_load_addr:      Address where the kernel is loaded.
871  * @fdt_load_addr:         Address where the flattened device tree is loaded.
872  *
873  * Returns 0 on success, negative errno on error.
874  */
875 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
876 			  const void *fdt, unsigned long kernel_load_addr,
877 			  unsigned long fdt_load_addr)
878 {
879 	struct device_node *dn = NULL;
880 	int ret;
881 
882 	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
883 			      fdt_load_addr);
884 	if (ret)
885 		goto out;
886 
887 	if (image->type == KEXEC_TYPE_CRASH) {
888 		u32 my_run_at_load = 1;
889 
890 		/*
891 		 * Tell relocatable kernel to run at load address
892 		 * via the word meant for that at 0x5c.
893 		 */
894 		ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
895 						     &my_run_at_load,
896 						     sizeof(my_run_at_load),
897 						     false);
898 		if (ret)
899 			goto out;
900 	}
901 
902 	/* Tell purgatory where to look for backup region */
903 	ret = kexec_purgatory_get_set_symbol(image, "backup_start",
904 					     &image->arch.backup_start,
905 					     sizeof(image->arch.backup_start),
906 					     false);
907 	if (ret)
908 		goto out;
909 
910 	/* Setup OPAL base & entry values */
911 	dn = of_find_node_by_path("/ibm,opal");
912 	if (dn) {
913 		u64 val;
914 
915 		of_property_read_u64(dn, "opal-base-address", &val);
916 		ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
917 						     sizeof(val), false);
918 		if (ret)
919 			goto out;
920 
921 		of_property_read_u64(dn, "opal-entry-address", &val);
922 		ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
923 						     sizeof(val), false);
924 	}
925 out:
926 	if (ret)
927 		pr_err("Failed to setup purgatory symbols");
928 	of_node_put(dn);
929 	return ret;
930 }
931 
932 /**
933  * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
934  *                       being loaded.
935  * @image:               kexec image being loaded.
936  * @fdt:                 Flattened device tree for the next kernel.
937  * @initrd_load_addr:    Address where the next initrd will be loaded.
938  * @initrd_len:          Size of the next initrd, or 0 if there will be none.
939  * @cmdline:             Command line for the next kernel, or NULL if there will
940  *                       be none.
941  *
942  * Returns 0 on success, negative errno on error.
943  */
944 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
945 			unsigned long initrd_load_addr,
946 			unsigned long initrd_len, const char *cmdline)
947 {
948 	struct crash_mem *umem = NULL, *rmem = NULL;
949 	int i, nr_ranges, ret;
950 
951 	ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline);
952 	if (ret)
953 		goto out;
954 
955 	/*
956 	 * Restrict memory usage for kdump kernel by setting up
957 	 * usable memory ranges and memory reserve map.
958 	 */
959 	if (image->type == KEXEC_TYPE_CRASH) {
960 		ret = get_usable_memory_ranges(&umem);
961 		if (ret)
962 			goto out;
963 
964 		ret = update_usable_mem_fdt(fdt, umem);
965 		if (ret) {
966 			pr_err("Error setting up usable-memory property for kdump kernel\n");
967 			goto out;
968 		}
969 
970 		/*
971 		 * Ensure we don't touch crashed kernel's memory except the
972 		 * first 64K of RAM, which will be backed up.
973 		 */
974 		ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
975 				      crashk_res.start - BACKUP_SRC_SIZE);
976 		if (ret) {
977 			pr_err("Error reserving crash memory: %s\n",
978 			       fdt_strerror(ret));
979 			goto out;
980 		}
981 
982 		/* Ensure backup region is not used by kdump/capture kernel */
983 		ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
984 				      BACKUP_SRC_SIZE);
985 		if (ret) {
986 			pr_err("Error reserving memory for backup: %s\n",
987 			       fdt_strerror(ret));
988 			goto out;
989 		}
990 	}
991 
992 	/* Update memory reserve map */
993 	ret = get_reserved_memory_ranges(&rmem);
994 	if (ret)
995 		goto out;
996 
997 	nr_ranges = rmem ? rmem->nr_ranges : 0;
998 	for (i = 0; i < nr_ranges; i++) {
999 		u64 base, size;
1000 
1001 		base = rmem->ranges[i].start;
1002 		size = rmem->ranges[i].end - base + 1;
1003 		ret = fdt_add_mem_rsv(fdt, base, size);
1004 		if (ret) {
1005 			pr_err("Error updating memory reserve map: %s\n",
1006 			       fdt_strerror(ret));
1007 			goto out;
1008 		}
1009 	}
1010 
1011 out:
1012 	kfree(rmem);
1013 	kfree(umem);
1014 	return ret;
1015 }
1016 
1017 /**
1018  * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1019  *                              tce-table, reserved-ranges & such (exclude
1020  *                              memory ranges) as they can't be used for kexec
1021  *                              segment buffer. Sets kbuf->mem when a suitable
1022  *                              memory hole is found.
1023  * @kbuf:                       Buffer contents and memory parameters.
1024  *
1025  * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1026  *
1027  * Returns 0 on success, negative errno on error.
1028  */
1029 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1030 {
1031 	struct crash_mem **emem;
1032 	u64 buf_min, buf_max;
1033 	int ret;
1034 
1035 	/* Look up the exclude ranges list while locating the memory hole */
1036 	emem = &(kbuf->image->arch.exclude_ranges);
1037 	if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1038 		pr_warn("No exclude range list. Using the default locate mem hole method\n");
1039 		return kexec_locate_mem_hole(kbuf);
1040 	}
1041 
1042 	buf_min = kbuf->buf_min;
1043 	buf_max = kbuf->buf_max;
1044 	/* Segments for kdump kernel should be within crashkernel region */
1045 	if (kbuf->image->type == KEXEC_TYPE_CRASH) {
1046 		buf_min = (buf_min < crashk_res.start ?
1047 			   crashk_res.start : buf_min);
1048 		buf_max = (buf_max > crashk_res.end ?
1049 			   crashk_res.end : buf_max);
1050 	}
1051 
1052 	if (buf_min > buf_max) {
1053 		pr_err("Invalid buffer min and/or max values\n");
1054 		return -EINVAL;
1055 	}
1056 
1057 	if (kbuf->top_down)
1058 		ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1059 						     *emem);
1060 	else
1061 		ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1062 						      *emem);
1063 
1064 	/* Add the buffer allocated to the exclude list for the next lookup */
1065 	if (!ret) {
1066 		add_mem_range(emem, kbuf->mem, kbuf->memsz);
1067 		sort_memory_ranges(*emem, true);
1068 	} else {
1069 		pr_err("Failed to locate memory buffer of size %lu\n",
1070 		       kbuf->memsz);
1071 	}
1072 	return ret;
1073 }
1074 
1075 /**
1076  * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1077  *                                 kexec segments.
1078  * @image:                         kexec image being loaded.
1079  * @buf:                           Buffer pointing to elf data.
1080  * @buf_len:                       Length of the buffer.
1081  *
1082  * Returns 0 on success, negative errno on error.
1083  */
1084 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1085 				  unsigned long buf_len)
1086 {
1087 	int ret;
1088 
1089 	/* Get exclude memory ranges needed for setting up kexec segments */
1090 	ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1091 	if (ret) {
1092 		pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1093 		return ret;
1094 	}
1095 
1096 	return kexec_image_probe_default(image, buf, buf_len);
1097 }
1098 
1099 /**
1100  * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1101  *                                      while loading the image.
1102  * @image:                              kexec image being loaded.
1103  *
1104  * Returns 0 on success, negative errno on error.
1105  */
1106 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1107 {
1108 	kfree(image->arch.exclude_ranges);
1109 	image->arch.exclude_ranges = NULL;
1110 
1111 	vfree(image->arch.backup_buf);
1112 	image->arch.backup_buf = NULL;
1113 
1114 	vfree(image->arch.elf_headers);
1115 	image->arch.elf_headers = NULL;
1116 	image->arch.elf_headers_sz = 0;
1117 
1118 	return kexec_image_post_load_cleanup_default(image);
1119 }
1120