xref: /linux/arch/powerpc/kexec/file_load_64.c (revision 1c80d50bb697f84bfbc3876e08e1a1d42bfbdddb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ppc64 code to implement the kexec_file_load syscall
4  *
5  * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
6  * Copyright (C) 2004  IBM Corp.
7  * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
8  * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
9  * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
10  * Copyright (C) 2020  IBM Corporation
11  *
12  * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13  * Heavily modified for the kernel by
14  * Hari Bathini, IBM Corporation.
15  */
16 
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <asm/setup.h>
25 #include <asm/drmem.h>
26 #include <asm/firmware.h>
27 #include <asm/kexec_ranges.h>
28 #include <asm/crashdump-ppc64.h>
29 #include <asm/mmzone.h>
30 #include <asm/iommu.h>
31 #include <asm/prom.h>
32 #include <asm/plpks.h>
33 
34 struct umem_info {
35 	__be64 *buf;		/* data buffer for usable-memory property */
36 	u32 size;		/* size allocated for the data buffer */
37 	u32 max_entries;	/* maximum no. of entries */
38 	u32 idx;		/* index of current entry */
39 
40 	/* usable memory ranges to look up */
41 	unsigned int nr_ranges;
42 	const struct range *ranges;
43 };
44 
45 const struct kexec_file_ops * const kexec_file_loaders[] = {
46 	&kexec_elf64_ops,
47 	NULL
48 };
49 
50 /**
51  * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
52  *                             regions like opal/rtas, tce-table, initrd,
53  *                             kernel, htab which should be avoided while
54  *                             setting up kexec load segments.
55  * @mem_ranges:                Range list to add the memory ranges to.
56  *
57  * Returns 0 on success, negative errno on error.
58  */
59 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
60 {
61 	int ret;
62 
63 	ret = add_tce_mem_ranges(mem_ranges);
64 	if (ret)
65 		goto out;
66 
67 	ret = add_initrd_mem_range(mem_ranges);
68 	if (ret)
69 		goto out;
70 
71 	ret = add_htab_mem_range(mem_ranges);
72 	if (ret)
73 		goto out;
74 
75 	ret = add_kernel_mem_range(mem_ranges);
76 	if (ret)
77 		goto out;
78 
79 	ret = add_rtas_mem_range(mem_ranges);
80 	if (ret)
81 		goto out;
82 
83 	ret = add_opal_mem_range(mem_ranges);
84 	if (ret)
85 		goto out;
86 
87 	ret = add_reserved_mem_ranges(mem_ranges);
88 	if (ret)
89 		goto out;
90 
91 	/* exclude memory ranges should be sorted for easy lookup */
92 	sort_memory_ranges(*mem_ranges, true);
93 out:
94 	if (ret)
95 		pr_err("Failed to setup exclude memory ranges\n");
96 	return ret;
97 }
98 
99 /**
100  * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
101  *                              memory regions that should be added to the
102  *                              memory reserve map to ensure the region is
103  *                              protected from any mischief.
104  * @mem_ranges:                 Range list to add the memory ranges to.
105  *
106  * Returns 0 on success, negative errno on error.
107  */
108 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
109 {
110 	int ret;
111 
112 	ret = add_rtas_mem_range(mem_ranges);
113 	if (ret)
114 		goto out;
115 
116 	ret = add_tce_mem_ranges(mem_ranges);
117 	if (ret)
118 		goto out;
119 
120 	ret = add_reserved_mem_ranges(mem_ranges);
121 out:
122 	if (ret)
123 		pr_err("Failed to setup reserved memory ranges\n");
124 	return ret;
125 }
126 
127 /**
128  * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
129  *                              in the memory regions between buf_min & buf_max
130  *                              for the buffer. If found, sets kbuf->mem.
131  * @kbuf:                       Buffer contents and memory parameters.
132  * @buf_min:                    Minimum address for the buffer.
133  * @buf_max:                    Maximum address for the buffer.
134  *
135  * Returns 0 on success, negative errno on error.
136  */
137 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
138 				      u64 buf_min, u64 buf_max)
139 {
140 	int ret = -EADDRNOTAVAIL;
141 	phys_addr_t start, end;
142 	u64 i;
143 
144 	for_each_mem_range_rev(i, &start, &end) {
145 		/*
146 		 * memblock uses [start, end) convention while it is
147 		 * [start, end] here. Fix the off-by-one to have the
148 		 * same convention.
149 		 */
150 		end -= 1;
151 
152 		if (start > buf_max)
153 			continue;
154 
155 		/* Memory hole not found */
156 		if (end < buf_min)
157 			break;
158 
159 		/* Adjust memory region based on the given range */
160 		if (start < buf_min)
161 			start = buf_min;
162 		if (end > buf_max)
163 			end = buf_max;
164 
165 		start = ALIGN(start, kbuf->buf_align);
166 		if (start < end && (end - start + 1) >= kbuf->memsz) {
167 			/* Suitable memory range found. Set kbuf->mem */
168 			kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
169 					       kbuf->buf_align);
170 			ret = 0;
171 			break;
172 		}
173 	}
174 
175 	return ret;
176 }
177 
178 /**
179  * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
180  *                                  suitable buffer with top down approach.
181  * @kbuf:                           Buffer contents and memory parameters.
182  * @buf_min:                        Minimum address for the buffer.
183  * @buf_max:                        Maximum address for the buffer.
184  * @emem:                           Exclude memory ranges.
185  *
186  * Returns 0 on success, negative errno on error.
187  */
188 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
189 					  u64 buf_min, u64 buf_max,
190 					  const struct crash_mem *emem)
191 {
192 	int i, ret = 0, err = -EADDRNOTAVAIL;
193 	u64 start, end, tmin, tmax;
194 
195 	tmax = buf_max;
196 	for (i = (emem->nr_ranges - 1); i >= 0; i--) {
197 		start = emem->ranges[i].start;
198 		end = emem->ranges[i].end;
199 
200 		if (start > tmax)
201 			continue;
202 
203 		if (end < tmax) {
204 			tmin = (end < buf_min ? buf_min : end + 1);
205 			ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
206 			if (!ret)
207 				return 0;
208 		}
209 
210 		tmax = start - 1;
211 
212 		if (tmax < buf_min) {
213 			ret = err;
214 			break;
215 		}
216 		ret = 0;
217 	}
218 
219 	if (!ret) {
220 		tmin = buf_min;
221 		ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
222 	}
223 	return ret;
224 }
225 
226 /**
227  * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
228  *                               in the memory regions between buf_min & buf_max
229  *                               for the buffer. If found, sets kbuf->mem.
230  * @kbuf:                        Buffer contents and memory parameters.
231  * @buf_min:                     Minimum address for the buffer.
232  * @buf_max:                     Maximum address for the buffer.
233  *
234  * Returns 0 on success, negative errno on error.
235  */
236 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
237 				       u64 buf_min, u64 buf_max)
238 {
239 	int ret = -EADDRNOTAVAIL;
240 	phys_addr_t start, end;
241 	u64 i;
242 
243 	for_each_mem_range(i, &start, &end) {
244 		/*
245 		 * memblock uses [start, end) convention while it is
246 		 * [start, end] here. Fix the off-by-one to have the
247 		 * same convention.
248 		 */
249 		end -= 1;
250 
251 		if (end < buf_min)
252 			continue;
253 
254 		/* Memory hole not found */
255 		if (start > buf_max)
256 			break;
257 
258 		/* Adjust memory region based on the given range */
259 		if (start < buf_min)
260 			start = buf_min;
261 		if (end > buf_max)
262 			end = buf_max;
263 
264 		start = ALIGN(start, kbuf->buf_align);
265 		if (start < end && (end - start + 1) >= kbuf->memsz) {
266 			/* Suitable memory range found. Set kbuf->mem */
267 			kbuf->mem = start;
268 			ret = 0;
269 			break;
270 		}
271 	}
272 
273 	return ret;
274 }
275 
276 /**
277  * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
278  *                                   suitable buffer with bottom up approach.
279  * @kbuf:                            Buffer contents and memory parameters.
280  * @buf_min:                         Minimum address for the buffer.
281  * @buf_max:                         Maximum address for the buffer.
282  * @emem:                            Exclude memory ranges.
283  *
284  * Returns 0 on success, negative errno on error.
285  */
286 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
287 					   u64 buf_min, u64 buf_max,
288 					   const struct crash_mem *emem)
289 {
290 	int i, ret = 0, err = -EADDRNOTAVAIL;
291 	u64 start, end, tmin, tmax;
292 
293 	tmin = buf_min;
294 	for (i = 0; i < emem->nr_ranges; i++) {
295 		start = emem->ranges[i].start;
296 		end = emem->ranges[i].end;
297 
298 		if (end < tmin)
299 			continue;
300 
301 		if (start > tmin) {
302 			tmax = (start > buf_max ? buf_max : start - 1);
303 			ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
304 			if (!ret)
305 				return 0;
306 		}
307 
308 		tmin = end + 1;
309 
310 		if (tmin > buf_max) {
311 			ret = err;
312 			break;
313 		}
314 		ret = 0;
315 	}
316 
317 	if (!ret) {
318 		tmax = buf_max;
319 		ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
320 	}
321 	return ret;
322 }
323 
324 #ifdef CONFIG_CRASH_DUMP
325 /**
326  * get_usable_memory_ranges - Get usable memory ranges. This list includes
327  *                            regions like crashkernel, opal/rtas & tce-table,
328  *                            that kdump kernel could use.
329  * @mem_ranges:               Range list to add the memory ranges to.
330  *
331  * Returns 0 on success, negative errno on error.
332  */
333 static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
334 {
335 	int ret;
336 
337 	/*
338 	 * Early boot failure observed on guests when low memory (first memory
339 	 * block?) is not added to usable memory. So, add [0, crashk_res.end]
340 	 * instead of [crashk_res.start, crashk_res.end] to workaround it.
341 	 * Also, crashed kernel's memory must be added to reserve map to
342 	 * avoid kdump kernel from using it.
343 	 */
344 	ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
345 	if (ret)
346 		goto out;
347 
348 	ret = add_rtas_mem_range(mem_ranges);
349 	if (ret)
350 		goto out;
351 
352 	ret = add_opal_mem_range(mem_ranges);
353 	if (ret)
354 		goto out;
355 
356 	ret = add_tce_mem_ranges(mem_ranges);
357 out:
358 	if (ret)
359 		pr_err("Failed to setup usable memory ranges\n");
360 	return ret;
361 }
362 
363 /**
364  * get_crash_memory_ranges - Get crash memory ranges. This list includes
365  *                           first/crashing kernel's memory regions that
366  *                           would be exported via an elfcore.
367  * @mem_ranges:              Range list to add the memory ranges to.
368  *
369  * Returns 0 on success, negative errno on error.
370  */
371 static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
372 {
373 	phys_addr_t base, end;
374 	struct crash_mem *tmem;
375 	u64 i;
376 	int ret;
377 
378 	for_each_mem_range(i, &base, &end) {
379 		u64 size = end - base;
380 
381 		/* Skip backup memory region, which needs a separate entry */
382 		if (base == BACKUP_SRC_START) {
383 			if (size > BACKUP_SRC_SIZE) {
384 				base = BACKUP_SRC_END + 1;
385 				size -= BACKUP_SRC_SIZE;
386 			} else
387 				continue;
388 		}
389 
390 		ret = add_mem_range(mem_ranges, base, size);
391 		if (ret)
392 			goto out;
393 
394 		/* Try merging adjacent ranges before reallocation attempt */
395 		if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
396 			sort_memory_ranges(*mem_ranges, true);
397 	}
398 
399 	/* Reallocate memory ranges if there is no space to split ranges */
400 	tmem = *mem_ranges;
401 	if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
402 		tmem = realloc_mem_ranges(mem_ranges);
403 		if (!tmem)
404 			goto out;
405 	}
406 
407 	/* Exclude crashkernel region */
408 	ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
409 	if (ret)
410 		goto out;
411 
412 	/*
413 	 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
414 	 *        regions are exported to save their context at the time of
415 	 *        crash, they should actually be backed up just like the
416 	 *        first 64K bytes of memory.
417 	 */
418 	ret = add_rtas_mem_range(mem_ranges);
419 	if (ret)
420 		goto out;
421 
422 	ret = add_opal_mem_range(mem_ranges);
423 	if (ret)
424 		goto out;
425 
426 	/* create a separate program header for the backup region */
427 	ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
428 	if (ret)
429 		goto out;
430 
431 	sort_memory_ranges(*mem_ranges, false);
432 out:
433 	if (ret)
434 		pr_err("Failed to setup crash memory ranges\n");
435 	return ret;
436 }
437 
438 /**
439  * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
440  * @um_info:                  Usable memory buffer and ranges info.
441  * @cnt:                      No. of entries to accommodate.
442  *
443  * Frees up the old buffer if memory reallocation fails.
444  *
445  * Returns buffer on success, NULL on error.
446  */
447 static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
448 {
449 	u32 new_size;
450 	__be64 *tbuf;
451 
452 	if ((um_info->idx + cnt) <= um_info->max_entries)
453 		return um_info->buf;
454 
455 	new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
456 	tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
457 	if (tbuf) {
458 		um_info->buf = tbuf;
459 		um_info->size = new_size;
460 		um_info->max_entries = (um_info->size / sizeof(u64));
461 	}
462 
463 	return tbuf;
464 }
465 
466 /**
467  * add_usable_mem - Add the usable memory ranges within the given memory range
468  *                  to the buffer
469  * @um_info:        Usable memory buffer and ranges info.
470  * @base:           Base address of memory range to look for.
471  * @end:            End address of memory range to look for.
472  *
473  * Returns 0 on success, negative errno on error.
474  */
475 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
476 {
477 	u64 loc_base, loc_end;
478 	bool add;
479 	int i;
480 
481 	for (i = 0; i < um_info->nr_ranges; i++) {
482 		add = false;
483 		loc_base = um_info->ranges[i].start;
484 		loc_end = um_info->ranges[i].end;
485 		if (loc_base >= base && loc_end <= end)
486 			add = true;
487 		else if (base < loc_end && end > loc_base) {
488 			if (loc_base < base)
489 				loc_base = base;
490 			if (loc_end > end)
491 				loc_end = end;
492 			add = true;
493 		}
494 
495 		if (add) {
496 			if (!check_realloc_usable_mem(um_info, 2))
497 				return -ENOMEM;
498 
499 			um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
500 			um_info->buf[um_info->idx++] =
501 					cpu_to_be64(loc_end - loc_base + 1);
502 		}
503 	}
504 
505 	return 0;
506 }
507 
508 /**
509  * kdump_setup_usable_lmb - This is a callback function that gets called by
510  *                          walk_drmem_lmbs for every LMB to set its
511  *                          usable memory ranges.
512  * @lmb:                    LMB info.
513  * @usm:                    linux,drconf-usable-memory property value.
514  * @data:                   Pointer to usable memory buffer and ranges info.
515  *
516  * Returns 0 on success, negative errno on error.
517  */
518 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
519 				  void *data)
520 {
521 	struct umem_info *um_info;
522 	int tmp_idx, ret;
523 	u64 base, end;
524 
525 	/*
526 	 * kdump load isn't supported on kernels already booted with
527 	 * linux,drconf-usable-memory property.
528 	 */
529 	if (*usm) {
530 		pr_err("linux,drconf-usable-memory property already exists!");
531 		return -EINVAL;
532 	}
533 
534 	um_info = data;
535 	tmp_idx = um_info->idx;
536 	if (!check_realloc_usable_mem(um_info, 1))
537 		return -ENOMEM;
538 
539 	um_info->idx++;
540 	base = lmb->base_addr;
541 	end = base + drmem_lmb_size() - 1;
542 	ret = add_usable_mem(um_info, base, end);
543 	if (!ret) {
544 		/*
545 		 * Update the no. of ranges added. Two entries (base & size)
546 		 * for every range added.
547 		 */
548 		um_info->buf[tmp_idx] =
549 				cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
550 	}
551 
552 	return ret;
553 }
554 
555 #define NODE_PATH_LEN		256
556 /**
557  * add_usable_mem_property - Add usable memory property for the given
558  *                           memory node.
559  * @fdt:                     Flattened device tree for the kdump kernel.
560  * @dn:                      Memory node.
561  * @um_info:                 Usable memory buffer and ranges info.
562  *
563  * Returns 0 on success, negative errno on error.
564  */
565 static int add_usable_mem_property(void *fdt, struct device_node *dn,
566 				   struct umem_info *um_info)
567 {
568 	int n_mem_addr_cells, n_mem_size_cells, node;
569 	char path[NODE_PATH_LEN];
570 	int i, len, ranges, ret;
571 	const __be32 *prop;
572 	u64 base, end;
573 
574 	of_node_get(dn);
575 
576 	if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
577 		pr_err("Buffer (%d) too small for memory node: %pOF\n",
578 		       NODE_PATH_LEN, dn);
579 		return -EOVERFLOW;
580 	}
581 	kexec_dprintk("Memory node path: %s\n", path);
582 
583 	/* Now that we know the path, find its offset in kdump kernel's fdt */
584 	node = fdt_path_offset(fdt, path);
585 	if (node < 0) {
586 		pr_err("Malformed device tree: error reading %s\n", path);
587 		ret = -EINVAL;
588 		goto out;
589 	}
590 
591 	/* Get the address & size cells */
592 	n_mem_addr_cells = of_n_addr_cells(dn);
593 	n_mem_size_cells = of_n_size_cells(dn);
594 	kexec_dprintk("address cells: %d, size cells: %d\n", n_mem_addr_cells,
595 		      n_mem_size_cells);
596 
597 	um_info->idx  = 0;
598 	if (!check_realloc_usable_mem(um_info, 2)) {
599 		ret = -ENOMEM;
600 		goto out;
601 	}
602 
603 	prop = of_get_property(dn, "reg", &len);
604 	if (!prop || len <= 0) {
605 		ret = 0;
606 		goto out;
607 	}
608 
609 	/*
610 	 * "reg" property represents sequence of (addr,size) tuples
611 	 * each representing a memory range.
612 	 */
613 	ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
614 
615 	for (i = 0; i < ranges; i++) {
616 		base = of_read_number(prop, n_mem_addr_cells);
617 		prop += n_mem_addr_cells;
618 		end = base + of_read_number(prop, n_mem_size_cells) - 1;
619 		prop += n_mem_size_cells;
620 
621 		ret = add_usable_mem(um_info, base, end);
622 		if (ret)
623 			goto out;
624 	}
625 
626 	/*
627 	 * No kdump kernel usable memory found in this memory node.
628 	 * Write (0,0) tuple in linux,usable-memory property for
629 	 * this region to be ignored.
630 	 */
631 	if (um_info->idx == 0) {
632 		um_info->buf[0] = 0;
633 		um_info->buf[1] = 0;
634 		um_info->idx = 2;
635 	}
636 
637 	ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
638 			  (um_info->idx * sizeof(u64)));
639 
640 out:
641 	of_node_put(dn);
642 	return ret;
643 }
644 
645 
646 /**
647  * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
648  *                         and linux,drconf-usable-memory DT properties as
649  *                         appropriate to restrict its memory usage.
650  * @fdt:                   Flattened device tree for the kdump kernel.
651  * @usable_mem:            Usable memory ranges for kdump kernel.
652  *
653  * Returns 0 on success, negative errno on error.
654  */
655 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
656 {
657 	struct umem_info um_info;
658 	struct device_node *dn;
659 	int node, ret = 0;
660 
661 	if (!usable_mem) {
662 		pr_err("Usable memory ranges for kdump kernel not found\n");
663 		return -ENOENT;
664 	}
665 
666 	node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
667 	if (node == -FDT_ERR_NOTFOUND)
668 		kexec_dprintk("No dynamic reconfiguration memory found\n");
669 	else if (node < 0) {
670 		pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
671 		return -EINVAL;
672 	}
673 
674 	um_info.buf  = NULL;
675 	um_info.size = 0;
676 	um_info.max_entries = 0;
677 	um_info.idx  = 0;
678 	/* Memory ranges to look up */
679 	um_info.ranges = &(usable_mem->ranges[0]);
680 	um_info.nr_ranges = usable_mem->nr_ranges;
681 
682 	dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
683 	if (dn) {
684 		ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
685 		of_node_put(dn);
686 
687 		if (ret) {
688 			pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
689 			goto out;
690 		}
691 
692 		ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
693 				  um_info.buf, (um_info.idx * sizeof(u64)));
694 		if (ret) {
695 			pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
696 			       fdt_strerror(ret));
697 			goto out;
698 		}
699 	}
700 
701 	/*
702 	 * Walk through each memory node and set linux,usable-memory property
703 	 * for the corresponding node in kdump kernel's fdt.
704 	 */
705 	for_each_node_by_type(dn, "memory") {
706 		ret = add_usable_mem_property(fdt, dn, &um_info);
707 		if (ret) {
708 			pr_err("Failed to set linux,usable-memory property for %s node",
709 			       dn->full_name);
710 			of_node_put(dn);
711 			goto out;
712 		}
713 	}
714 
715 out:
716 	kfree(um_info.buf);
717 	return ret;
718 }
719 
720 /**
721  * load_backup_segment - Locate a memory hole to place the backup region.
722  * @image:               Kexec image.
723  * @kbuf:                Buffer contents and memory parameters.
724  *
725  * Returns 0 on success, negative errno on error.
726  */
727 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
728 {
729 	void *buf;
730 	int ret;
731 
732 	/*
733 	 * Setup a source buffer for backup segment.
734 	 *
735 	 * A source buffer has no meaning for backup region as data will
736 	 * be copied from backup source, after crash, in the purgatory.
737 	 * But as load segment code doesn't recognize such segments,
738 	 * setup a dummy source buffer to keep it happy for now.
739 	 */
740 	buf = vzalloc(BACKUP_SRC_SIZE);
741 	if (!buf)
742 		return -ENOMEM;
743 
744 	kbuf->buffer = buf;
745 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
746 	kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
747 	kbuf->top_down = false;
748 
749 	ret = kexec_add_buffer(kbuf);
750 	if (ret) {
751 		vfree(buf);
752 		return ret;
753 	}
754 
755 	image->arch.backup_buf = buf;
756 	image->arch.backup_start = kbuf->mem;
757 	return 0;
758 }
759 
760 /**
761  * update_backup_region_phdr - Update backup region's offset for the core to
762  *                             export the region appropriately.
763  * @image:                     Kexec image.
764  * @ehdr:                      ELF core header.
765  *
766  * Assumes an exclusive program header is setup for the backup region
767  * in the ELF headers
768  *
769  * Returns nothing.
770  */
771 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
772 {
773 	Elf64_Phdr *phdr;
774 	unsigned int i;
775 
776 	phdr = (Elf64_Phdr *)(ehdr + 1);
777 	for (i = 0; i < ehdr->e_phnum; i++) {
778 		if (phdr->p_paddr == BACKUP_SRC_START) {
779 			phdr->p_offset = image->arch.backup_start;
780 			kexec_dprintk("Backup region offset updated to 0x%lx\n",
781 				      image->arch.backup_start);
782 			return;
783 		}
784 	}
785 }
786 
787 /**
788  * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
789  *                           segment needed to load kdump kernel.
790  * @image:                   Kexec image.
791  * @kbuf:                    Buffer contents and memory parameters.
792  *
793  * Returns 0 on success, negative errno on error.
794  */
795 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
796 {
797 	struct crash_mem *cmem = NULL;
798 	unsigned long headers_sz;
799 	void *headers = NULL;
800 	int ret;
801 
802 	ret = get_crash_memory_ranges(&cmem);
803 	if (ret)
804 		goto out;
805 
806 	/* Setup elfcorehdr segment */
807 	ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
808 	if (ret) {
809 		pr_err("Failed to prepare elf headers for the core\n");
810 		goto out;
811 	}
812 
813 	/* Fix the offset for backup region in the ELF header */
814 	update_backup_region_phdr(image, headers);
815 
816 	kbuf->buffer = headers;
817 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
818 	kbuf->bufsz = kbuf->memsz = headers_sz;
819 	kbuf->top_down = false;
820 
821 	ret = kexec_add_buffer(kbuf);
822 	if (ret) {
823 		vfree(headers);
824 		goto out;
825 	}
826 
827 	image->elf_load_addr = kbuf->mem;
828 	image->elf_headers_sz = headers_sz;
829 	image->elf_headers = headers;
830 out:
831 	kfree(cmem);
832 	return ret;
833 }
834 
835 /**
836  * load_crashdump_segments_ppc64 - Initialize the additional segements needed
837  *                                 to load kdump kernel.
838  * @image:                         Kexec image.
839  * @kbuf:                          Buffer contents and memory parameters.
840  *
841  * Returns 0 on success, negative errno on error.
842  */
843 int load_crashdump_segments_ppc64(struct kimage *image,
844 				  struct kexec_buf *kbuf)
845 {
846 	int ret;
847 
848 	/* Load backup segment - first 64K bytes of the crashing kernel */
849 	ret = load_backup_segment(image, kbuf);
850 	if (ret) {
851 		pr_err("Failed to load backup segment\n");
852 		return ret;
853 	}
854 	kexec_dprintk("Loaded the backup region at 0x%lx\n", kbuf->mem);
855 
856 	/* Load elfcorehdr segment - to export crashing kernel's vmcore */
857 	ret = load_elfcorehdr_segment(image, kbuf);
858 	if (ret) {
859 		pr_err("Failed to load elfcorehdr segment\n");
860 		return ret;
861 	}
862 	kexec_dprintk("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
863 		      image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
864 
865 	return 0;
866 }
867 #endif
868 
869 /**
870  * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
871  *                         variables and call setup_purgatory() to initialize
872  *                         common global variable.
873  * @image:                 kexec image.
874  * @slave_code:            Slave code for the purgatory.
875  * @fdt:                   Flattened device tree for the next kernel.
876  * @kernel_load_addr:      Address where the kernel is loaded.
877  * @fdt_load_addr:         Address where the flattened device tree is loaded.
878  *
879  * Returns 0 on success, negative errno on error.
880  */
881 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
882 			  const void *fdt, unsigned long kernel_load_addr,
883 			  unsigned long fdt_load_addr)
884 {
885 	struct device_node *dn = NULL;
886 	int ret;
887 
888 	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
889 			      fdt_load_addr);
890 	if (ret)
891 		goto out;
892 
893 	if (image->type == KEXEC_TYPE_CRASH) {
894 		u32 my_run_at_load = 1;
895 
896 		/*
897 		 * Tell relocatable kernel to run at load address
898 		 * via the word meant for that at 0x5c.
899 		 */
900 		ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
901 						     &my_run_at_load,
902 						     sizeof(my_run_at_load),
903 						     false);
904 		if (ret)
905 			goto out;
906 	}
907 
908 	/* Tell purgatory where to look for backup region */
909 	ret = kexec_purgatory_get_set_symbol(image, "backup_start",
910 					     &image->arch.backup_start,
911 					     sizeof(image->arch.backup_start),
912 					     false);
913 	if (ret)
914 		goto out;
915 
916 	/* Setup OPAL base & entry values */
917 	dn = of_find_node_by_path("/ibm,opal");
918 	if (dn) {
919 		u64 val;
920 
921 		of_property_read_u64(dn, "opal-base-address", &val);
922 		ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
923 						     sizeof(val), false);
924 		if (ret)
925 			goto out;
926 
927 		of_property_read_u64(dn, "opal-entry-address", &val);
928 		ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
929 						     sizeof(val), false);
930 	}
931 out:
932 	if (ret)
933 		pr_err("Failed to setup purgatory symbols");
934 	of_node_put(dn);
935 	return ret;
936 }
937 
938 /**
939  * cpu_node_size - Compute the size of a CPU node in the FDT.
940  *                 This should be done only once and the value is stored in
941  *                 a static variable.
942  * Returns the max size of a CPU node in the FDT.
943  */
944 static unsigned int cpu_node_size(void)
945 {
946 	static unsigned int size;
947 	struct device_node *dn;
948 	struct property *pp;
949 
950 	/*
951 	 * Don't compute it twice, we are assuming that the per CPU node size
952 	 * doesn't change during the system's life.
953 	 */
954 	if (size)
955 		return size;
956 
957 	dn = of_find_node_by_type(NULL, "cpu");
958 	if (WARN_ON_ONCE(!dn)) {
959 		// Unlikely to happen
960 		return 0;
961 	}
962 
963 	/*
964 	 * We compute the sub node size for a CPU node, assuming it
965 	 * will be the same for all.
966 	 */
967 	size += strlen(dn->name) + 5;
968 	for_each_property_of_node(dn, pp) {
969 		size += strlen(pp->name);
970 		size += pp->length;
971 	}
972 
973 	of_node_put(dn);
974 	return size;
975 }
976 
977 static unsigned int kdump_extra_fdt_size_ppc64(struct kimage *image)
978 {
979 	unsigned int cpu_nodes, extra_size = 0;
980 	struct device_node *dn;
981 	u64 usm_entries;
982 
983 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || image->type != KEXEC_TYPE_CRASH)
984 		return 0;
985 
986 	/*
987 	 * For kdump kernel, account for linux,usable-memory and
988 	 * linux,drconf-usable-memory properties. Get an approximate on the
989 	 * number of usable memory entries and use for FDT size estimation.
990 	 */
991 	if (drmem_lmb_size()) {
992 		usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
993 			       (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
994 		extra_size += (unsigned int)(usm_entries * sizeof(u64));
995 	}
996 
997 	/*
998 	 * Get the number of CPU nodes in the current DT. This allows to
999 	 * reserve places for CPU nodes added since the boot time.
1000 	 */
1001 	cpu_nodes = 0;
1002 	for_each_node_by_type(dn, "cpu") {
1003 		cpu_nodes++;
1004 	}
1005 
1006 	if (cpu_nodes > boot_cpu_node_count)
1007 		extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
1008 
1009 	return extra_size;
1010 }
1011 
1012 /**
1013  * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
1014  *                              setup FDT for kexec/kdump kernel.
1015  * @image:                      kexec image being loaded.
1016  *
1017  * Returns the estimated extra size needed for kexec/kdump kernel FDT.
1018  */
1019 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
1020 {
1021 	unsigned int extra_size = 0;
1022 
1023 	// Budget some space for the password blob. There's already extra space
1024 	// for the key name
1025 	if (plpks_is_available())
1026 		extra_size += (unsigned int)plpks_get_passwordlen();
1027 
1028 	return extra_size + kdump_extra_fdt_size_ppc64(image);
1029 }
1030 
1031 /**
1032  * add_node_props - Reads node properties from device node structure and add
1033  *                  them to fdt.
1034  * @fdt:            Flattened device tree of the kernel
1035  * @node_offset:    offset of the node to add a property at
1036  * @dn:             device node pointer
1037  *
1038  * Returns 0 on success, negative errno on error.
1039  */
1040 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
1041 {
1042 	int ret = 0;
1043 	struct property *pp;
1044 
1045 	if (!dn)
1046 		return -EINVAL;
1047 
1048 	for_each_property_of_node(dn, pp) {
1049 		ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
1050 		if (ret < 0) {
1051 			pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
1052 			return ret;
1053 		}
1054 	}
1055 	return ret;
1056 }
1057 
1058 /**
1059  * update_cpus_node - Update cpus node of flattened device tree using of_root
1060  *                    device node.
1061  * @fdt:              Flattened device tree of the kernel.
1062  *
1063  * Returns 0 on success, negative errno on error.
1064  */
1065 static int update_cpus_node(void *fdt)
1066 {
1067 	struct device_node *cpus_node, *dn;
1068 	int cpus_offset, cpus_subnode_offset, ret = 0;
1069 
1070 	cpus_offset = fdt_path_offset(fdt, "/cpus");
1071 	if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
1072 		pr_err("Malformed device tree: error reading /cpus node: %s\n",
1073 		       fdt_strerror(cpus_offset));
1074 		return cpus_offset;
1075 	}
1076 
1077 	if (cpus_offset > 0) {
1078 		ret = fdt_del_node(fdt, cpus_offset);
1079 		if (ret < 0) {
1080 			pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
1081 			return -EINVAL;
1082 		}
1083 	}
1084 
1085 	/* Add cpus node to fdt */
1086 	cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
1087 	if (cpus_offset < 0) {
1088 		pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
1089 		return -EINVAL;
1090 	}
1091 
1092 	/* Add cpus node properties */
1093 	cpus_node = of_find_node_by_path("/cpus");
1094 	ret = add_node_props(fdt, cpus_offset, cpus_node);
1095 	of_node_put(cpus_node);
1096 	if (ret < 0)
1097 		return ret;
1098 
1099 	/* Loop through all subnodes of cpus and add them to fdt */
1100 	for_each_node_by_type(dn, "cpu") {
1101 		cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
1102 		if (cpus_subnode_offset < 0) {
1103 			pr_err("Unable to add %s subnode: %s\n", dn->full_name,
1104 			       fdt_strerror(cpus_subnode_offset));
1105 			ret = cpus_subnode_offset;
1106 			goto out;
1107 		}
1108 
1109 		ret = add_node_props(fdt, cpus_subnode_offset, dn);
1110 		if (ret < 0)
1111 			goto out;
1112 	}
1113 out:
1114 	of_node_put(dn);
1115 	return ret;
1116 }
1117 
1118 static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
1119 			 const char *propname)
1120 {
1121 	const void *prop, *fdtprop;
1122 	int len = 0, fdtlen = 0;
1123 
1124 	prop = of_get_property(dn, propname, &len);
1125 	fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
1126 
1127 	if (fdtprop && !prop)
1128 		return fdt_delprop(fdt, node_offset, propname);
1129 	else if (prop)
1130 		return fdt_setprop(fdt, node_offset, propname, prop, len);
1131 	else
1132 		return -FDT_ERR_NOTFOUND;
1133 }
1134 
1135 static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
1136 {
1137 	struct device_node *dn;
1138 	int pci_offset, root_offset, ret = 0;
1139 
1140 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1141 		return 0;
1142 
1143 	root_offset = fdt_path_offset(fdt, "/");
1144 	for_each_node_with_property(dn, dmapropname) {
1145 		pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
1146 		if (pci_offset < 0)
1147 			continue;
1148 
1149 		ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
1150 		if (ret < 0) {
1151 			of_node_put(dn);
1152 			break;
1153 		}
1154 		ret = copy_property(fdt, pci_offset, dn, dmapropname);
1155 		if (ret < 0) {
1156 			of_node_put(dn);
1157 			break;
1158 		}
1159 	}
1160 
1161 	return ret;
1162 }
1163 
1164 /**
1165  * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
1166  *                       being loaded.
1167  * @image:               kexec image being loaded.
1168  * @fdt:                 Flattened device tree for the next kernel.
1169  * @initrd_load_addr:    Address where the next initrd will be loaded.
1170  * @initrd_len:          Size of the next initrd, or 0 if there will be none.
1171  * @cmdline:             Command line for the next kernel, or NULL if there will
1172  *                       be none.
1173  *
1174  * Returns 0 on success, negative errno on error.
1175  */
1176 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
1177 			unsigned long initrd_load_addr,
1178 			unsigned long initrd_len, const char *cmdline)
1179 {
1180 	struct crash_mem *umem = NULL, *rmem = NULL;
1181 	int i, nr_ranges, ret;
1182 
1183 #ifdef CONFIG_CRASH_DUMP
1184 	/*
1185 	 * Restrict memory usage for kdump kernel by setting up
1186 	 * usable memory ranges and memory reserve map.
1187 	 */
1188 	if (image->type == KEXEC_TYPE_CRASH) {
1189 		ret = get_usable_memory_ranges(&umem);
1190 		if (ret)
1191 			goto out;
1192 
1193 		ret = update_usable_mem_fdt(fdt, umem);
1194 		if (ret) {
1195 			pr_err("Error setting up usable-memory property for kdump kernel\n");
1196 			goto out;
1197 		}
1198 
1199 		/*
1200 		 * Ensure we don't touch crashed kernel's memory except the
1201 		 * first 64K of RAM, which will be backed up.
1202 		 */
1203 		ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
1204 				      crashk_res.start - BACKUP_SRC_SIZE);
1205 		if (ret) {
1206 			pr_err("Error reserving crash memory: %s\n",
1207 			       fdt_strerror(ret));
1208 			goto out;
1209 		}
1210 
1211 		/* Ensure backup region is not used by kdump/capture kernel */
1212 		ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
1213 				      BACKUP_SRC_SIZE);
1214 		if (ret) {
1215 			pr_err("Error reserving memory for backup: %s\n",
1216 			       fdt_strerror(ret));
1217 			goto out;
1218 		}
1219 	}
1220 #endif
1221 
1222 	/* Update cpus nodes information to account hotplug CPUs. */
1223 	ret =  update_cpus_node(fdt);
1224 	if (ret < 0)
1225 		goto out;
1226 
1227 	ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
1228 	if (ret < 0)
1229 		goto out;
1230 
1231 	ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
1232 	if (ret < 0)
1233 		goto out;
1234 
1235 	/* Update memory reserve map */
1236 	ret = get_reserved_memory_ranges(&rmem);
1237 	if (ret)
1238 		goto out;
1239 
1240 	nr_ranges = rmem ? rmem->nr_ranges : 0;
1241 	for (i = 0; i < nr_ranges; i++) {
1242 		u64 base, size;
1243 
1244 		base = rmem->ranges[i].start;
1245 		size = rmem->ranges[i].end - base + 1;
1246 		ret = fdt_add_mem_rsv(fdt, base, size);
1247 		if (ret) {
1248 			pr_err("Error updating memory reserve map: %s\n",
1249 			       fdt_strerror(ret));
1250 			goto out;
1251 		}
1252 	}
1253 
1254 	// If we have PLPKS active, we need to provide the password to the new kernel
1255 	if (plpks_is_available())
1256 		ret = plpks_populate_fdt(fdt);
1257 
1258 out:
1259 	kfree(rmem);
1260 	kfree(umem);
1261 	return ret;
1262 }
1263 
1264 /**
1265  * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1266  *                              tce-table, reserved-ranges & such (exclude
1267  *                              memory ranges) as they can't be used for kexec
1268  *                              segment buffer. Sets kbuf->mem when a suitable
1269  *                              memory hole is found.
1270  * @kbuf:                       Buffer contents and memory parameters.
1271  *
1272  * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1273  *
1274  * Returns 0 on success, negative errno on error.
1275  */
1276 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1277 {
1278 	struct crash_mem **emem;
1279 	u64 buf_min, buf_max;
1280 	int ret;
1281 
1282 	/* Look up the exclude ranges list while locating the memory hole */
1283 	emem = &(kbuf->image->arch.exclude_ranges);
1284 	if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1285 		pr_warn("No exclude range list. Using the default locate mem hole method\n");
1286 		return kexec_locate_mem_hole(kbuf);
1287 	}
1288 
1289 	buf_min = kbuf->buf_min;
1290 	buf_max = kbuf->buf_max;
1291 	/* Segments for kdump kernel should be within crashkernel region */
1292 	if (IS_ENABLED(CONFIG_CRASH_DUMP) && kbuf->image->type == KEXEC_TYPE_CRASH) {
1293 		buf_min = (buf_min < crashk_res.start ?
1294 			   crashk_res.start : buf_min);
1295 		buf_max = (buf_max > crashk_res.end ?
1296 			   crashk_res.end : buf_max);
1297 	}
1298 
1299 	if (buf_min > buf_max) {
1300 		pr_err("Invalid buffer min and/or max values\n");
1301 		return -EINVAL;
1302 	}
1303 
1304 	if (kbuf->top_down)
1305 		ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1306 						     *emem);
1307 	else
1308 		ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1309 						      *emem);
1310 
1311 	/* Add the buffer allocated to the exclude list for the next lookup */
1312 	if (!ret) {
1313 		add_mem_range(emem, kbuf->mem, kbuf->memsz);
1314 		sort_memory_ranges(*emem, true);
1315 	} else {
1316 		pr_err("Failed to locate memory buffer of size %lu\n",
1317 		       kbuf->memsz);
1318 	}
1319 	return ret;
1320 }
1321 
1322 /**
1323  * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1324  *                                 kexec segments.
1325  * @image:                         kexec image being loaded.
1326  * @buf:                           Buffer pointing to elf data.
1327  * @buf_len:                       Length of the buffer.
1328  *
1329  * Returns 0 on success, negative errno on error.
1330  */
1331 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1332 				  unsigned long buf_len)
1333 {
1334 	int ret;
1335 
1336 	/* Get exclude memory ranges needed for setting up kexec segments */
1337 	ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1338 	if (ret) {
1339 		pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1340 		return ret;
1341 	}
1342 
1343 	return kexec_image_probe_default(image, buf, buf_len);
1344 }
1345 
1346 /**
1347  * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1348  *                                      while loading the image.
1349  * @image:                              kexec image being loaded.
1350  *
1351  * Returns 0 on success, negative errno on error.
1352  */
1353 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1354 {
1355 	kfree(image->arch.exclude_ranges);
1356 	image->arch.exclude_ranges = NULL;
1357 
1358 	vfree(image->arch.backup_buf);
1359 	image->arch.backup_buf = NULL;
1360 
1361 	vfree(image->elf_headers);
1362 	image->elf_headers = NULL;
1363 	image->elf_headers_sz = 0;
1364 
1365 	kvfree(image->arch.fdt);
1366 	image->arch.fdt = NULL;
1367 
1368 	return kexec_image_post_load_cleanup_default(image);
1369 }
1370