xref: /linux/arch/powerpc/kexec/file_load_64.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ppc64 code to implement the kexec_file_load syscall
4  *
5  * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
6  * Copyright (C) 2004  IBM Corp.
7  * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
8  * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
9  * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
10  * Copyright (C) 2020  IBM Corporation
11  *
12  * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13  * Heavily modified for the kernel by
14  * Hari Bathini, IBM Corporation.
15  */
16 
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <asm/setup.h>
25 #include <asm/drmem.h>
26 #include <asm/firmware.h>
27 #include <asm/kexec_ranges.h>
28 #include <asm/crashdump-ppc64.h>
29 #include <asm/mmzone.h>
30 #include <asm/iommu.h>
31 #include <asm/prom.h>
32 #include <asm/plpks.h>
33 
34 struct umem_info {
35 	__be64 *buf;		/* data buffer for usable-memory property */
36 	u32 size;		/* size allocated for the data buffer */
37 	u32 max_entries;	/* maximum no. of entries */
38 	u32 idx;		/* index of current entry */
39 
40 	/* usable memory ranges to look up */
41 	unsigned int nr_ranges;
42 	const struct range *ranges;
43 };
44 
45 const struct kexec_file_ops * const kexec_file_loaders[] = {
46 	&kexec_elf64_ops,
47 	NULL
48 };
49 
50 /**
51  * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
52  *                             regions like opal/rtas, tce-table, initrd,
53  *                             kernel, htab which should be avoided while
54  *                             setting up kexec load segments.
55  * @mem_ranges:                Range list to add the memory ranges to.
56  *
57  * Returns 0 on success, negative errno on error.
58  */
59 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
60 {
61 	int ret;
62 
63 	ret = add_tce_mem_ranges(mem_ranges);
64 	if (ret)
65 		goto out;
66 
67 	ret = add_initrd_mem_range(mem_ranges);
68 	if (ret)
69 		goto out;
70 
71 	ret = add_htab_mem_range(mem_ranges);
72 	if (ret)
73 		goto out;
74 
75 	ret = add_kernel_mem_range(mem_ranges);
76 	if (ret)
77 		goto out;
78 
79 	ret = add_rtas_mem_range(mem_ranges);
80 	if (ret)
81 		goto out;
82 
83 	ret = add_opal_mem_range(mem_ranges);
84 	if (ret)
85 		goto out;
86 
87 	ret = add_reserved_mem_ranges(mem_ranges);
88 	if (ret)
89 		goto out;
90 
91 	/* exclude memory ranges should be sorted for easy lookup */
92 	sort_memory_ranges(*mem_ranges, true);
93 out:
94 	if (ret)
95 		pr_err("Failed to setup exclude memory ranges\n");
96 	return ret;
97 }
98 
99 /**
100  * get_usable_memory_ranges - Get usable memory ranges. This list includes
101  *                            regions like crashkernel, opal/rtas & tce-table,
102  *                            that kdump kernel could use.
103  * @mem_ranges:               Range list to add the memory ranges to.
104  *
105  * Returns 0 on success, negative errno on error.
106  */
107 static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
108 {
109 	int ret;
110 
111 	/*
112 	 * Early boot failure observed on guests when low memory (first memory
113 	 * block?) is not added to usable memory. So, add [0, crashk_res.end]
114 	 * instead of [crashk_res.start, crashk_res.end] to workaround it.
115 	 * Also, crashed kernel's memory must be added to reserve map to
116 	 * avoid kdump kernel from using it.
117 	 */
118 	ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
119 	if (ret)
120 		goto out;
121 
122 	ret = add_rtas_mem_range(mem_ranges);
123 	if (ret)
124 		goto out;
125 
126 	ret = add_opal_mem_range(mem_ranges);
127 	if (ret)
128 		goto out;
129 
130 	ret = add_tce_mem_ranges(mem_ranges);
131 out:
132 	if (ret)
133 		pr_err("Failed to setup usable memory ranges\n");
134 	return ret;
135 }
136 
137 /**
138  * get_crash_memory_ranges - Get crash memory ranges. This list includes
139  *                           first/crashing kernel's memory regions that
140  *                           would be exported via an elfcore.
141  * @mem_ranges:              Range list to add the memory ranges to.
142  *
143  * Returns 0 on success, negative errno on error.
144  */
145 static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
146 {
147 	phys_addr_t base, end;
148 	struct crash_mem *tmem;
149 	u64 i;
150 	int ret;
151 
152 	for_each_mem_range(i, &base, &end) {
153 		u64 size = end - base;
154 
155 		/* Skip backup memory region, which needs a separate entry */
156 		if (base == BACKUP_SRC_START) {
157 			if (size > BACKUP_SRC_SIZE) {
158 				base = BACKUP_SRC_END + 1;
159 				size -= BACKUP_SRC_SIZE;
160 			} else
161 				continue;
162 		}
163 
164 		ret = add_mem_range(mem_ranges, base, size);
165 		if (ret)
166 			goto out;
167 
168 		/* Try merging adjacent ranges before reallocation attempt */
169 		if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
170 			sort_memory_ranges(*mem_ranges, true);
171 	}
172 
173 	/* Reallocate memory ranges if there is no space to split ranges */
174 	tmem = *mem_ranges;
175 	if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
176 		tmem = realloc_mem_ranges(mem_ranges);
177 		if (!tmem)
178 			goto out;
179 	}
180 
181 	/* Exclude crashkernel region */
182 	ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
183 	if (ret)
184 		goto out;
185 
186 	/*
187 	 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
188 	 *        regions are exported to save their context at the time of
189 	 *        crash, they should actually be backed up just like the
190 	 *        first 64K bytes of memory.
191 	 */
192 	ret = add_rtas_mem_range(mem_ranges);
193 	if (ret)
194 		goto out;
195 
196 	ret = add_opal_mem_range(mem_ranges);
197 	if (ret)
198 		goto out;
199 
200 	/* create a separate program header for the backup region */
201 	ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
202 	if (ret)
203 		goto out;
204 
205 	sort_memory_ranges(*mem_ranges, false);
206 out:
207 	if (ret)
208 		pr_err("Failed to setup crash memory ranges\n");
209 	return ret;
210 }
211 
212 /**
213  * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
214  *                              memory regions that should be added to the
215  *                              memory reserve map to ensure the region is
216  *                              protected from any mischief.
217  * @mem_ranges:                 Range list to add the memory ranges to.
218  *
219  * Returns 0 on success, negative errno on error.
220  */
221 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
222 {
223 	int ret;
224 
225 	ret = add_rtas_mem_range(mem_ranges);
226 	if (ret)
227 		goto out;
228 
229 	ret = add_tce_mem_ranges(mem_ranges);
230 	if (ret)
231 		goto out;
232 
233 	ret = add_reserved_mem_ranges(mem_ranges);
234 out:
235 	if (ret)
236 		pr_err("Failed to setup reserved memory ranges\n");
237 	return ret;
238 }
239 
240 /**
241  * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
242  *                              in the memory regions between buf_min & buf_max
243  *                              for the buffer. If found, sets kbuf->mem.
244  * @kbuf:                       Buffer contents and memory parameters.
245  * @buf_min:                    Minimum address for the buffer.
246  * @buf_max:                    Maximum address for the buffer.
247  *
248  * Returns 0 on success, negative errno on error.
249  */
250 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
251 				      u64 buf_min, u64 buf_max)
252 {
253 	int ret = -EADDRNOTAVAIL;
254 	phys_addr_t start, end;
255 	u64 i;
256 
257 	for_each_mem_range_rev(i, &start, &end) {
258 		/*
259 		 * memblock uses [start, end) convention while it is
260 		 * [start, end] here. Fix the off-by-one to have the
261 		 * same convention.
262 		 */
263 		end -= 1;
264 
265 		if (start > buf_max)
266 			continue;
267 
268 		/* Memory hole not found */
269 		if (end < buf_min)
270 			break;
271 
272 		/* Adjust memory region based on the given range */
273 		if (start < buf_min)
274 			start = buf_min;
275 		if (end > buf_max)
276 			end = buf_max;
277 
278 		start = ALIGN(start, kbuf->buf_align);
279 		if (start < end && (end - start + 1) >= kbuf->memsz) {
280 			/* Suitable memory range found. Set kbuf->mem */
281 			kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
282 					       kbuf->buf_align);
283 			ret = 0;
284 			break;
285 		}
286 	}
287 
288 	return ret;
289 }
290 
291 /**
292  * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
293  *                                  suitable buffer with top down approach.
294  * @kbuf:                           Buffer contents and memory parameters.
295  * @buf_min:                        Minimum address for the buffer.
296  * @buf_max:                        Maximum address for the buffer.
297  * @emem:                           Exclude memory ranges.
298  *
299  * Returns 0 on success, negative errno on error.
300  */
301 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
302 					  u64 buf_min, u64 buf_max,
303 					  const struct crash_mem *emem)
304 {
305 	int i, ret = 0, err = -EADDRNOTAVAIL;
306 	u64 start, end, tmin, tmax;
307 
308 	tmax = buf_max;
309 	for (i = (emem->nr_ranges - 1); i >= 0; i--) {
310 		start = emem->ranges[i].start;
311 		end = emem->ranges[i].end;
312 
313 		if (start > tmax)
314 			continue;
315 
316 		if (end < tmax) {
317 			tmin = (end < buf_min ? buf_min : end + 1);
318 			ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
319 			if (!ret)
320 				return 0;
321 		}
322 
323 		tmax = start - 1;
324 
325 		if (tmax < buf_min) {
326 			ret = err;
327 			break;
328 		}
329 		ret = 0;
330 	}
331 
332 	if (!ret) {
333 		tmin = buf_min;
334 		ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
335 	}
336 	return ret;
337 }
338 
339 /**
340  * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
341  *                               in the memory regions between buf_min & buf_max
342  *                               for the buffer. If found, sets kbuf->mem.
343  * @kbuf:                        Buffer contents and memory parameters.
344  * @buf_min:                     Minimum address for the buffer.
345  * @buf_max:                     Maximum address for the buffer.
346  *
347  * Returns 0 on success, negative errno on error.
348  */
349 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
350 				       u64 buf_min, u64 buf_max)
351 {
352 	int ret = -EADDRNOTAVAIL;
353 	phys_addr_t start, end;
354 	u64 i;
355 
356 	for_each_mem_range(i, &start, &end) {
357 		/*
358 		 * memblock uses [start, end) convention while it is
359 		 * [start, end] here. Fix the off-by-one to have the
360 		 * same convention.
361 		 */
362 		end -= 1;
363 
364 		if (end < buf_min)
365 			continue;
366 
367 		/* Memory hole not found */
368 		if (start > buf_max)
369 			break;
370 
371 		/* Adjust memory region based on the given range */
372 		if (start < buf_min)
373 			start = buf_min;
374 		if (end > buf_max)
375 			end = buf_max;
376 
377 		start = ALIGN(start, kbuf->buf_align);
378 		if (start < end && (end - start + 1) >= kbuf->memsz) {
379 			/* Suitable memory range found. Set kbuf->mem */
380 			kbuf->mem = start;
381 			ret = 0;
382 			break;
383 		}
384 	}
385 
386 	return ret;
387 }
388 
389 /**
390  * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
391  *                                   suitable buffer with bottom up approach.
392  * @kbuf:                            Buffer contents and memory parameters.
393  * @buf_min:                         Minimum address for the buffer.
394  * @buf_max:                         Maximum address for the buffer.
395  * @emem:                            Exclude memory ranges.
396  *
397  * Returns 0 on success, negative errno on error.
398  */
399 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
400 					   u64 buf_min, u64 buf_max,
401 					   const struct crash_mem *emem)
402 {
403 	int i, ret = 0, err = -EADDRNOTAVAIL;
404 	u64 start, end, tmin, tmax;
405 
406 	tmin = buf_min;
407 	for (i = 0; i < emem->nr_ranges; i++) {
408 		start = emem->ranges[i].start;
409 		end = emem->ranges[i].end;
410 
411 		if (end < tmin)
412 			continue;
413 
414 		if (start > tmin) {
415 			tmax = (start > buf_max ? buf_max : start - 1);
416 			ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
417 			if (!ret)
418 				return 0;
419 		}
420 
421 		tmin = end + 1;
422 
423 		if (tmin > buf_max) {
424 			ret = err;
425 			break;
426 		}
427 		ret = 0;
428 	}
429 
430 	if (!ret) {
431 		tmax = buf_max;
432 		ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
433 	}
434 	return ret;
435 }
436 
437 /**
438  * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
439  * @um_info:                  Usable memory buffer and ranges info.
440  * @cnt:                      No. of entries to accommodate.
441  *
442  * Frees up the old buffer if memory reallocation fails.
443  *
444  * Returns buffer on success, NULL on error.
445  */
446 static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
447 {
448 	u32 new_size;
449 	__be64 *tbuf;
450 
451 	if ((um_info->idx + cnt) <= um_info->max_entries)
452 		return um_info->buf;
453 
454 	new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
455 	tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
456 	if (tbuf) {
457 		um_info->buf = tbuf;
458 		um_info->size = new_size;
459 		um_info->max_entries = (um_info->size / sizeof(u64));
460 	}
461 
462 	return tbuf;
463 }
464 
465 /**
466  * add_usable_mem - Add the usable memory ranges within the given memory range
467  *                  to the buffer
468  * @um_info:        Usable memory buffer and ranges info.
469  * @base:           Base address of memory range to look for.
470  * @end:            End address of memory range to look for.
471  *
472  * Returns 0 on success, negative errno on error.
473  */
474 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
475 {
476 	u64 loc_base, loc_end;
477 	bool add;
478 	int i;
479 
480 	for (i = 0; i < um_info->nr_ranges; i++) {
481 		add = false;
482 		loc_base = um_info->ranges[i].start;
483 		loc_end = um_info->ranges[i].end;
484 		if (loc_base >= base && loc_end <= end)
485 			add = true;
486 		else if (base < loc_end && end > loc_base) {
487 			if (loc_base < base)
488 				loc_base = base;
489 			if (loc_end > end)
490 				loc_end = end;
491 			add = true;
492 		}
493 
494 		if (add) {
495 			if (!check_realloc_usable_mem(um_info, 2))
496 				return -ENOMEM;
497 
498 			um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
499 			um_info->buf[um_info->idx++] =
500 					cpu_to_be64(loc_end - loc_base + 1);
501 		}
502 	}
503 
504 	return 0;
505 }
506 
507 /**
508  * kdump_setup_usable_lmb - This is a callback function that gets called by
509  *                          walk_drmem_lmbs for every LMB to set its
510  *                          usable memory ranges.
511  * @lmb:                    LMB info.
512  * @usm:                    linux,drconf-usable-memory property value.
513  * @data:                   Pointer to usable memory buffer and ranges info.
514  *
515  * Returns 0 on success, negative errno on error.
516  */
517 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
518 				  void *data)
519 {
520 	struct umem_info *um_info;
521 	int tmp_idx, ret;
522 	u64 base, end;
523 
524 	/*
525 	 * kdump load isn't supported on kernels already booted with
526 	 * linux,drconf-usable-memory property.
527 	 */
528 	if (*usm) {
529 		pr_err("linux,drconf-usable-memory property already exists!");
530 		return -EINVAL;
531 	}
532 
533 	um_info = data;
534 	tmp_idx = um_info->idx;
535 	if (!check_realloc_usable_mem(um_info, 1))
536 		return -ENOMEM;
537 
538 	um_info->idx++;
539 	base = lmb->base_addr;
540 	end = base + drmem_lmb_size() - 1;
541 	ret = add_usable_mem(um_info, base, end);
542 	if (!ret) {
543 		/*
544 		 * Update the no. of ranges added. Two entries (base & size)
545 		 * for every range added.
546 		 */
547 		um_info->buf[tmp_idx] =
548 				cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
549 	}
550 
551 	return ret;
552 }
553 
554 #define NODE_PATH_LEN		256
555 /**
556  * add_usable_mem_property - Add usable memory property for the given
557  *                           memory node.
558  * @fdt:                     Flattened device tree for the kdump kernel.
559  * @dn:                      Memory node.
560  * @um_info:                 Usable memory buffer and ranges info.
561  *
562  * Returns 0 on success, negative errno on error.
563  */
564 static int add_usable_mem_property(void *fdt, struct device_node *dn,
565 				   struct umem_info *um_info)
566 {
567 	int n_mem_addr_cells, n_mem_size_cells, node;
568 	char path[NODE_PATH_LEN];
569 	int i, len, ranges, ret;
570 	const __be32 *prop;
571 	u64 base, end;
572 
573 	of_node_get(dn);
574 
575 	if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
576 		pr_err("Buffer (%d) too small for memory node: %pOF\n",
577 		       NODE_PATH_LEN, dn);
578 		return -EOVERFLOW;
579 	}
580 	pr_debug("Memory node path: %s\n", path);
581 
582 	/* Now that we know the path, find its offset in kdump kernel's fdt */
583 	node = fdt_path_offset(fdt, path);
584 	if (node < 0) {
585 		pr_err("Malformed device tree: error reading %s\n", path);
586 		ret = -EINVAL;
587 		goto out;
588 	}
589 
590 	/* Get the address & size cells */
591 	n_mem_addr_cells = of_n_addr_cells(dn);
592 	n_mem_size_cells = of_n_size_cells(dn);
593 	pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
594 		 n_mem_size_cells);
595 
596 	um_info->idx  = 0;
597 	if (!check_realloc_usable_mem(um_info, 2)) {
598 		ret = -ENOMEM;
599 		goto out;
600 	}
601 
602 	prop = of_get_property(dn, "reg", &len);
603 	if (!prop || len <= 0) {
604 		ret = 0;
605 		goto out;
606 	}
607 
608 	/*
609 	 * "reg" property represents sequence of (addr,size) tuples
610 	 * each representing a memory range.
611 	 */
612 	ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
613 
614 	for (i = 0; i < ranges; i++) {
615 		base = of_read_number(prop, n_mem_addr_cells);
616 		prop += n_mem_addr_cells;
617 		end = base + of_read_number(prop, n_mem_size_cells) - 1;
618 		prop += n_mem_size_cells;
619 
620 		ret = add_usable_mem(um_info, base, end);
621 		if (ret)
622 			goto out;
623 	}
624 
625 	/*
626 	 * No kdump kernel usable memory found in this memory node.
627 	 * Write (0,0) tuple in linux,usable-memory property for
628 	 * this region to be ignored.
629 	 */
630 	if (um_info->idx == 0) {
631 		um_info->buf[0] = 0;
632 		um_info->buf[1] = 0;
633 		um_info->idx = 2;
634 	}
635 
636 	ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
637 			  (um_info->idx * sizeof(u64)));
638 
639 out:
640 	of_node_put(dn);
641 	return ret;
642 }
643 
644 
645 /**
646  * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
647  *                         and linux,drconf-usable-memory DT properties as
648  *                         appropriate to restrict its memory usage.
649  * @fdt:                   Flattened device tree for the kdump kernel.
650  * @usable_mem:            Usable memory ranges for kdump kernel.
651  *
652  * Returns 0 on success, negative errno on error.
653  */
654 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
655 {
656 	struct umem_info um_info;
657 	struct device_node *dn;
658 	int node, ret = 0;
659 
660 	if (!usable_mem) {
661 		pr_err("Usable memory ranges for kdump kernel not found\n");
662 		return -ENOENT;
663 	}
664 
665 	node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
666 	if (node == -FDT_ERR_NOTFOUND)
667 		pr_debug("No dynamic reconfiguration memory found\n");
668 	else if (node < 0) {
669 		pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
670 		return -EINVAL;
671 	}
672 
673 	um_info.buf  = NULL;
674 	um_info.size = 0;
675 	um_info.max_entries = 0;
676 	um_info.idx  = 0;
677 	/* Memory ranges to look up */
678 	um_info.ranges = &(usable_mem->ranges[0]);
679 	um_info.nr_ranges = usable_mem->nr_ranges;
680 
681 	dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
682 	if (dn) {
683 		ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
684 		of_node_put(dn);
685 
686 		if (ret) {
687 			pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
688 			goto out;
689 		}
690 
691 		ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
692 				  um_info.buf, (um_info.idx * sizeof(u64)));
693 		if (ret) {
694 			pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
695 			       fdt_strerror(ret));
696 			goto out;
697 		}
698 	}
699 
700 	/*
701 	 * Walk through each memory node and set linux,usable-memory property
702 	 * for the corresponding node in kdump kernel's fdt.
703 	 */
704 	for_each_node_by_type(dn, "memory") {
705 		ret = add_usable_mem_property(fdt, dn, &um_info);
706 		if (ret) {
707 			pr_err("Failed to set linux,usable-memory property for %s node",
708 			       dn->full_name);
709 			of_node_put(dn);
710 			goto out;
711 		}
712 	}
713 
714 out:
715 	kfree(um_info.buf);
716 	return ret;
717 }
718 
719 /**
720  * load_backup_segment - Locate a memory hole to place the backup region.
721  * @image:               Kexec image.
722  * @kbuf:                Buffer contents and memory parameters.
723  *
724  * Returns 0 on success, negative errno on error.
725  */
726 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
727 {
728 	void *buf;
729 	int ret;
730 
731 	/*
732 	 * Setup a source buffer for backup segment.
733 	 *
734 	 * A source buffer has no meaning for backup region as data will
735 	 * be copied from backup source, after crash, in the purgatory.
736 	 * But as load segment code doesn't recognize such segments,
737 	 * setup a dummy source buffer to keep it happy for now.
738 	 */
739 	buf = vzalloc(BACKUP_SRC_SIZE);
740 	if (!buf)
741 		return -ENOMEM;
742 
743 	kbuf->buffer = buf;
744 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
745 	kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
746 	kbuf->top_down = false;
747 
748 	ret = kexec_add_buffer(kbuf);
749 	if (ret) {
750 		vfree(buf);
751 		return ret;
752 	}
753 
754 	image->arch.backup_buf = buf;
755 	image->arch.backup_start = kbuf->mem;
756 	return 0;
757 }
758 
759 /**
760  * update_backup_region_phdr - Update backup region's offset for the core to
761  *                             export the region appropriately.
762  * @image:                     Kexec image.
763  * @ehdr:                      ELF core header.
764  *
765  * Assumes an exclusive program header is setup for the backup region
766  * in the ELF headers
767  *
768  * Returns nothing.
769  */
770 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
771 {
772 	Elf64_Phdr *phdr;
773 	unsigned int i;
774 
775 	phdr = (Elf64_Phdr *)(ehdr + 1);
776 	for (i = 0; i < ehdr->e_phnum; i++) {
777 		if (phdr->p_paddr == BACKUP_SRC_START) {
778 			phdr->p_offset = image->arch.backup_start;
779 			pr_debug("Backup region offset updated to 0x%lx\n",
780 				 image->arch.backup_start);
781 			return;
782 		}
783 	}
784 }
785 
786 /**
787  * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
788  *                           segment needed to load kdump kernel.
789  * @image:                   Kexec image.
790  * @kbuf:                    Buffer contents and memory parameters.
791  *
792  * Returns 0 on success, negative errno on error.
793  */
794 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
795 {
796 	struct crash_mem *cmem = NULL;
797 	unsigned long headers_sz;
798 	void *headers = NULL;
799 	int ret;
800 
801 	ret = get_crash_memory_ranges(&cmem);
802 	if (ret)
803 		goto out;
804 
805 	/* Setup elfcorehdr segment */
806 	ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
807 	if (ret) {
808 		pr_err("Failed to prepare elf headers for the core\n");
809 		goto out;
810 	}
811 
812 	/* Fix the offset for backup region in the ELF header */
813 	update_backup_region_phdr(image, headers);
814 
815 	kbuf->buffer = headers;
816 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
817 	kbuf->bufsz = kbuf->memsz = headers_sz;
818 	kbuf->top_down = false;
819 
820 	ret = kexec_add_buffer(kbuf);
821 	if (ret) {
822 		vfree(headers);
823 		goto out;
824 	}
825 
826 	image->elf_load_addr = kbuf->mem;
827 	image->elf_headers_sz = headers_sz;
828 	image->elf_headers = headers;
829 out:
830 	kfree(cmem);
831 	return ret;
832 }
833 
834 /**
835  * load_crashdump_segments_ppc64 - Initialize the additional segements needed
836  *                                 to load kdump kernel.
837  * @image:                         Kexec image.
838  * @kbuf:                          Buffer contents and memory parameters.
839  *
840  * Returns 0 on success, negative errno on error.
841  */
842 int load_crashdump_segments_ppc64(struct kimage *image,
843 				  struct kexec_buf *kbuf)
844 {
845 	int ret;
846 
847 	/* Load backup segment - first 64K bytes of the crashing kernel */
848 	ret = load_backup_segment(image, kbuf);
849 	if (ret) {
850 		pr_err("Failed to load backup segment\n");
851 		return ret;
852 	}
853 	pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
854 
855 	/* Load elfcorehdr segment - to export crashing kernel's vmcore */
856 	ret = load_elfcorehdr_segment(image, kbuf);
857 	if (ret) {
858 		pr_err("Failed to load elfcorehdr segment\n");
859 		return ret;
860 	}
861 	pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
862 		 image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
863 
864 	return 0;
865 }
866 
867 /**
868  * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
869  *                         variables and call setup_purgatory() to initialize
870  *                         common global variable.
871  * @image:                 kexec image.
872  * @slave_code:            Slave code for the purgatory.
873  * @fdt:                   Flattened device tree for the next kernel.
874  * @kernel_load_addr:      Address where the kernel is loaded.
875  * @fdt_load_addr:         Address where the flattened device tree is loaded.
876  *
877  * Returns 0 on success, negative errno on error.
878  */
879 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
880 			  const void *fdt, unsigned long kernel_load_addr,
881 			  unsigned long fdt_load_addr)
882 {
883 	struct device_node *dn = NULL;
884 	int ret;
885 
886 	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
887 			      fdt_load_addr);
888 	if (ret)
889 		goto out;
890 
891 	if (image->type == KEXEC_TYPE_CRASH) {
892 		u32 my_run_at_load = 1;
893 
894 		/*
895 		 * Tell relocatable kernel to run at load address
896 		 * via the word meant for that at 0x5c.
897 		 */
898 		ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
899 						     &my_run_at_load,
900 						     sizeof(my_run_at_load),
901 						     false);
902 		if (ret)
903 			goto out;
904 	}
905 
906 	/* Tell purgatory where to look for backup region */
907 	ret = kexec_purgatory_get_set_symbol(image, "backup_start",
908 					     &image->arch.backup_start,
909 					     sizeof(image->arch.backup_start),
910 					     false);
911 	if (ret)
912 		goto out;
913 
914 	/* Setup OPAL base & entry values */
915 	dn = of_find_node_by_path("/ibm,opal");
916 	if (dn) {
917 		u64 val;
918 
919 		of_property_read_u64(dn, "opal-base-address", &val);
920 		ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
921 						     sizeof(val), false);
922 		if (ret)
923 			goto out;
924 
925 		of_property_read_u64(dn, "opal-entry-address", &val);
926 		ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
927 						     sizeof(val), false);
928 	}
929 out:
930 	if (ret)
931 		pr_err("Failed to setup purgatory symbols");
932 	of_node_put(dn);
933 	return ret;
934 }
935 
936 /**
937  * cpu_node_size - Compute the size of a CPU node in the FDT.
938  *                 This should be done only once and the value is stored in
939  *                 a static variable.
940  * Returns the max size of a CPU node in the FDT.
941  */
942 static unsigned int cpu_node_size(void)
943 {
944 	static unsigned int size;
945 	struct device_node *dn;
946 	struct property *pp;
947 
948 	/*
949 	 * Don't compute it twice, we are assuming that the per CPU node size
950 	 * doesn't change during the system's life.
951 	 */
952 	if (size)
953 		return size;
954 
955 	dn = of_find_node_by_type(NULL, "cpu");
956 	if (WARN_ON_ONCE(!dn)) {
957 		// Unlikely to happen
958 		return 0;
959 	}
960 
961 	/*
962 	 * We compute the sub node size for a CPU node, assuming it
963 	 * will be the same for all.
964 	 */
965 	size += strlen(dn->name) + 5;
966 	for_each_property_of_node(dn, pp) {
967 		size += strlen(pp->name);
968 		size += pp->length;
969 	}
970 
971 	of_node_put(dn);
972 	return size;
973 }
974 
975 /**
976  * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
977  *                              setup FDT for kexec/kdump kernel.
978  * @image:                      kexec image being loaded.
979  *
980  * Returns the estimated extra size needed for kexec/kdump kernel FDT.
981  */
982 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
983 {
984 	unsigned int cpu_nodes, extra_size = 0;
985 	struct device_node *dn;
986 	u64 usm_entries;
987 
988 	// Budget some space for the password blob. There's already extra space
989 	// for the key name
990 	if (plpks_is_available())
991 		extra_size += (unsigned int)plpks_get_passwordlen();
992 
993 	if (image->type != KEXEC_TYPE_CRASH)
994 		return extra_size;
995 
996 	/*
997 	 * For kdump kernel, account for linux,usable-memory and
998 	 * linux,drconf-usable-memory properties. Get an approximate on the
999 	 * number of usable memory entries and use for FDT size estimation.
1000 	 */
1001 	if (drmem_lmb_size()) {
1002 		usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
1003 			       (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
1004 		extra_size += (unsigned int)(usm_entries * sizeof(u64));
1005 	}
1006 
1007 	/*
1008 	 * Get the number of CPU nodes in the current DT. This allows to
1009 	 * reserve places for CPU nodes added since the boot time.
1010 	 */
1011 	cpu_nodes = 0;
1012 	for_each_node_by_type(dn, "cpu") {
1013 		cpu_nodes++;
1014 	}
1015 
1016 	if (cpu_nodes > boot_cpu_node_count)
1017 		extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
1018 
1019 	return extra_size;
1020 }
1021 
1022 /**
1023  * add_node_props - Reads node properties from device node structure and add
1024  *                  them to fdt.
1025  * @fdt:            Flattened device tree of the kernel
1026  * @node_offset:    offset of the node to add a property at
1027  * @dn:             device node pointer
1028  *
1029  * Returns 0 on success, negative errno on error.
1030  */
1031 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
1032 {
1033 	int ret = 0;
1034 	struct property *pp;
1035 
1036 	if (!dn)
1037 		return -EINVAL;
1038 
1039 	for_each_property_of_node(dn, pp) {
1040 		ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
1041 		if (ret < 0) {
1042 			pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
1043 			return ret;
1044 		}
1045 	}
1046 	return ret;
1047 }
1048 
1049 /**
1050  * update_cpus_node - Update cpus node of flattened device tree using of_root
1051  *                    device node.
1052  * @fdt:              Flattened device tree of the kernel.
1053  *
1054  * Returns 0 on success, negative errno on error.
1055  */
1056 static int update_cpus_node(void *fdt)
1057 {
1058 	struct device_node *cpus_node, *dn;
1059 	int cpus_offset, cpus_subnode_offset, ret = 0;
1060 
1061 	cpus_offset = fdt_path_offset(fdt, "/cpus");
1062 	if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
1063 		pr_err("Malformed device tree: error reading /cpus node: %s\n",
1064 		       fdt_strerror(cpus_offset));
1065 		return cpus_offset;
1066 	}
1067 
1068 	if (cpus_offset > 0) {
1069 		ret = fdt_del_node(fdt, cpus_offset);
1070 		if (ret < 0) {
1071 			pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
1072 			return -EINVAL;
1073 		}
1074 	}
1075 
1076 	/* Add cpus node to fdt */
1077 	cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
1078 	if (cpus_offset < 0) {
1079 		pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
1080 		return -EINVAL;
1081 	}
1082 
1083 	/* Add cpus node properties */
1084 	cpus_node = of_find_node_by_path("/cpus");
1085 	ret = add_node_props(fdt, cpus_offset, cpus_node);
1086 	of_node_put(cpus_node);
1087 	if (ret < 0)
1088 		return ret;
1089 
1090 	/* Loop through all subnodes of cpus and add them to fdt */
1091 	for_each_node_by_type(dn, "cpu") {
1092 		cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
1093 		if (cpus_subnode_offset < 0) {
1094 			pr_err("Unable to add %s subnode: %s\n", dn->full_name,
1095 			       fdt_strerror(cpus_subnode_offset));
1096 			ret = cpus_subnode_offset;
1097 			goto out;
1098 		}
1099 
1100 		ret = add_node_props(fdt, cpus_subnode_offset, dn);
1101 		if (ret < 0)
1102 			goto out;
1103 	}
1104 out:
1105 	of_node_put(dn);
1106 	return ret;
1107 }
1108 
1109 static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
1110 			 const char *propname)
1111 {
1112 	const void *prop, *fdtprop;
1113 	int len = 0, fdtlen = 0;
1114 
1115 	prop = of_get_property(dn, propname, &len);
1116 	fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
1117 
1118 	if (fdtprop && !prop)
1119 		return fdt_delprop(fdt, node_offset, propname);
1120 	else if (prop)
1121 		return fdt_setprop(fdt, node_offset, propname, prop, len);
1122 	else
1123 		return -FDT_ERR_NOTFOUND;
1124 }
1125 
1126 static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
1127 {
1128 	struct device_node *dn;
1129 	int pci_offset, root_offset, ret = 0;
1130 
1131 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1132 		return 0;
1133 
1134 	root_offset = fdt_path_offset(fdt, "/");
1135 	for_each_node_with_property(dn, dmapropname) {
1136 		pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
1137 		if (pci_offset < 0)
1138 			continue;
1139 
1140 		ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
1141 		if (ret < 0) {
1142 			of_node_put(dn);
1143 			break;
1144 		}
1145 		ret = copy_property(fdt, pci_offset, dn, dmapropname);
1146 		if (ret < 0) {
1147 			of_node_put(dn);
1148 			break;
1149 		}
1150 	}
1151 
1152 	return ret;
1153 }
1154 
1155 /**
1156  * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
1157  *                       being loaded.
1158  * @image:               kexec image being loaded.
1159  * @fdt:                 Flattened device tree for the next kernel.
1160  * @initrd_load_addr:    Address where the next initrd will be loaded.
1161  * @initrd_len:          Size of the next initrd, or 0 if there will be none.
1162  * @cmdline:             Command line for the next kernel, or NULL if there will
1163  *                       be none.
1164  *
1165  * Returns 0 on success, negative errno on error.
1166  */
1167 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
1168 			unsigned long initrd_load_addr,
1169 			unsigned long initrd_len, const char *cmdline)
1170 {
1171 	struct crash_mem *umem = NULL, *rmem = NULL;
1172 	int i, nr_ranges, ret;
1173 
1174 	/*
1175 	 * Restrict memory usage for kdump kernel by setting up
1176 	 * usable memory ranges and memory reserve map.
1177 	 */
1178 	if (image->type == KEXEC_TYPE_CRASH) {
1179 		ret = get_usable_memory_ranges(&umem);
1180 		if (ret)
1181 			goto out;
1182 
1183 		ret = update_usable_mem_fdt(fdt, umem);
1184 		if (ret) {
1185 			pr_err("Error setting up usable-memory property for kdump kernel\n");
1186 			goto out;
1187 		}
1188 
1189 		/*
1190 		 * Ensure we don't touch crashed kernel's memory except the
1191 		 * first 64K of RAM, which will be backed up.
1192 		 */
1193 		ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
1194 				      crashk_res.start - BACKUP_SRC_SIZE);
1195 		if (ret) {
1196 			pr_err("Error reserving crash memory: %s\n",
1197 			       fdt_strerror(ret));
1198 			goto out;
1199 		}
1200 
1201 		/* Ensure backup region is not used by kdump/capture kernel */
1202 		ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
1203 				      BACKUP_SRC_SIZE);
1204 		if (ret) {
1205 			pr_err("Error reserving memory for backup: %s\n",
1206 			       fdt_strerror(ret));
1207 			goto out;
1208 		}
1209 	}
1210 
1211 	/* Update cpus nodes information to account hotplug CPUs. */
1212 	ret =  update_cpus_node(fdt);
1213 	if (ret < 0)
1214 		goto out;
1215 
1216 	ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
1217 	if (ret < 0)
1218 		goto out;
1219 
1220 	ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
1221 	if (ret < 0)
1222 		goto out;
1223 
1224 	/* Update memory reserve map */
1225 	ret = get_reserved_memory_ranges(&rmem);
1226 	if (ret)
1227 		goto out;
1228 
1229 	nr_ranges = rmem ? rmem->nr_ranges : 0;
1230 	for (i = 0; i < nr_ranges; i++) {
1231 		u64 base, size;
1232 
1233 		base = rmem->ranges[i].start;
1234 		size = rmem->ranges[i].end - base + 1;
1235 		ret = fdt_add_mem_rsv(fdt, base, size);
1236 		if (ret) {
1237 			pr_err("Error updating memory reserve map: %s\n",
1238 			       fdt_strerror(ret));
1239 			goto out;
1240 		}
1241 	}
1242 
1243 	// If we have PLPKS active, we need to provide the password to the new kernel
1244 	if (plpks_is_available())
1245 		ret = plpks_populate_fdt(fdt);
1246 
1247 out:
1248 	kfree(rmem);
1249 	kfree(umem);
1250 	return ret;
1251 }
1252 
1253 /**
1254  * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1255  *                              tce-table, reserved-ranges & such (exclude
1256  *                              memory ranges) as they can't be used for kexec
1257  *                              segment buffer. Sets kbuf->mem when a suitable
1258  *                              memory hole is found.
1259  * @kbuf:                       Buffer contents and memory parameters.
1260  *
1261  * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1262  *
1263  * Returns 0 on success, negative errno on error.
1264  */
1265 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1266 {
1267 	struct crash_mem **emem;
1268 	u64 buf_min, buf_max;
1269 	int ret;
1270 
1271 	/* Look up the exclude ranges list while locating the memory hole */
1272 	emem = &(kbuf->image->arch.exclude_ranges);
1273 	if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1274 		pr_warn("No exclude range list. Using the default locate mem hole method\n");
1275 		return kexec_locate_mem_hole(kbuf);
1276 	}
1277 
1278 	buf_min = kbuf->buf_min;
1279 	buf_max = kbuf->buf_max;
1280 	/* Segments for kdump kernel should be within crashkernel region */
1281 	if (kbuf->image->type == KEXEC_TYPE_CRASH) {
1282 		buf_min = (buf_min < crashk_res.start ?
1283 			   crashk_res.start : buf_min);
1284 		buf_max = (buf_max > crashk_res.end ?
1285 			   crashk_res.end : buf_max);
1286 	}
1287 
1288 	if (buf_min > buf_max) {
1289 		pr_err("Invalid buffer min and/or max values\n");
1290 		return -EINVAL;
1291 	}
1292 
1293 	if (kbuf->top_down)
1294 		ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1295 						     *emem);
1296 	else
1297 		ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1298 						      *emem);
1299 
1300 	/* Add the buffer allocated to the exclude list for the next lookup */
1301 	if (!ret) {
1302 		add_mem_range(emem, kbuf->mem, kbuf->memsz);
1303 		sort_memory_ranges(*emem, true);
1304 	} else {
1305 		pr_err("Failed to locate memory buffer of size %lu\n",
1306 		       kbuf->memsz);
1307 	}
1308 	return ret;
1309 }
1310 
1311 /**
1312  * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1313  *                                 kexec segments.
1314  * @image:                         kexec image being loaded.
1315  * @buf:                           Buffer pointing to elf data.
1316  * @buf_len:                       Length of the buffer.
1317  *
1318  * Returns 0 on success, negative errno on error.
1319  */
1320 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1321 				  unsigned long buf_len)
1322 {
1323 	int ret;
1324 
1325 	/* Get exclude memory ranges needed for setting up kexec segments */
1326 	ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1327 	if (ret) {
1328 		pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1329 		return ret;
1330 	}
1331 
1332 	return kexec_image_probe_default(image, buf, buf_len);
1333 }
1334 
1335 /**
1336  * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1337  *                                      while loading the image.
1338  * @image:                              kexec image being loaded.
1339  *
1340  * Returns 0 on success, negative errno on error.
1341  */
1342 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1343 {
1344 	kfree(image->arch.exclude_ranges);
1345 	image->arch.exclude_ranges = NULL;
1346 
1347 	vfree(image->arch.backup_buf);
1348 	image->arch.backup_buf = NULL;
1349 
1350 	vfree(image->elf_headers);
1351 	image->elf_headers = NULL;
1352 	image->elf_headers_sz = 0;
1353 
1354 	kvfree(image->arch.fdt);
1355 	image->arch.fdt = NULL;
1356 
1357 	return kexec_image_post_load_cleanup_default(image);
1358 }
1359