1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * PPC64 code to handle Linux booting another kernel. 4 * 5 * Copyright (C) 2004-2005, IBM Corp. 6 * 7 * Created by: Milton D Miller II 8 */ 9 10 11 #include <linux/kexec.h> 12 #include <linux/smp.h> 13 #include <linux/thread_info.h> 14 #include <linux/init_task.h> 15 #include <linux/errno.h> 16 #include <linux/kernel.h> 17 #include <linux/cpu.h> 18 #include <linux/hardirq.h> 19 #include <linux/of.h> 20 #include <linux/libfdt.h> 21 22 #include <asm/page.h> 23 #include <asm/current.h> 24 #include <asm/machdep.h> 25 #include <asm/cacheflush.h> 26 #include <asm/firmware.h> 27 #include <asm/paca.h> 28 #include <asm/mmu.h> 29 #include <asm/sections.h> /* _end */ 30 #include <asm/smp.h> 31 #include <asm/hw_breakpoint.h> 32 #include <asm/svm.h> 33 #include <asm/ultravisor.h> 34 #include <asm/crashdump-ppc64.h> 35 36 int machine_kexec_prepare(struct kimage *image) 37 { 38 int i; 39 unsigned long begin, end; /* limits of segment */ 40 unsigned long low, high; /* limits of blocked memory range */ 41 struct device_node *node; 42 const unsigned long *basep; 43 const unsigned int *sizep; 44 45 /* 46 * Since we use the kernel fault handlers and paging code to 47 * handle the virtual mode, we must make sure no destination 48 * overlaps kernel static data or bss. 49 */ 50 for (i = 0; i < image->nr_segments; i++) 51 if (image->segment[i].mem < __pa(_end)) 52 return -ETXTBSY; 53 54 /* We also should not overwrite the tce tables */ 55 for_each_node_by_type(node, "pci") { 56 basep = of_get_property(node, "linux,tce-base", NULL); 57 sizep = of_get_property(node, "linux,tce-size", NULL); 58 if (basep == NULL || sizep == NULL) 59 continue; 60 61 low = *basep; 62 high = low + (*sizep); 63 64 for (i = 0; i < image->nr_segments; i++) { 65 begin = image->segment[i].mem; 66 end = begin + image->segment[i].memsz; 67 68 if ((begin < high) && (end > low)) { 69 of_node_put(node); 70 return -ETXTBSY; 71 } 72 } 73 } 74 75 return 0; 76 } 77 78 /* Called during kexec sequence with MMU off */ 79 static notrace void copy_segments(unsigned long ind) 80 { 81 unsigned long entry; 82 unsigned long *ptr; 83 void *dest; 84 void *addr; 85 86 /* 87 * We rely on kexec_load to create a lists that properly 88 * initializes these pointers before they are used. 89 * We will still crash if the list is wrong, but at least 90 * the compiler will be quiet. 91 */ 92 ptr = NULL; 93 dest = NULL; 94 95 for (entry = ind; !(entry & IND_DONE); entry = *ptr++) { 96 addr = __va(entry & PAGE_MASK); 97 98 switch (entry & IND_FLAGS) { 99 case IND_DESTINATION: 100 dest = addr; 101 break; 102 case IND_INDIRECTION: 103 ptr = addr; 104 break; 105 case IND_SOURCE: 106 copy_page(dest, addr); 107 dest += PAGE_SIZE; 108 } 109 } 110 } 111 112 /* Called during kexec sequence with MMU off */ 113 notrace void kexec_copy_flush(struct kimage *image) 114 { 115 long i, nr_segments = image->nr_segments; 116 struct kexec_segment ranges[KEXEC_SEGMENT_MAX]; 117 118 /* save the ranges on the stack to efficiently flush the icache */ 119 memcpy(ranges, image->segment, sizeof(ranges)); 120 121 /* 122 * After this call we may not use anything allocated in dynamic 123 * memory, including *image. 124 * 125 * Only globals and the stack are allowed. 126 */ 127 copy_segments(image->head); 128 129 /* 130 * we need to clear the icache for all dest pages sometime, 131 * including ones that were in place on the original copy 132 */ 133 for (i = 0; i < nr_segments; i++) 134 flush_icache_range((unsigned long)__va(ranges[i].mem), 135 (unsigned long)__va(ranges[i].mem + ranges[i].memsz)); 136 } 137 138 #ifdef CONFIG_SMP 139 140 static int kexec_all_irq_disabled = 0; 141 142 static void kexec_smp_down(void *arg) 143 { 144 local_irq_disable(); 145 hard_irq_disable(); 146 147 mb(); /* make sure our irqs are disabled before we say they are */ 148 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; 149 while(kexec_all_irq_disabled == 0) 150 cpu_relax(); 151 mb(); /* make sure all irqs are disabled before this */ 152 hw_breakpoint_disable(); 153 /* 154 * Now every CPU has IRQs off, we can clear out any pending 155 * IPIs and be sure that no more will come in after this. 156 */ 157 if (ppc_md.kexec_cpu_down) 158 ppc_md.kexec_cpu_down(0, 1); 159 160 reset_sprs(); 161 162 kexec_smp_wait(); 163 /* NOTREACHED */ 164 } 165 166 static void kexec_prepare_cpus_wait(int wait_state) 167 { 168 int my_cpu, i, notified=-1; 169 170 hw_breakpoint_disable(); 171 my_cpu = get_cpu(); 172 /* Make sure each CPU has at least made it to the state we need. 173 * 174 * FIXME: There is a (slim) chance of a problem if not all of the CPUs 175 * are correctly onlined. If somehow we start a CPU on boot with RTAS 176 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in 177 * time, the boot CPU will timeout. If it does eventually execute 178 * stuff, the secondary will start up (paca_ptrs[]->cpu_start was 179 * written) and get into a peculiar state. 180 * If the platform supports smp_ops->take_timebase(), the secondary CPU 181 * will probably be spinning in there. If not (i.e. pseries), the 182 * secondary will continue on and try to online itself/idle/etc. If it 183 * survives that, we need to find these 184 * possible-but-not-online-but-should-be CPUs and chaperone them into 185 * kexec_smp_wait(). 186 */ 187 for_each_online_cpu(i) { 188 if (i == my_cpu) 189 continue; 190 191 while (paca_ptrs[i]->kexec_state < wait_state) { 192 barrier(); 193 if (i != notified) { 194 printk(KERN_INFO "kexec: waiting for cpu %d " 195 "(physical %d) to enter %i state\n", 196 i, paca_ptrs[i]->hw_cpu_id, wait_state); 197 notified = i; 198 } 199 } 200 } 201 mb(); 202 } 203 204 /* 205 * We need to make sure each present CPU is online. The next kernel will scan 206 * the device tree and assume primary threads are online and query secondary 207 * threads via RTAS to online them if required. If we don't online primary 208 * threads, they will be stuck. However, we also online secondary threads as we 209 * may be using 'cede offline'. In this case RTAS doesn't see the secondary 210 * threads as offline -- and again, these CPUs will be stuck. 211 * 212 * So, we online all CPUs that should be running, including secondary threads. 213 */ 214 static void wake_offline_cpus(void) 215 { 216 int cpu = 0; 217 218 for_each_present_cpu(cpu) { 219 if (!cpu_online(cpu)) { 220 printk(KERN_INFO "kexec: Waking offline cpu %d.\n", 221 cpu); 222 WARN_ON(add_cpu(cpu)); 223 } 224 } 225 } 226 227 static void kexec_prepare_cpus(void) 228 { 229 wake_offline_cpus(); 230 smp_call_function(kexec_smp_down, NULL, /* wait */0); 231 local_irq_disable(); 232 hard_irq_disable(); 233 234 mb(); /* make sure IRQs are disabled before we say they are */ 235 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; 236 237 kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF); 238 /* we are sure every CPU has IRQs off at this point */ 239 kexec_all_irq_disabled = 1; 240 241 /* 242 * Before removing MMU mappings make sure all CPUs have entered real 243 * mode: 244 */ 245 kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE); 246 247 /* after we tell the others to go down */ 248 if (ppc_md.kexec_cpu_down) 249 ppc_md.kexec_cpu_down(0, 0); 250 251 put_cpu(); 252 } 253 254 #else /* ! SMP */ 255 256 static void kexec_prepare_cpus(void) 257 { 258 /* 259 * move the secondarys to us so that we can copy 260 * the new kernel 0-0x100 safely 261 * 262 * do this if kexec in setup.c ? 263 * 264 * We need to release the cpus if we are ever going from an 265 * UP to an SMP kernel. 266 */ 267 smp_release_cpus(); 268 if (ppc_md.kexec_cpu_down) 269 ppc_md.kexec_cpu_down(0, 0); 270 local_irq_disable(); 271 hard_irq_disable(); 272 } 273 274 #endif /* SMP */ 275 276 /* 277 * kexec thread structure and stack. 278 * 279 * We need to make sure that this is 16384-byte aligned due to the 280 * way process stacks are handled. It also must be statically allocated 281 * or allocated as part of the kimage, because everything else may be 282 * overwritten when we copy the kexec image. We piggyback on the 283 * "init_task" linker section here to statically allocate a stack. 284 * 285 * We could use a smaller stack if we don't care about anything using 286 * current, but that audit has not been performed. 287 */ 288 static union thread_union kexec_stack = { }; 289 290 /* 291 * For similar reasons to the stack above, the kexecing CPU needs to be on a 292 * static PACA; we switch to kexec_paca. 293 */ 294 static struct paca_struct kexec_paca; 295 296 /* Our assembly helper, in misc_64.S */ 297 extern void kexec_sequence(void *newstack, unsigned long start, 298 void *image, void *control, 299 void (*clear_all)(void), 300 bool copy_with_mmu_off) __noreturn; 301 302 /* too late to fail here */ 303 void default_machine_kexec(struct kimage *image) 304 { 305 bool copy_with_mmu_off; 306 307 /* prepare control code if any */ 308 309 /* 310 * If the kexec boot is the normal one, need to shutdown other cpus 311 * into our wait loop and quiesce interrupts. 312 * Otherwise, in the case of crashed mode (crashing_cpu >= 0), 313 * stopping other CPUs and collecting their pt_regs is done before 314 * using debugger IPI. 315 */ 316 317 if (!kdump_in_progress()) 318 kexec_prepare_cpus(); 319 320 printk("kexec: Starting switchover sequence.\n"); 321 322 /* switch to a staticly allocated stack. Based on irq stack code. 323 * We setup preempt_count to avoid using VMX in memcpy. 324 * XXX: the task struct will likely be invalid once we do the copy! 325 */ 326 current_thread_info()->flags = 0; 327 current_thread_info()->preempt_count = HARDIRQ_OFFSET; 328 329 /* We need a static PACA, too; copy this CPU's PACA over and switch to 330 * it. Also poison per_cpu_offset and NULL lppaca to catch anyone using 331 * non-static data. 332 */ 333 memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct)); 334 kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL; 335 #ifdef CONFIG_PPC_PSERIES 336 kexec_paca.lppaca_ptr = NULL; 337 #endif 338 339 if (is_secure_guest() && !(image->preserve_context || 340 image->type == KEXEC_TYPE_CRASH)) { 341 uv_unshare_all_pages(); 342 printk("kexec: Unshared all shared pages.\n"); 343 } 344 345 paca_ptrs[kexec_paca.paca_index] = &kexec_paca; 346 347 setup_paca(&kexec_paca); 348 349 /* 350 * The lppaca should be unregistered at this point so the HV won't 351 * touch it. In the case of a crash, none of the lppacas are 352 * unregistered so there is not much we can do about it here. 353 */ 354 355 /* 356 * On Book3S, the copy must happen with the MMU off if we are either 357 * using Radix page tables or we are not in an LPAR since we can 358 * overwrite the page tables while copying. 359 * 360 * In an LPAR, we keep the MMU on otherwise we can't access beyond 361 * the RMA. On BookE there is no real MMU off mode, so we have to 362 * keep it enabled as well (but then we have bolted TLB entries). 363 */ 364 #ifdef CONFIG_PPC_BOOK3E_64 365 copy_with_mmu_off = false; 366 #else 367 copy_with_mmu_off = radix_enabled() || 368 !(firmware_has_feature(FW_FEATURE_LPAR) || 369 firmware_has_feature(FW_FEATURE_PS3_LV1)); 370 #endif 371 372 /* Some things are best done in assembly. Finding globals with 373 * a toc is easier in C, so pass in what we can. 374 */ 375 kexec_sequence(&kexec_stack, image->start, image, 376 page_address(image->control_code_page), 377 mmu_cleanup_all, copy_with_mmu_off); 378 /* NOTREACHED */ 379 } 380 381 #ifdef CONFIG_PPC_64S_HASH_MMU 382 /* Values we need to export to the second kernel via the device tree. */ 383 static __be64 htab_base; 384 static __be64 htab_size; 385 386 static struct property htab_base_prop = { 387 .name = "linux,htab-base", 388 .length = sizeof(unsigned long), 389 .value = &htab_base, 390 }; 391 392 static struct property htab_size_prop = { 393 .name = "linux,htab-size", 394 .length = sizeof(unsigned long), 395 .value = &htab_size, 396 }; 397 398 static int __init export_htab_values(void) 399 { 400 struct device_node *node; 401 402 /* On machines with no htab htab_address is NULL */ 403 if (!htab_address) 404 return -ENODEV; 405 406 node = of_find_node_by_path("/chosen"); 407 if (!node) 408 return -ENODEV; 409 410 /* remove any stale properties so ours can be found */ 411 of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL)); 412 of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL)); 413 414 htab_base = cpu_to_be64(__pa(htab_address)); 415 of_add_property(node, &htab_base_prop); 416 htab_size = cpu_to_be64(htab_size_bytes); 417 of_add_property(node, &htab_size_prop); 418 419 of_node_put(node); 420 return 0; 421 } 422 late_initcall(export_htab_values); 423 #endif /* CONFIG_PPC_64S_HASH_MMU */ 424 425 #if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_DUMP) 426 /** 427 * add_node_props - Reads node properties from device node structure and add 428 * them to fdt. 429 * @fdt: Flattened device tree of the kernel 430 * @node_offset: offset of the node to add a property at 431 * @dn: device node pointer 432 * 433 * Returns 0 on success, negative errno on error. 434 */ 435 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) 436 { 437 int ret = 0; 438 struct property *pp; 439 440 if (!dn) 441 return -EINVAL; 442 443 for_each_property_of_node(dn, pp) { 444 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length); 445 if (ret < 0) { 446 pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret)); 447 return ret; 448 } 449 } 450 return ret; 451 } 452 453 /** 454 * update_cpus_node - Update cpus node of flattened device tree using of_root 455 * device node. 456 * @fdt: Flattened device tree of the kernel. 457 * 458 * Returns 0 on success, negative errno on error. 459 */ 460 int update_cpus_node(void *fdt) 461 { 462 struct device_node *cpus_node, *dn; 463 int cpus_offset, cpus_subnode_offset, ret = 0; 464 465 cpus_offset = fdt_path_offset(fdt, "/cpus"); 466 if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { 467 pr_err("Malformed device tree: error reading /cpus node: %s\n", 468 fdt_strerror(cpus_offset)); 469 return cpus_offset; 470 } 471 472 if (cpus_offset > 0) { 473 ret = fdt_del_node(fdt, cpus_offset); 474 if (ret < 0) { 475 pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret)); 476 return -EINVAL; 477 } 478 } 479 480 /* Add cpus node to fdt */ 481 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); 482 if (cpus_offset < 0) { 483 pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset)); 484 return -EINVAL; 485 } 486 487 /* Add cpus node properties */ 488 cpus_node = of_find_node_by_path("/cpus"); 489 ret = add_node_props(fdt, cpus_offset, cpus_node); 490 of_node_put(cpus_node); 491 if (ret < 0) 492 return ret; 493 494 /* Loop through all subnodes of cpus and add them to fdt */ 495 for_each_node_by_type(dn, "cpu") { 496 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name); 497 if (cpus_subnode_offset < 0) { 498 pr_err("Unable to add %s subnode: %s\n", dn->full_name, 499 fdt_strerror(cpus_subnode_offset)); 500 ret = cpus_subnode_offset; 501 goto out; 502 } 503 504 ret = add_node_props(fdt, cpus_subnode_offset, dn); 505 if (ret < 0) 506 goto out; 507 } 508 out: 509 of_node_put(dn); 510 return ret; 511 } 512 #endif /* CONFIG_KEXEC_FILE || CONFIG_CRASH_DUMP */ 513