1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * PPC64 code to handle Linux booting another kernel. 4 * 5 * Copyright (C) 2004-2005, IBM Corp. 6 * 7 * Created by: Milton D Miller II 8 */ 9 10 11 #include <linux/kexec.h> 12 #include <linux/smp.h> 13 #include <linux/thread_info.h> 14 #include <linux/init_task.h> 15 #include <linux/errno.h> 16 #include <linux/kernel.h> 17 #include <linux/cpu.h> 18 #include <linux/hardirq.h> 19 #include <linux/of.h> 20 #include <linux/libfdt.h> 21 22 #include <asm/page.h> 23 #include <asm/current.h> 24 #include <asm/machdep.h> 25 #include <asm/cacheflush.h> 26 #include <asm/firmware.h> 27 #include <asm/paca.h> 28 #include <asm/mmu.h> 29 #include <asm/sections.h> /* _end */ 30 #include <asm/setup.h> 31 #include <asm/smp.h> 32 #include <asm/hw_breakpoint.h> 33 #include <asm/svm.h> 34 #include <asm/ultravisor.h> 35 #include <asm/crashdump-ppc64.h> 36 37 int machine_kexec_prepare(struct kimage *image) 38 { 39 int i; 40 unsigned long begin, end; /* limits of segment */ 41 unsigned long low, high; /* limits of blocked memory range */ 42 struct device_node *node; 43 const unsigned long *basep; 44 const unsigned int *sizep; 45 46 /* 47 * Since we use the kernel fault handlers and paging code to 48 * handle the virtual mode, we must make sure no destination 49 * overlaps kernel static data or bss. 50 */ 51 for (i = 0; i < image->nr_segments; i++) 52 if (image->segment[i].mem < __pa(_end)) 53 return -ETXTBSY; 54 55 /* We also should not overwrite the tce tables */ 56 for_each_node_by_type(node, "pci") { 57 basep = of_get_property(node, "linux,tce-base", NULL); 58 sizep = of_get_property(node, "linux,tce-size", NULL); 59 if (basep == NULL || sizep == NULL) 60 continue; 61 62 low = *basep; 63 high = low + (*sizep); 64 65 for (i = 0; i < image->nr_segments; i++) { 66 begin = image->segment[i].mem; 67 end = begin + image->segment[i].memsz; 68 69 if ((begin < high) && (end > low)) { 70 of_node_put(node); 71 return -ETXTBSY; 72 } 73 } 74 } 75 76 return 0; 77 } 78 79 /* Called during kexec sequence with MMU off */ 80 static notrace void copy_segments(unsigned long ind) 81 { 82 unsigned long entry; 83 unsigned long *ptr; 84 void *dest; 85 void *addr; 86 87 /* 88 * We rely on kexec_load to create a lists that properly 89 * initializes these pointers before they are used. 90 * We will still crash if the list is wrong, but at least 91 * the compiler will be quiet. 92 */ 93 ptr = NULL; 94 dest = NULL; 95 96 for (entry = ind; !(entry & IND_DONE); entry = *ptr++) { 97 addr = __va(entry & PAGE_MASK); 98 99 switch (entry & IND_FLAGS) { 100 case IND_DESTINATION: 101 dest = addr; 102 break; 103 case IND_INDIRECTION: 104 ptr = addr; 105 break; 106 case IND_SOURCE: 107 copy_page(dest, addr); 108 dest += PAGE_SIZE; 109 } 110 } 111 } 112 113 /* Called during kexec sequence with MMU off */ 114 notrace void kexec_copy_flush(struct kimage *image) 115 { 116 long i, nr_segments = image->nr_segments; 117 struct kexec_segment ranges[KEXEC_SEGMENT_MAX]; 118 119 /* save the ranges on the stack to efficiently flush the icache */ 120 memcpy(ranges, image->segment, sizeof(ranges)); 121 122 /* 123 * After this call we may not use anything allocated in dynamic 124 * memory, including *image. 125 * 126 * Only globals and the stack are allowed. 127 */ 128 copy_segments(image->head); 129 130 /* 131 * we need to clear the icache for all dest pages sometime, 132 * including ones that were in place on the original copy 133 */ 134 for (i = 0; i < nr_segments; i++) 135 flush_icache_range((unsigned long)__va(ranges[i].mem), 136 (unsigned long)__va(ranges[i].mem + ranges[i].memsz)); 137 } 138 139 #ifdef CONFIG_SMP 140 141 static int kexec_all_irq_disabled = 0; 142 143 static void kexec_smp_down(void *arg) 144 { 145 local_irq_disable(); 146 hard_irq_disable(); 147 148 mb(); /* make sure our irqs are disabled before we say they are */ 149 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; 150 while(kexec_all_irq_disabled == 0) 151 cpu_relax(); 152 mb(); /* make sure all irqs are disabled before this */ 153 hw_breakpoint_disable(); 154 /* 155 * Now every CPU has IRQs off, we can clear out any pending 156 * IPIs and be sure that no more will come in after this. 157 */ 158 if (ppc_md.kexec_cpu_down) 159 ppc_md.kexec_cpu_down(0, 1); 160 161 reset_sprs(); 162 163 kexec_smp_wait(); 164 /* NOTREACHED */ 165 } 166 167 static void kexec_prepare_cpus_wait(int wait_state) 168 { 169 int my_cpu, i, notified=-1; 170 171 hw_breakpoint_disable(); 172 my_cpu = get_cpu(); 173 /* Make sure each CPU has at least made it to the state we need. 174 * 175 * FIXME: There is a (slim) chance of a problem if not all of the CPUs 176 * are correctly onlined. If somehow we start a CPU on boot with RTAS 177 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in 178 * time, the boot CPU will timeout. If it does eventually execute 179 * stuff, the secondary will start up (paca_ptrs[]->cpu_start was 180 * written) and get into a peculiar state. 181 * If the platform supports smp_ops->take_timebase(), the secondary CPU 182 * will probably be spinning in there. If not (i.e. pseries), the 183 * secondary will continue on and try to online itself/idle/etc. If it 184 * survives that, we need to find these 185 * possible-but-not-online-but-should-be CPUs and chaperone them into 186 * kexec_smp_wait(). 187 */ 188 for_each_online_cpu(i) { 189 if (i == my_cpu) 190 continue; 191 192 while (paca_ptrs[i]->kexec_state < wait_state) { 193 barrier(); 194 if (i != notified) { 195 printk(KERN_INFO "kexec: waiting for cpu %d " 196 "(physical %d) to enter %i state\n", 197 i, paca_ptrs[i]->hw_cpu_id, wait_state); 198 notified = i; 199 } 200 } 201 } 202 mb(); 203 } 204 205 206 /* 207 * The add_cpu() call in wake_offline_cpus() can fail as cpu_bootable() 208 * returns false for CPUs that fail the cpu_smt_thread_allowed() check 209 * or non primary threads if SMT is disabled. Re-enable SMT and set the 210 * number of SMT threads to threads per core. 211 */ 212 static void kexec_smt_reenable(void) 213 { 214 #if defined(CONFIG_SMP) && defined(CONFIG_HOTPLUG_SMT) 215 lock_device_hotplug(); 216 cpu_smt_num_threads = threads_per_core; 217 cpu_smt_control = CPU_SMT_ENABLED; 218 unlock_device_hotplug(); 219 #endif 220 } 221 222 /* 223 * We need to make sure each present CPU is online. The next kernel will scan 224 * the device tree and assume primary threads are online and query secondary 225 * threads via RTAS to online them if required. If we don't online primary 226 * threads, they will be stuck. However, we also online secondary threads as we 227 * may be using 'cede offline'. In this case RTAS doesn't see the secondary 228 * threads as offline -- and again, these CPUs will be stuck. 229 * 230 * So, we online all CPUs that should be running, including secondary threads. 231 */ 232 static void wake_offline_cpus(void) 233 { 234 int cpu = 0; 235 236 kexec_smt_reenable(); 237 238 for_each_present_cpu(cpu) { 239 if (!cpu_online(cpu)) { 240 printk(KERN_INFO "kexec: Waking offline cpu %d.\n", 241 cpu); 242 WARN_ON(add_cpu(cpu)); 243 } 244 } 245 } 246 247 static void kexec_prepare_cpus(void) 248 { 249 wake_offline_cpus(); 250 smp_call_function(kexec_smp_down, NULL, /* wait */0); 251 local_irq_disable(); 252 hard_irq_disable(); 253 254 mb(); /* make sure IRQs are disabled before we say they are */ 255 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; 256 257 kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF); 258 /* we are sure every CPU has IRQs off at this point */ 259 kexec_all_irq_disabled = 1; 260 261 /* 262 * Before removing MMU mappings make sure all CPUs have entered real 263 * mode: 264 */ 265 kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE); 266 267 /* after we tell the others to go down */ 268 if (ppc_md.kexec_cpu_down) 269 ppc_md.kexec_cpu_down(0, 0); 270 271 put_cpu(); 272 } 273 274 #else /* ! SMP */ 275 276 static void kexec_prepare_cpus(void) 277 { 278 /* 279 * move the secondarys to us so that we can copy 280 * the new kernel 0-0x100 safely 281 * 282 * do this if kexec in setup.c ? 283 * 284 * We need to release the cpus if we are ever going from an 285 * UP to an SMP kernel. 286 */ 287 smp_release_cpus(); 288 if (ppc_md.kexec_cpu_down) 289 ppc_md.kexec_cpu_down(0, 0); 290 local_irq_disable(); 291 hard_irq_disable(); 292 } 293 294 #endif /* SMP */ 295 296 /* 297 * kexec thread structure and stack. 298 * 299 * We need to make sure that this is 16384-byte aligned due to the 300 * way process stacks are handled. It also must be statically allocated 301 * or allocated as part of the kimage, because everything else may be 302 * overwritten when we copy the kexec image. We piggyback on the 303 * "init_task" linker section here to statically allocate a stack. 304 * 305 * We could use a smaller stack if we don't care about anything using 306 * current, but that audit has not been performed. 307 */ 308 static union thread_union kexec_stack = { }; 309 310 /* 311 * For similar reasons to the stack above, the kexecing CPU needs to be on a 312 * static PACA; we switch to kexec_paca. 313 */ 314 static struct paca_struct kexec_paca; 315 316 /* Our assembly helper, in misc_64.S */ 317 extern void kexec_sequence(void *newstack, unsigned long start, 318 void *image, void *control, 319 void (*clear_all)(void), 320 bool copy_with_mmu_off) __noreturn; 321 322 /* too late to fail here */ 323 void default_machine_kexec(struct kimage *image) 324 { 325 bool copy_with_mmu_off; 326 327 /* prepare control code if any */ 328 329 /* 330 * If the kexec boot is the normal one, need to shutdown other cpus 331 * into our wait loop and quiesce interrupts. 332 * Otherwise, in the case of crashed mode (crashing_cpu >= 0), 333 * stopping other CPUs and collecting their pt_regs is done before 334 * using debugger IPI. 335 */ 336 337 if (!kdump_in_progress()) 338 kexec_prepare_cpus(); 339 340 #ifdef CONFIG_PPC_PSERIES 341 /* 342 * This must be done after other CPUs have shut down, otherwise they 343 * could execute the 'scv' instruction, which is not supported with 344 * reloc disabled (see configure_exceptions()). 345 */ 346 if (firmware_has_feature(FW_FEATURE_SET_MODE)) 347 pseries_disable_reloc_on_exc(); 348 #endif 349 350 printk("kexec: Starting switchover sequence.\n"); 351 352 /* switch to a staticly allocated stack. Based on irq stack code. 353 * We setup preempt_count to avoid using VMX in memcpy. 354 * XXX: the task struct will likely be invalid once we do the copy! 355 */ 356 current_thread_info()->flags = 0; 357 current_thread_info()->preempt_count = HARDIRQ_OFFSET; 358 359 /* We need a static PACA, too; copy this CPU's PACA over and switch to 360 * it. Also poison per_cpu_offset and NULL lppaca to catch anyone using 361 * non-static data. 362 */ 363 memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct)); 364 kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL; 365 #ifdef CONFIG_PPC_PSERIES 366 kexec_paca.lppaca_ptr = NULL; 367 #endif 368 369 if (is_secure_guest() && !(image->preserve_context || 370 image->type == KEXEC_TYPE_CRASH)) { 371 uv_unshare_all_pages(); 372 printk("kexec: Unshared all shared pages.\n"); 373 } 374 375 paca_ptrs[kexec_paca.paca_index] = &kexec_paca; 376 377 setup_paca(&kexec_paca); 378 379 /* 380 * The lppaca should be unregistered at this point so the HV won't 381 * touch it. In the case of a crash, none of the lppacas are 382 * unregistered so there is not much we can do about it here. 383 */ 384 385 /* 386 * On Book3S, the copy must happen with the MMU off if we are either 387 * using Radix page tables or we are not in an LPAR since we can 388 * overwrite the page tables while copying. 389 * 390 * In an LPAR, we keep the MMU on otherwise we can't access beyond 391 * the RMA. On BookE there is no real MMU off mode, so we have to 392 * keep it enabled as well (but then we have bolted TLB entries). 393 */ 394 #ifdef CONFIG_PPC_BOOK3E_64 395 copy_with_mmu_off = false; 396 #else 397 copy_with_mmu_off = radix_enabled() || 398 !(firmware_has_feature(FW_FEATURE_LPAR) || 399 firmware_has_feature(FW_FEATURE_PS3_LV1)); 400 #endif 401 402 /* Some things are best done in assembly. Finding globals with 403 * a toc is easier in C, so pass in what we can. 404 */ 405 kexec_sequence(&kexec_stack, image->start, image, 406 page_address(image->control_code_page), 407 mmu_cleanup_all, copy_with_mmu_off); 408 /* NOTREACHED */ 409 } 410 411 #ifdef CONFIG_PPC_64S_HASH_MMU 412 /* Values we need to export to the second kernel via the device tree. */ 413 static __be64 htab_base; 414 static __be64 htab_size; 415 416 static struct property htab_base_prop = { 417 .name = "linux,htab-base", 418 .length = sizeof(unsigned long), 419 .value = &htab_base, 420 }; 421 422 static struct property htab_size_prop = { 423 .name = "linux,htab-size", 424 .length = sizeof(unsigned long), 425 .value = &htab_size, 426 }; 427 428 static int __init export_htab_values(void) 429 { 430 struct device_node *node; 431 432 /* On machines with no htab htab_address is NULL */ 433 if (!htab_address) 434 return -ENODEV; 435 436 node = of_find_node_by_path("/chosen"); 437 if (!node) 438 return -ENODEV; 439 440 /* remove any stale properties so ours can be found */ 441 of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL)); 442 of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL)); 443 444 htab_base = cpu_to_be64(__pa(htab_address)); 445 of_add_property(node, &htab_base_prop); 446 htab_size = cpu_to_be64(htab_size_bytes); 447 of_add_property(node, &htab_size_prop); 448 449 of_node_put(node); 450 return 0; 451 } 452 late_initcall(export_htab_values); 453 #endif /* CONFIG_PPC_64S_HASH_MMU */ 454 455 #if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_DUMP) 456 /** 457 * add_node_props - Reads node properties from device node structure and add 458 * them to fdt. 459 * @fdt: Flattened device tree of the kernel 460 * @node_offset: offset of the node to add a property at 461 * @dn: device node pointer 462 * 463 * Returns 0 on success, negative errno on error. 464 */ 465 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) 466 { 467 int ret = 0; 468 struct property *pp; 469 470 if (!dn) 471 return -EINVAL; 472 473 for_each_property_of_node(dn, pp) { 474 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length); 475 if (ret < 0) { 476 pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret)); 477 return ret; 478 } 479 } 480 return ret; 481 } 482 483 /** 484 * update_cpus_node - Update cpus node of flattened device tree using of_root 485 * device node. 486 * @fdt: Flattened device tree of the kernel. 487 * 488 * Returns 0 on success, negative errno on error. 489 * 490 * Note: expecting no subnodes under /cpus/<node> with device_type == "cpu". 491 * If this changes, update this function to include them. 492 */ 493 int update_cpus_node(void *fdt) 494 { 495 int prev_node_offset; 496 const char *device_type; 497 const struct fdt_property *prop; 498 struct device_node *cpus_node, *dn; 499 int cpus_offset, cpus_subnode_offset, ret = 0; 500 501 cpus_offset = fdt_path_offset(fdt, "/cpus"); 502 if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { 503 pr_err("Malformed device tree: error reading /cpus node: %s\n", 504 fdt_strerror(cpus_offset)); 505 return cpus_offset; 506 } 507 508 prev_node_offset = cpus_offset; 509 /* Delete sub-nodes of /cpus node with device_type == "cpu" */ 510 for (cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset); cpus_subnode_offset >= 0;) { 511 /* Ignore nodes that do not have a device_type property or device_type != "cpu" */ 512 prop = fdt_get_property(fdt, cpus_subnode_offset, "device_type", NULL); 513 if (!prop || strcmp(prop->data, "cpu")) { 514 prev_node_offset = cpus_subnode_offset; 515 goto next_node; 516 } 517 518 ret = fdt_del_node(fdt, cpus_subnode_offset); 519 if (ret < 0) { 520 pr_err("Failed to delete a cpus sub-node: %s\n", fdt_strerror(ret)); 521 return ret; 522 } 523 next_node: 524 if (prev_node_offset == cpus_offset) 525 cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset); 526 else 527 cpus_subnode_offset = fdt_next_subnode(fdt, prev_node_offset); 528 } 529 530 cpus_node = of_find_node_by_path("/cpus"); 531 /* Fail here to avoid kexec/kdump kernel boot hung */ 532 if (!cpus_node) { 533 pr_err("No /cpus node found\n"); 534 return -EINVAL; 535 } 536 537 /* Add all /cpus sub-nodes of device_type == "cpu" to FDT */ 538 for_each_child_of_node(cpus_node, dn) { 539 /* Ignore device nodes that do not have a device_type property 540 * or device_type != "cpu". 541 */ 542 device_type = of_get_property(dn, "device_type", NULL); 543 if (!device_type || strcmp(device_type, "cpu")) 544 continue; 545 546 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name); 547 if (cpus_subnode_offset < 0) { 548 pr_err("Unable to add %s subnode: %s\n", dn->full_name, 549 fdt_strerror(cpus_subnode_offset)); 550 ret = cpus_subnode_offset; 551 goto out; 552 } 553 554 ret = add_node_props(fdt, cpus_subnode_offset, dn); 555 if (ret < 0) 556 goto out; 557 } 558 out: 559 of_node_put(cpus_node); 560 of_node_put(dn); 561 return ret; 562 } 563 #endif /* CONFIG_KEXEC_FILE || CONFIG_CRASH_DUMP */ 564