xref: /linux/arch/powerpc/kernel/watchdog.c (revision 4afc78eae10cd74c5a0b70822b9754d1d094c5d6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9 
10 #define pr_fmt(fmt) "watchdog: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/processor.h>
28 #include <linux/smp.h>
29 
30 #include <asm/interrupt.h>
31 #include <asm/paca.h>
32 #include <asm/nmi.h>
33 
34 /*
35  * The powerpc watchdog ensures that each CPU is able to service timers.
36  * The watchdog sets up a simple timer on each CPU to run once per timer
37  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
38  * the heartbeat.
39  *
40  * Then there are two systems to check that the heartbeat is still running.
41  * The local soft-NMI, and the SMP checker.
42  *
43  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
44  * are disabled with local_irq_disable(), platforms that use soft-masking
45  * can leave hardware interrupts enabled and handle them with a masked
46  * interrupt handler. The masked handler can send the timer interrupt to the
47  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
48  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
49  *
50  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
51  * with the current time, and take action if the difference exceeds the
52  * watchdog threshold.
53  *
54  * The limitation of the soft-NMI watchdog is that it does not work when
55  * interrupts are hard disabled or otherwise not being serviced. This is
56  * solved by also having a SMP watchdog where all CPUs check all other
57  * CPUs heartbeat.
58  *
59  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
60  * cpumask is kept, containing all CPUs which enable the watchdog. Each
61  * CPU clears their pending bit in their heartbeat timer. When the bitmask
62  * becomes empty, the last CPU to clear its pending bit updates a global
63  * timestamp and refills the pending bitmask.
64  *
65  * In the heartbeat timer, if any CPU notices that the global timestamp has
66  * not been updated for a period exceeding the watchdog threshold, then it
67  * means the CPU(s) with their bit still set in the pending mask have had
68  * their heartbeat stop, and action is taken.
69  *
70  * Some platforms implement true NMI IPIs, which can be used by the SMP
71  * watchdog to detect an unresponsive CPU and pull it out of its stuck
72  * state with the NMI IPI, to get crash/debug data from it. This way the
73  * SMP watchdog can detect hardware interrupts off lockups.
74  */
75 
76 static cpumask_t wd_cpus_enabled __read_mostly;
77 
78 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
79 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
80 
81 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
82 
83 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
84 static DEFINE_PER_CPU(u64, wd_timer_tb);
85 
86 /* SMP checker bits */
87 static unsigned long __wd_smp_lock;
88 static unsigned long __wd_reporting;
89 static cpumask_t wd_smp_cpus_pending;
90 static cpumask_t wd_smp_cpus_stuck;
91 static u64 wd_smp_last_reset_tb;
92 
93 /*
94  * Try to take the exclusive watchdog action / NMI IPI / printing lock.
95  * wd_smp_lock must be held. If this fails, we should return and wait
96  * for the watchdog to kick in again (or another CPU to trigger it).
97  *
98  * Importantly, if hardlockup_panic is set, wd_try_report failure should
99  * not delay the panic, because whichever other CPU is reporting will
100  * call panic.
101  */
102 static bool wd_try_report(void)
103 {
104 	if (__wd_reporting)
105 		return false;
106 	__wd_reporting = 1;
107 	return true;
108 }
109 
110 /* End printing after successful wd_try_report. wd_smp_lock not required. */
111 static void wd_end_reporting(void)
112 {
113 	smp_mb(); /* End printing "critical section" */
114 	WARN_ON_ONCE(__wd_reporting == 0);
115 	WRITE_ONCE(__wd_reporting, 0);
116 }
117 
118 static inline void wd_smp_lock(unsigned long *flags)
119 {
120 	/*
121 	 * Avoid locking layers if possible.
122 	 * This may be called from low level interrupt handlers at some
123 	 * point in future.
124 	 */
125 	raw_local_irq_save(*flags);
126 	hard_irq_disable(); /* Make it soft-NMI safe */
127 	while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
128 		raw_local_irq_restore(*flags);
129 		spin_until_cond(!test_bit(0, &__wd_smp_lock));
130 		raw_local_irq_save(*flags);
131 		hard_irq_disable();
132 	}
133 }
134 
135 static inline void wd_smp_unlock(unsigned long *flags)
136 {
137 	clear_bit_unlock(0, &__wd_smp_lock);
138 	raw_local_irq_restore(*flags);
139 }
140 
141 static void wd_lockup_ipi(struct pt_regs *regs)
142 {
143 	int cpu = raw_smp_processor_id();
144 	u64 tb = get_tb();
145 
146 	pr_emerg("CPU %d Hard LOCKUP\n", cpu);
147 	pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
148 		 cpu, tb, per_cpu(wd_timer_tb, cpu),
149 		 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
150 	print_modules();
151 	print_irqtrace_events(current);
152 	if (regs)
153 		show_regs(regs);
154 	else
155 		dump_stack();
156 
157 	/* Do not panic from here because that can recurse into NMI IPI layer */
158 }
159 
160 static bool set_cpu_stuck(int cpu)
161 {
162 	cpumask_set_cpu(cpu, &wd_smp_cpus_stuck);
163 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
164 	/*
165 	 * See wd_smp_clear_cpu_pending()
166 	 */
167 	smp_mb();
168 	if (cpumask_empty(&wd_smp_cpus_pending)) {
169 		wd_smp_last_reset_tb = get_tb();
170 		cpumask_andnot(&wd_smp_cpus_pending,
171 				&wd_cpus_enabled,
172 				&wd_smp_cpus_stuck);
173 		return true;
174 	}
175 	return false;
176 }
177 
178 static void watchdog_smp_panic(int cpu)
179 {
180 	static cpumask_t wd_smp_cpus_ipi; // protected by reporting
181 	unsigned long flags;
182 	u64 tb;
183 	int c;
184 
185 	wd_smp_lock(&flags);
186 	/* Double check some things under lock */
187 	tb = get_tb();
188 	if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
189 		goto out;
190 	if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
191 		goto out;
192 	if (!wd_try_report())
193 		goto out;
194 	for_each_online_cpu(c) {
195 		if (!cpumask_test_cpu(c, &wd_smp_cpus_pending))
196 			continue;
197 		if (c == cpu)
198 			continue; // should not happen
199 
200 		__cpumask_set_cpu(c, &wd_smp_cpus_ipi);
201 		if (set_cpu_stuck(c))
202 			break;
203 	}
204 	if (cpumask_empty(&wd_smp_cpus_ipi)) {
205 		wd_end_reporting();
206 		goto out;
207 	}
208 	wd_smp_unlock(&flags);
209 
210 	pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
211 		 cpu, cpumask_pr_args(&wd_smp_cpus_ipi));
212 	pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
213 		 cpu, tb, wd_smp_last_reset_tb,
214 		 tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
215 
216 	if (!sysctl_hardlockup_all_cpu_backtrace) {
217 		/*
218 		 * Try to trigger the stuck CPUs, unless we are going to
219 		 * get a backtrace on all of them anyway.
220 		 */
221 		for_each_cpu(c, &wd_smp_cpus_ipi) {
222 			smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
223 			__cpumask_clear_cpu(c, &wd_smp_cpus_ipi);
224 		}
225 	} else {
226 		trigger_allbutself_cpu_backtrace();
227 		cpumask_clear(&wd_smp_cpus_ipi);
228 	}
229 
230 	/*
231 	 * Force flush any remote buffers that might be stuck in IRQ context
232 	 * and therefore could not run their irq_work.
233 	 */
234 	printk_trigger_flush();
235 
236 	if (hardlockup_panic)
237 		nmi_panic(NULL, "Hard LOCKUP");
238 
239 	wd_end_reporting();
240 
241 	return;
242 
243 out:
244 	wd_smp_unlock(&flags);
245 }
246 
247 static void wd_smp_clear_cpu_pending(int cpu)
248 {
249 	if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
250 		if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
251 			struct pt_regs *regs = get_irq_regs();
252 			unsigned long flags;
253 
254 			pr_emerg("CPU %d became unstuck TB:%lld\n",
255 				 cpu, get_tb());
256 			print_irqtrace_events(current);
257 			if (regs)
258 				show_regs(regs);
259 			else
260 				dump_stack();
261 
262 			wd_smp_lock(&flags);
263 			cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
264 			wd_smp_unlock(&flags);
265 		} else {
266 			/*
267 			 * The last CPU to clear pending should have reset the
268 			 * watchdog so we generally should not find it empty
269 			 * here if our CPU was clear. However it could happen
270 			 * due to a rare race with another CPU taking the
271 			 * last CPU out of the mask concurrently.
272 			 *
273 			 * We can't add a warning for it. But just in case
274 			 * there is a problem with the watchdog that is causing
275 			 * the mask to not be reset, try to kick it along here.
276 			 */
277 			if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
278 				goto none_pending;
279 		}
280 		return;
281 	}
282 
283 	/*
284 	 * All other updates to wd_smp_cpus_pending are performed under
285 	 * wd_smp_lock. All of them are atomic except the case where the
286 	 * mask becomes empty and is reset. This will not happen here because
287 	 * cpu was tested to be in the bitmap (above), and a CPU only clears
288 	 * its own bit. _Except_ in the case where another CPU has detected a
289 	 * hard lockup on our CPU and takes us out of the pending mask. So in
290 	 * normal operation there will be no race here, no problem.
291 	 *
292 	 * In the lockup case, this atomic clear-bit vs a store that refills
293 	 * other bits in the accessed word wll not be a problem. The bit clear
294 	 * is atomic so it will not cause the store to get lost, and the store
295 	 * will never set this bit so it will not overwrite the bit clear. The
296 	 * only way for a stuck CPU to return to the pending bitmap is to
297 	 * become unstuck itself.
298 	 */
299 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
300 
301 	/*
302 	 * Order the store to clear pending with the load(s) to check all
303 	 * words in the pending mask to check they are all empty. This orders
304 	 * with the same barrier on another CPU. This prevents two CPUs
305 	 * clearing the last 2 pending bits, but neither seeing the other's
306 	 * store when checking if the mask is empty, and missing an empty
307 	 * mask, which ends with a false positive.
308 	 */
309 	smp_mb();
310 	if (cpumask_empty(&wd_smp_cpus_pending)) {
311 		unsigned long flags;
312 
313 none_pending:
314 		/*
315 		 * Double check under lock because more than one CPU could see
316 		 * a clear mask with the lockless check after clearing their
317 		 * pending bits.
318 		 */
319 		wd_smp_lock(&flags);
320 		if (cpumask_empty(&wd_smp_cpus_pending)) {
321 			wd_smp_last_reset_tb = get_tb();
322 			cpumask_andnot(&wd_smp_cpus_pending,
323 					&wd_cpus_enabled,
324 					&wd_smp_cpus_stuck);
325 		}
326 		wd_smp_unlock(&flags);
327 	}
328 }
329 
330 static void watchdog_timer_interrupt(int cpu)
331 {
332 	u64 tb = get_tb();
333 
334 	per_cpu(wd_timer_tb, cpu) = tb;
335 
336 	wd_smp_clear_cpu_pending(cpu);
337 
338 	if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
339 		watchdog_smp_panic(cpu);
340 }
341 
342 DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
343 {
344 	unsigned long flags;
345 	int cpu = raw_smp_processor_id();
346 	u64 tb;
347 
348 	/* should only arrive from kernel, with irqs disabled */
349 	WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
350 
351 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
352 		return 0;
353 
354 	__this_cpu_inc(irq_stat.soft_nmi_irqs);
355 
356 	tb = get_tb();
357 	if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
358 		/*
359 		 * Taking wd_smp_lock here means it is a soft-NMI lock, which
360 		 * means we can't take any regular or irqsafe spin locks while
361 		 * holding this lock. This is why timers can't printk while
362 		 * holding the lock.
363 		 */
364 		wd_smp_lock(&flags);
365 		if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
366 			wd_smp_unlock(&flags);
367 			return 0;
368 		}
369 		if (!wd_try_report()) {
370 			wd_smp_unlock(&flags);
371 			/* Couldn't report, try again in 100ms */
372 			mtspr(SPRN_DEC, 100 * tb_ticks_per_usec * 1000);
373 			return 0;
374 		}
375 
376 		set_cpu_stuck(cpu);
377 
378 		wd_smp_unlock(&flags);
379 
380 		pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
381 			 cpu, (void *)regs->nip);
382 		pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
383 			 cpu, tb, per_cpu(wd_timer_tb, cpu),
384 			 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
385 		print_modules();
386 		print_irqtrace_events(current);
387 		show_regs(regs);
388 
389 		if (sysctl_hardlockup_all_cpu_backtrace)
390 			trigger_allbutself_cpu_backtrace();
391 
392 		if (hardlockup_panic)
393 			nmi_panic(regs, "Hard LOCKUP");
394 
395 		wd_end_reporting();
396 	}
397 	/*
398 	 * We are okay to change DEC in soft_nmi_interrupt because the masked
399 	 * handler has marked a DEC as pending, so the timer interrupt will be
400 	 * replayed as soon as local irqs are enabled again.
401 	 */
402 	if (wd_panic_timeout_tb < 0x7fffffff)
403 		mtspr(SPRN_DEC, wd_panic_timeout_tb);
404 
405 	return 0;
406 }
407 
408 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
409 {
410 	int cpu = smp_processor_id();
411 
412 	if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
413 		return HRTIMER_NORESTART;
414 
415 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
416 		return HRTIMER_NORESTART;
417 
418 	watchdog_timer_interrupt(cpu);
419 
420 	hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
421 
422 	return HRTIMER_RESTART;
423 }
424 
425 void arch_touch_nmi_watchdog(void)
426 {
427 	unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
428 	int cpu = smp_processor_id();
429 	u64 tb;
430 
431 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
432 		return;
433 
434 	tb = get_tb();
435 	if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
436 		per_cpu(wd_timer_tb, cpu) = tb;
437 		wd_smp_clear_cpu_pending(cpu);
438 	}
439 }
440 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
441 
442 static void start_watchdog(void *arg)
443 {
444 	struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
445 	int cpu = smp_processor_id();
446 	unsigned long flags;
447 
448 	if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
449 		WARN_ON(1);
450 		return;
451 	}
452 
453 	if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
454 		return;
455 
456 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
457 		return;
458 
459 	wd_smp_lock(&flags);
460 	cpumask_set_cpu(cpu, &wd_cpus_enabled);
461 	if (cpumask_weight(&wd_cpus_enabled) == 1) {
462 		cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
463 		wd_smp_last_reset_tb = get_tb();
464 	}
465 	wd_smp_unlock(&flags);
466 
467 	*this_cpu_ptr(&wd_timer_tb) = get_tb();
468 
469 	hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
470 	hrtimer->function = watchdog_timer_fn;
471 	hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
472 		      HRTIMER_MODE_REL_PINNED);
473 }
474 
475 static int start_watchdog_on_cpu(unsigned int cpu)
476 {
477 	return smp_call_function_single(cpu, start_watchdog, NULL, true);
478 }
479 
480 static void stop_watchdog(void *arg)
481 {
482 	struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
483 	int cpu = smp_processor_id();
484 	unsigned long flags;
485 
486 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
487 		return; /* Can happen in CPU unplug case */
488 
489 	hrtimer_cancel(hrtimer);
490 
491 	wd_smp_lock(&flags);
492 	cpumask_clear_cpu(cpu, &wd_cpus_enabled);
493 	wd_smp_unlock(&flags);
494 
495 	wd_smp_clear_cpu_pending(cpu);
496 }
497 
498 static int stop_watchdog_on_cpu(unsigned int cpu)
499 {
500 	return smp_call_function_single(cpu, stop_watchdog, NULL, true);
501 }
502 
503 static void watchdog_calc_timeouts(void)
504 {
505 	wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
506 
507 	/* Have the SMP detector trigger a bit later */
508 	wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
509 
510 	/* 2/5 is the factor that the perf based detector uses */
511 	wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
512 }
513 
514 void watchdog_nmi_stop(void)
515 {
516 	int cpu;
517 
518 	for_each_cpu(cpu, &wd_cpus_enabled)
519 		stop_watchdog_on_cpu(cpu);
520 }
521 
522 void watchdog_nmi_start(void)
523 {
524 	int cpu;
525 
526 	watchdog_calc_timeouts();
527 	for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
528 		start_watchdog_on_cpu(cpu);
529 }
530 
531 /*
532  * Invoked from core watchdog init.
533  */
534 int __init watchdog_nmi_probe(void)
535 {
536 	int err;
537 
538 	err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
539 					"powerpc/watchdog:online",
540 					start_watchdog_on_cpu,
541 					stop_watchdog_on_cpu);
542 	if (err < 0) {
543 		pr_warn("could not be initialized");
544 		return err;
545 	}
546 	return 0;
547 }
548