xref: /linux/arch/powerpc/kernel/traps.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #ifdef CONFIG_PPC32
48 #include <asm/reg.h>
49 #endif
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 
66 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
67 int (*__debugger)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
74 
75 EXPORT_SYMBOL(__debugger);
76 EXPORT_SYMBOL(__debugger_ipi);
77 EXPORT_SYMBOL(__debugger_bpt);
78 EXPORT_SYMBOL(__debugger_sstep);
79 EXPORT_SYMBOL(__debugger_iabr_match);
80 EXPORT_SYMBOL(__debugger_break_match);
81 EXPORT_SYMBOL(__debugger_fault_handler);
82 #endif
83 
84 /* Transactional Memory trap debug */
85 #ifdef TM_DEBUG_SW
86 #define TM_DEBUG(x...) printk(KERN_INFO x)
87 #else
88 #define TM_DEBUG(x...) do { } while(0)
89 #endif
90 
91 /*
92  * Trap & Exception support
93  */
94 
95 #ifdef CONFIG_PMAC_BACKLIGHT
96 static void pmac_backlight_unblank(void)
97 {
98 	mutex_lock(&pmac_backlight_mutex);
99 	if (pmac_backlight) {
100 		struct backlight_properties *props;
101 
102 		props = &pmac_backlight->props;
103 		props->brightness = props->max_brightness;
104 		props->power = FB_BLANK_UNBLANK;
105 		backlight_update_status(pmac_backlight);
106 	}
107 	mutex_unlock(&pmac_backlight_mutex);
108 }
109 #else
110 static inline void pmac_backlight_unblank(void) { }
111 #endif
112 
113 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
114 static int die_owner = -1;
115 static unsigned int die_nest_count;
116 static int die_counter;
117 
118 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
119 {
120 	int cpu;
121 	unsigned long flags;
122 
123 	if (debugger(regs))
124 		return 1;
125 
126 	oops_enter();
127 
128 	/* racy, but better than risking deadlock. */
129 	raw_local_irq_save(flags);
130 	cpu = smp_processor_id();
131 	if (!arch_spin_trylock(&die_lock)) {
132 		if (cpu == die_owner)
133 			/* nested oops. should stop eventually */;
134 		else
135 			arch_spin_lock(&die_lock);
136 	}
137 	die_nest_count++;
138 	die_owner = cpu;
139 	console_verbose();
140 	bust_spinlocks(1);
141 	if (machine_is(powermac))
142 		pmac_backlight_unblank();
143 	return flags;
144 }
145 
146 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
147 			       int signr)
148 {
149 	bust_spinlocks(0);
150 	die_owner = -1;
151 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
152 	die_nest_count--;
153 	oops_exit();
154 	printk("\n");
155 	if (!die_nest_count)
156 		/* Nest count reaches zero, release the lock. */
157 		arch_spin_unlock(&die_lock);
158 	raw_local_irq_restore(flags);
159 
160 	crash_fadump(regs, "die oops");
161 
162 	/*
163 	 * A system reset (0x100) is a request to dump, so we always send
164 	 * it through the crashdump code.
165 	 */
166 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
167 		crash_kexec(regs);
168 
169 		/*
170 		 * We aren't the primary crash CPU. We need to send it
171 		 * to a holding pattern to avoid it ending up in the panic
172 		 * code.
173 		 */
174 		crash_kexec_secondary(regs);
175 	}
176 
177 	if (!signr)
178 		return;
179 
180 	/*
181 	 * While our oops output is serialised by a spinlock, output
182 	 * from panic() called below can race and corrupt it. If we
183 	 * know we are going to panic, delay for 1 second so we have a
184 	 * chance to get clean backtraces from all CPUs that are oopsing.
185 	 */
186 	if (in_interrupt() || panic_on_oops || !current->pid ||
187 	    is_global_init(current)) {
188 		mdelay(MSEC_PER_SEC);
189 	}
190 
191 	if (in_interrupt())
192 		panic("Fatal exception in interrupt");
193 	if (panic_on_oops)
194 		panic("Fatal exception");
195 	do_exit(signr);
196 }
197 
198 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
199 {
200 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
201 #ifdef CONFIG_PREEMPT
202 	printk("PREEMPT ");
203 #endif
204 #ifdef CONFIG_SMP
205 	printk("SMP NR_CPUS=%d ", NR_CPUS);
206 #endif
207 #ifdef CONFIG_DEBUG_PAGEALLOC
208 	printk("DEBUG_PAGEALLOC ");
209 #endif
210 #ifdef CONFIG_NUMA
211 	printk("NUMA ");
212 #endif
213 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
214 
215 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
216 		return 1;
217 
218 	print_modules();
219 	show_regs(regs);
220 
221 	return 0;
222 }
223 
224 void die(const char *str, struct pt_regs *regs, long err)
225 {
226 	unsigned long flags = oops_begin(regs);
227 
228 	if (__die(str, regs, err))
229 		err = 0;
230 	oops_end(flags, regs, err);
231 }
232 
233 void user_single_step_siginfo(struct task_struct *tsk,
234 				struct pt_regs *regs, siginfo_t *info)
235 {
236 	memset(info, 0, sizeof(*info));
237 	info->si_signo = SIGTRAP;
238 	info->si_code = TRAP_TRACE;
239 	info->si_addr = (void __user *)regs->nip;
240 }
241 
242 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
243 {
244 	siginfo_t info;
245 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 			"at %08lx nip %08lx lr %08lx code %x\n";
247 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
248 			"at %016lx nip %016lx lr %016lx code %x\n";
249 
250 	if (!user_mode(regs)) {
251 		die("Exception in kernel mode", regs, signr);
252 		return;
253 	}
254 
255 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
256 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
257 				   current->comm, current->pid, signr,
258 				   addr, regs->nip, regs->link, code);
259 	}
260 
261 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
262 		local_irq_enable();
263 
264 	current->thread.trap_nr = code;
265 	memset(&info, 0, sizeof(info));
266 	info.si_signo = signr;
267 	info.si_code = code;
268 	info.si_addr = (void __user *) addr;
269 	force_sig_info(signr, &info, current);
270 }
271 
272 #ifdef CONFIG_PPC64
273 void system_reset_exception(struct pt_regs *regs)
274 {
275 	/* See if any machine dependent calls */
276 	if (ppc_md.system_reset_exception) {
277 		if (ppc_md.system_reset_exception(regs))
278 			return;
279 	}
280 
281 	die("System Reset", regs, SIGABRT);
282 
283 	/* Must die if the interrupt is not recoverable */
284 	if (!(regs->msr & MSR_RI))
285 		panic("Unrecoverable System Reset");
286 
287 	/* What should we do here? We could issue a shutdown or hard reset. */
288 }
289 #endif
290 
291 /*
292  * I/O accesses can cause machine checks on powermacs.
293  * Check if the NIP corresponds to the address of a sync
294  * instruction for which there is an entry in the exception
295  * table.
296  * Note that the 601 only takes a machine check on TEA
297  * (transfer error ack) signal assertion, and does not
298  * set any of the top 16 bits of SRR1.
299  *  -- paulus.
300  */
301 static inline int check_io_access(struct pt_regs *regs)
302 {
303 #ifdef CONFIG_PPC32
304 	unsigned long msr = regs->msr;
305 	const struct exception_table_entry *entry;
306 	unsigned int *nip = (unsigned int *)regs->nip;
307 
308 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
309 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
310 		/*
311 		 * Check that it's a sync instruction, or somewhere
312 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
313 		 * As the address is in the exception table
314 		 * we should be able to read the instr there.
315 		 * For the debug message, we look at the preceding
316 		 * load or store.
317 		 */
318 		if (*nip == 0x60000000)		/* nop */
319 			nip -= 2;
320 		else if (*nip == 0x4c00012c)	/* isync */
321 			--nip;
322 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
323 			/* sync or twi */
324 			unsigned int rb;
325 
326 			--nip;
327 			rb = (*nip >> 11) & 0x1f;
328 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
329 			       (*nip & 0x100)? "OUT to": "IN from",
330 			       regs->gpr[rb] - _IO_BASE, nip);
331 			regs->msr |= MSR_RI;
332 			regs->nip = entry->fixup;
333 			return 1;
334 		}
335 	}
336 #endif /* CONFIG_PPC32 */
337 	return 0;
338 }
339 
340 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
341 /* On 4xx, the reason for the machine check or program exception
342    is in the ESR. */
343 #define get_reason(regs)	((regs)->dsisr)
344 #ifndef CONFIG_FSL_BOOKE
345 #define get_mc_reason(regs)	((regs)->dsisr)
346 #else
347 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
348 #endif
349 #define REASON_FP		ESR_FP
350 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
351 #define REASON_PRIVILEGED	ESR_PPR
352 #define REASON_TRAP		ESR_PTR
353 
354 /* single-step stuff */
355 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
356 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
357 
358 #else
359 /* On non-4xx, the reason for the machine check or program
360    exception is in the MSR. */
361 #define get_reason(regs)	((regs)->msr)
362 #define get_mc_reason(regs)	((regs)->msr)
363 #define REASON_TM		0x200000
364 #define REASON_FP		0x100000
365 #define REASON_ILLEGAL		0x80000
366 #define REASON_PRIVILEGED	0x40000
367 #define REASON_TRAP		0x20000
368 
369 #define single_stepping(regs)	((regs)->msr & MSR_SE)
370 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
371 #endif
372 
373 #if defined(CONFIG_4xx)
374 int machine_check_4xx(struct pt_regs *regs)
375 {
376 	unsigned long reason = get_mc_reason(regs);
377 
378 	if (reason & ESR_IMCP) {
379 		printk("Instruction");
380 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
381 	} else
382 		printk("Data");
383 	printk(" machine check in kernel mode.\n");
384 
385 	return 0;
386 }
387 
388 int machine_check_440A(struct pt_regs *regs)
389 {
390 	unsigned long reason = get_mc_reason(regs);
391 
392 	printk("Machine check in kernel mode.\n");
393 	if (reason & ESR_IMCP){
394 		printk("Instruction Synchronous Machine Check exception\n");
395 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
396 	}
397 	else {
398 		u32 mcsr = mfspr(SPRN_MCSR);
399 		if (mcsr & MCSR_IB)
400 			printk("Instruction Read PLB Error\n");
401 		if (mcsr & MCSR_DRB)
402 			printk("Data Read PLB Error\n");
403 		if (mcsr & MCSR_DWB)
404 			printk("Data Write PLB Error\n");
405 		if (mcsr & MCSR_TLBP)
406 			printk("TLB Parity Error\n");
407 		if (mcsr & MCSR_ICP){
408 			flush_instruction_cache();
409 			printk("I-Cache Parity Error\n");
410 		}
411 		if (mcsr & MCSR_DCSP)
412 			printk("D-Cache Search Parity Error\n");
413 		if (mcsr & MCSR_DCFP)
414 			printk("D-Cache Flush Parity Error\n");
415 		if (mcsr & MCSR_IMPE)
416 			printk("Machine Check exception is imprecise\n");
417 
418 		/* Clear MCSR */
419 		mtspr(SPRN_MCSR, mcsr);
420 	}
421 	return 0;
422 }
423 
424 int machine_check_47x(struct pt_regs *regs)
425 {
426 	unsigned long reason = get_mc_reason(regs);
427 	u32 mcsr;
428 
429 	printk(KERN_ERR "Machine check in kernel mode.\n");
430 	if (reason & ESR_IMCP) {
431 		printk(KERN_ERR
432 		       "Instruction Synchronous Machine Check exception\n");
433 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
434 		return 0;
435 	}
436 	mcsr = mfspr(SPRN_MCSR);
437 	if (mcsr & MCSR_IB)
438 		printk(KERN_ERR "Instruction Read PLB Error\n");
439 	if (mcsr & MCSR_DRB)
440 		printk(KERN_ERR "Data Read PLB Error\n");
441 	if (mcsr & MCSR_DWB)
442 		printk(KERN_ERR "Data Write PLB Error\n");
443 	if (mcsr & MCSR_TLBP)
444 		printk(KERN_ERR "TLB Parity Error\n");
445 	if (mcsr & MCSR_ICP) {
446 		flush_instruction_cache();
447 		printk(KERN_ERR "I-Cache Parity Error\n");
448 	}
449 	if (mcsr & MCSR_DCSP)
450 		printk(KERN_ERR "D-Cache Search Parity Error\n");
451 	if (mcsr & PPC47x_MCSR_GPR)
452 		printk(KERN_ERR "GPR Parity Error\n");
453 	if (mcsr & PPC47x_MCSR_FPR)
454 		printk(KERN_ERR "FPR Parity Error\n");
455 	if (mcsr & PPC47x_MCSR_IPR)
456 		printk(KERN_ERR "Machine Check exception is imprecise\n");
457 
458 	/* Clear MCSR */
459 	mtspr(SPRN_MCSR, mcsr);
460 
461 	return 0;
462 }
463 #elif defined(CONFIG_E500)
464 int machine_check_e500mc(struct pt_regs *regs)
465 {
466 	unsigned long mcsr = mfspr(SPRN_MCSR);
467 	unsigned long reason = mcsr;
468 	int recoverable = 1;
469 
470 	if (reason & MCSR_LD) {
471 		recoverable = fsl_rio_mcheck_exception(regs);
472 		if (recoverable == 1)
473 			goto silent_out;
474 	}
475 
476 	printk("Machine check in kernel mode.\n");
477 	printk("Caused by (from MCSR=%lx): ", reason);
478 
479 	if (reason & MCSR_MCP)
480 		printk("Machine Check Signal\n");
481 
482 	if (reason & MCSR_ICPERR) {
483 		printk("Instruction Cache Parity Error\n");
484 
485 		/*
486 		 * This is recoverable by invalidating the i-cache.
487 		 */
488 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
489 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
490 			;
491 
492 		/*
493 		 * This will generally be accompanied by an instruction
494 		 * fetch error report -- only treat MCSR_IF as fatal
495 		 * if it wasn't due to an L1 parity error.
496 		 */
497 		reason &= ~MCSR_IF;
498 	}
499 
500 	if (reason & MCSR_DCPERR_MC) {
501 		printk("Data Cache Parity Error\n");
502 
503 		/*
504 		 * In write shadow mode we auto-recover from the error, but it
505 		 * may still get logged and cause a machine check.  We should
506 		 * only treat the non-write shadow case as non-recoverable.
507 		 */
508 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
509 			recoverable = 0;
510 	}
511 
512 	if (reason & MCSR_L2MMU_MHIT) {
513 		printk("Hit on multiple TLB entries\n");
514 		recoverable = 0;
515 	}
516 
517 	if (reason & MCSR_NMI)
518 		printk("Non-maskable interrupt\n");
519 
520 	if (reason & MCSR_IF) {
521 		printk("Instruction Fetch Error Report\n");
522 		recoverable = 0;
523 	}
524 
525 	if (reason & MCSR_LD) {
526 		printk("Load Error Report\n");
527 		recoverable = 0;
528 	}
529 
530 	if (reason & MCSR_ST) {
531 		printk("Store Error Report\n");
532 		recoverable = 0;
533 	}
534 
535 	if (reason & MCSR_LDG) {
536 		printk("Guarded Load Error Report\n");
537 		recoverable = 0;
538 	}
539 
540 	if (reason & MCSR_TLBSYNC)
541 		printk("Simultaneous tlbsync operations\n");
542 
543 	if (reason & MCSR_BSL2_ERR) {
544 		printk("Level 2 Cache Error\n");
545 		recoverable = 0;
546 	}
547 
548 	if (reason & MCSR_MAV) {
549 		u64 addr;
550 
551 		addr = mfspr(SPRN_MCAR);
552 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
553 
554 		printk("Machine Check %s Address: %#llx\n",
555 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
556 	}
557 
558 silent_out:
559 	mtspr(SPRN_MCSR, mcsr);
560 	return mfspr(SPRN_MCSR) == 0 && recoverable;
561 }
562 
563 int machine_check_e500(struct pt_regs *regs)
564 {
565 	unsigned long reason = get_mc_reason(regs);
566 
567 	if (reason & MCSR_BUS_RBERR) {
568 		if (fsl_rio_mcheck_exception(regs))
569 			return 1;
570 	}
571 
572 	printk("Machine check in kernel mode.\n");
573 	printk("Caused by (from MCSR=%lx): ", reason);
574 
575 	if (reason & MCSR_MCP)
576 		printk("Machine Check Signal\n");
577 	if (reason & MCSR_ICPERR)
578 		printk("Instruction Cache Parity Error\n");
579 	if (reason & MCSR_DCP_PERR)
580 		printk("Data Cache Push Parity Error\n");
581 	if (reason & MCSR_DCPERR)
582 		printk("Data Cache Parity Error\n");
583 	if (reason & MCSR_BUS_IAERR)
584 		printk("Bus - Instruction Address Error\n");
585 	if (reason & MCSR_BUS_RAERR)
586 		printk("Bus - Read Address Error\n");
587 	if (reason & MCSR_BUS_WAERR)
588 		printk("Bus - Write Address Error\n");
589 	if (reason & MCSR_BUS_IBERR)
590 		printk("Bus - Instruction Data Error\n");
591 	if (reason & MCSR_BUS_RBERR)
592 		printk("Bus - Read Data Bus Error\n");
593 	if (reason & MCSR_BUS_WBERR)
594 		printk("Bus - Read Data Bus Error\n");
595 	if (reason & MCSR_BUS_IPERR)
596 		printk("Bus - Instruction Parity Error\n");
597 	if (reason & MCSR_BUS_RPERR)
598 		printk("Bus - Read Parity Error\n");
599 
600 	return 0;
601 }
602 
603 int machine_check_generic(struct pt_regs *regs)
604 {
605 	return 0;
606 }
607 #elif defined(CONFIG_E200)
608 int machine_check_e200(struct pt_regs *regs)
609 {
610 	unsigned long reason = get_mc_reason(regs);
611 
612 	printk("Machine check in kernel mode.\n");
613 	printk("Caused by (from MCSR=%lx): ", reason);
614 
615 	if (reason & MCSR_MCP)
616 		printk("Machine Check Signal\n");
617 	if (reason & MCSR_CP_PERR)
618 		printk("Cache Push Parity Error\n");
619 	if (reason & MCSR_CPERR)
620 		printk("Cache Parity Error\n");
621 	if (reason & MCSR_EXCP_ERR)
622 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
623 	if (reason & MCSR_BUS_IRERR)
624 		printk("Bus - Read Bus Error on instruction fetch\n");
625 	if (reason & MCSR_BUS_DRERR)
626 		printk("Bus - Read Bus Error on data load\n");
627 	if (reason & MCSR_BUS_WRERR)
628 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
629 
630 	return 0;
631 }
632 #else
633 int machine_check_generic(struct pt_regs *regs)
634 {
635 	unsigned long reason = get_mc_reason(regs);
636 
637 	printk("Machine check in kernel mode.\n");
638 	printk("Caused by (from SRR1=%lx): ", reason);
639 	switch (reason & 0x601F0000) {
640 	case 0x80000:
641 		printk("Machine check signal\n");
642 		break;
643 	case 0:		/* for 601 */
644 	case 0x40000:
645 	case 0x140000:	/* 7450 MSS error and TEA */
646 		printk("Transfer error ack signal\n");
647 		break;
648 	case 0x20000:
649 		printk("Data parity error signal\n");
650 		break;
651 	case 0x10000:
652 		printk("Address parity error signal\n");
653 		break;
654 	case 0x20000000:
655 		printk("L1 Data Cache error\n");
656 		break;
657 	case 0x40000000:
658 		printk("L1 Instruction Cache error\n");
659 		break;
660 	case 0x00100000:
661 		printk("L2 data cache parity error\n");
662 		break;
663 	default:
664 		printk("Unknown values in msr\n");
665 	}
666 	return 0;
667 }
668 #endif /* everything else */
669 
670 void machine_check_exception(struct pt_regs *regs)
671 {
672 	enum ctx_state prev_state = exception_enter();
673 	int recover = 0;
674 
675 	__get_cpu_var(irq_stat).mce_exceptions++;
676 
677 	/* See if any machine dependent calls. In theory, we would want
678 	 * to call the CPU first, and call the ppc_md. one if the CPU
679 	 * one returns a positive number. However there is existing code
680 	 * that assumes the board gets a first chance, so let's keep it
681 	 * that way for now and fix things later. --BenH.
682 	 */
683 	if (ppc_md.machine_check_exception)
684 		recover = ppc_md.machine_check_exception(regs);
685 	else if (cur_cpu_spec->machine_check)
686 		recover = cur_cpu_spec->machine_check(regs);
687 
688 	if (recover > 0)
689 		goto bail;
690 
691 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
692 	/* the qspan pci read routines can cause machine checks -- Cort
693 	 *
694 	 * yuck !!! that totally needs to go away ! There are better ways
695 	 * to deal with that than having a wart in the mcheck handler.
696 	 * -- BenH
697 	 */
698 	bad_page_fault(regs, regs->dar, SIGBUS);
699 	goto bail;
700 #endif
701 
702 	if (debugger_fault_handler(regs))
703 		goto bail;
704 
705 	if (check_io_access(regs))
706 		goto bail;
707 
708 	die("Machine check", regs, SIGBUS);
709 
710 	/* Must die if the interrupt is not recoverable */
711 	if (!(regs->msr & MSR_RI))
712 		panic("Unrecoverable Machine check");
713 
714 bail:
715 	exception_exit(prev_state);
716 }
717 
718 void SMIException(struct pt_regs *regs)
719 {
720 	die("System Management Interrupt", regs, SIGABRT);
721 }
722 
723 void unknown_exception(struct pt_regs *regs)
724 {
725 	enum ctx_state prev_state = exception_enter();
726 
727 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
728 	       regs->nip, regs->msr, regs->trap);
729 
730 	_exception(SIGTRAP, regs, 0, 0);
731 
732 	exception_exit(prev_state);
733 }
734 
735 void instruction_breakpoint_exception(struct pt_regs *regs)
736 {
737 	enum ctx_state prev_state = exception_enter();
738 
739 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
740 					5, SIGTRAP) == NOTIFY_STOP)
741 		goto bail;
742 	if (debugger_iabr_match(regs))
743 		goto bail;
744 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
745 
746 bail:
747 	exception_exit(prev_state);
748 }
749 
750 void RunModeException(struct pt_regs *regs)
751 {
752 	_exception(SIGTRAP, regs, 0, 0);
753 }
754 
755 void __kprobes single_step_exception(struct pt_regs *regs)
756 {
757 	enum ctx_state prev_state = exception_enter();
758 
759 	clear_single_step(regs);
760 
761 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
762 					5, SIGTRAP) == NOTIFY_STOP)
763 		goto bail;
764 	if (debugger_sstep(regs))
765 		goto bail;
766 
767 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
768 
769 bail:
770 	exception_exit(prev_state);
771 }
772 
773 /*
774  * After we have successfully emulated an instruction, we have to
775  * check if the instruction was being single-stepped, and if so,
776  * pretend we got a single-step exception.  This was pointed out
777  * by Kumar Gala.  -- paulus
778  */
779 static void emulate_single_step(struct pt_regs *regs)
780 {
781 	if (single_stepping(regs))
782 		single_step_exception(regs);
783 }
784 
785 static inline int __parse_fpscr(unsigned long fpscr)
786 {
787 	int ret = 0;
788 
789 	/* Invalid operation */
790 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
791 		ret = FPE_FLTINV;
792 
793 	/* Overflow */
794 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
795 		ret = FPE_FLTOVF;
796 
797 	/* Underflow */
798 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
799 		ret = FPE_FLTUND;
800 
801 	/* Divide by zero */
802 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
803 		ret = FPE_FLTDIV;
804 
805 	/* Inexact result */
806 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
807 		ret = FPE_FLTRES;
808 
809 	return ret;
810 }
811 
812 static void parse_fpe(struct pt_regs *regs)
813 {
814 	int code = 0;
815 
816 	flush_fp_to_thread(current);
817 
818 	code = __parse_fpscr(current->thread.fpscr.val);
819 
820 	_exception(SIGFPE, regs, code, regs->nip);
821 }
822 
823 /*
824  * Illegal instruction emulation support.  Originally written to
825  * provide the PVR to user applications using the mfspr rd, PVR.
826  * Return non-zero if we can't emulate, or -EFAULT if the associated
827  * memory access caused an access fault.  Return zero on success.
828  *
829  * There are a couple of ways to do this, either "decode" the instruction
830  * or directly match lots of bits.  In this case, matching lots of
831  * bits is faster and easier.
832  *
833  */
834 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
835 {
836 	u8 rT = (instword >> 21) & 0x1f;
837 	u8 rA = (instword >> 16) & 0x1f;
838 	u8 NB_RB = (instword >> 11) & 0x1f;
839 	u32 num_bytes;
840 	unsigned long EA;
841 	int pos = 0;
842 
843 	/* Early out if we are an invalid form of lswx */
844 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
845 		if ((rT == rA) || (rT == NB_RB))
846 			return -EINVAL;
847 
848 	EA = (rA == 0) ? 0 : regs->gpr[rA];
849 
850 	switch (instword & PPC_INST_STRING_MASK) {
851 		case PPC_INST_LSWX:
852 		case PPC_INST_STSWX:
853 			EA += NB_RB;
854 			num_bytes = regs->xer & 0x7f;
855 			break;
856 		case PPC_INST_LSWI:
857 		case PPC_INST_STSWI:
858 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
859 			break;
860 		default:
861 			return -EINVAL;
862 	}
863 
864 	while (num_bytes != 0)
865 	{
866 		u8 val;
867 		u32 shift = 8 * (3 - (pos & 0x3));
868 
869 		/* if process is 32-bit, clear upper 32 bits of EA */
870 		if ((regs->msr & MSR_64BIT) == 0)
871 			EA &= 0xFFFFFFFF;
872 
873 		switch ((instword & PPC_INST_STRING_MASK)) {
874 			case PPC_INST_LSWX:
875 			case PPC_INST_LSWI:
876 				if (get_user(val, (u8 __user *)EA))
877 					return -EFAULT;
878 				/* first time updating this reg,
879 				 * zero it out */
880 				if (pos == 0)
881 					regs->gpr[rT] = 0;
882 				regs->gpr[rT] |= val << shift;
883 				break;
884 			case PPC_INST_STSWI:
885 			case PPC_INST_STSWX:
886 				val = regs->gpr[rT] >> shift;
887 				if (put_user(val, (u8 __user *)EA))
888 					return -EFAULT;
889 				break;
890 		}
891 		/* move EA to next address */
892 		EA += 1;
893 		num_bytes--;
894 
895 		/* manage our position within the register */
896 		if (++pos == 4) {
897 			pos = 0;
898 			if (++rT == 32)
899 				rT = 0;
900 		}
901 	}
902 
903 	return 0;
904 }
905 
906 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
907 {
908 	u32 ra,rs;
909 	unsigned long tmp;
910 
911 	ra = (instword >> 16) & 0x1f;
912 	rs = (instword >> 21) & 0x1f;
913 
914 	tmp = regs->gpr[rs];
915 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
916 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
917 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
918 	regs->gpr[ra] = tmp;
919 
920 	return 0;
921 }
922 
923 static int emulate_isel(struct pt_regs *regs, u32 instword)
924 {
925 	u8 rT = (instword >> 21) & 0x1f;
926 	u8 rA = (instword >> 16) & 0x1f;
927 	u8 rB = (instword >> 11) & 0x1f;
928 	u8 BC = (instword >> 6) & 0x1f;
929 	u8 bit;
930 	unsigned long tmp;
931 
932 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
933 	bit = (regs->ccr >> (31 - BC)) & 0x1;
934 
935 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
936 
937 	return 0;
938 }
939 
940 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
941 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
942 {
943         /* If we're emulating a load/store in an active transaction, we cannot
944          * emulate it as the kernel operates in transaction suspended context.
945          * We need to abort the transaction.  This creates a persistent TM
946          * abort so tell the user what caused it with a new code.
947 	 */
948 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
949 		tm_enable();
950 		tm_abort(cause);
951 		return true;
952 	}
953 	return false;
954 }
955 #else
956 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
957 {
958 	return false;
959 }
960 #endif
961 
962 static int emulate_instruction(struct pt_regs *regs)
963 {
964 	u32 instword;
965 	u32 rd;
966 
967 	if (!user_mode(regs) || (regs->msr & MSR_LE))
968 		return -EINVAL;
969 	CHECK_FULL_REGS(regs);
970 
971 	if (get_user(instword, (u32 __user *)(regs->nip)))
972 		return -EFAULT;
973 
974 	/* Emulate the mfspr rD, PVR. */
975 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
976 		PPC_WARN_EMULATED(mfpvr, regs);
977 		rd = (instword >> 21) & 0x1f;
978 		regs->gpr[rd] = mfspr(SPRN_PVR);
979 		return 0;
980 	}
981 
982 	/* Emulating the dcba insn is just a no-op.  */
983 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
984 		PPC_WARN_EMULATED(dcba, regs);
985 		return 0;
986 	}
987 
988 	/* Emulate the mcrxr insn.  */
989 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
990 		int shift = (instword >> 21) & 0x1c;
991 		unsigned long msk = 0xf0000000UL >> shift;
992 
993 		PPC_WARN_EMULATED(mcrxr, regs);
994 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
995 		regs->xer &= ~0xf0000000UL;
996 		return 0;
997 	}
998 
999 	/* Emulate load/store string insn. */
1000 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1001 		if (tm_abort_check(regs,
1002 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1003 			return -EINVAL;
1004 		PPC_WARN_EMULATED(string, regs);
1005 		return emulate_string_inst(regs, instword);
1006 	}
1007 
1008 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1009 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1010 		PPC_WARN_EMULATED(popcntb, regs);
1011 		return emulate_popcntb_inst(regs, instword);
1012 	}
1013 
1014 	/* Emulate isel (Integer Select) instruction */
1015 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1016 		PPC_WARN_EMULATED(isel, regs);
1017 		return emulate_isel(regs, instword);
1018 	}
1019 
1020 #ifdef CONFIG_PPC64
1021 	/* Emulate the mfspr rD, DSCR. */
1022 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1023 		PPC_INST_MFSPR_DSCR_USER) ||
1024 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1025 		PPC_INST_MFSPR_DSCR)) &&
1026 			cpu_has_feature(CPU_FTR_DSCR)) {
1027 		PPC_WARN_EMULATED(mfdscr, regs);
1028 		rd = (instword >> 21) & 0x1f;
1029 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1030 		return 0;
1031 	}
1032 	/* Emulate the mtspr DSCR, rD. */
1033 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1034 		PPC_INST_MTSPR_DSCR_USER) ||
1035 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1036 		PPC_INST_MTSPR_DSCR)) &&
1037 			cpu_has_feature(CPU_FTR_DSCR)) {
1038 		PPC_WARN_EMULATED(mtdscr, regs);
1039 		rd = (instword >> 21) & 0x1f;
1040 		current->thread.dscr = regs->gpr[rd];
1041 		current->thread.dscr_inherit = 1;
1042 		mtspr(SPRN_DSCR, current->thread.dscr);
1043 		return 0;
1044 	}
1045 #endif
1046 
1047 	return -EINVAL;
1048 }
1049 
1050 int is_valid_bugaddr(unsigned long addr)
1051 {
1052 	return is_kernel_addr(addr);
1053 }
1054 
1055 void __kprobes program_check_exception(struct pt_regs *regs)
1056 {
1057 	enum ctx_state prev_state = exception_enter();
1058 	unsigned int reason = get_reason(regs);
1059 	extern int do_mathemu(struct pt_regs *regs);
1060 
1061 	/* We can now get here via a FP Unavailable exception if the core
1062 	 * has no FPU, in that case the reason flags will be 0 */
1063 
1064 	if (reason & REASON_FP) {
1065 		/* IEEE FP exception */
1066 		parse_fpe(regs);
1067 		goto bail;
1068 	}
1069 	if (reason & REASON_TRAP) {
1070 		/* Debugger is first in line to stop recursive faults in
1071 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1072 		if (debugger_bpt(regs))
1073 			goto bail;
1074 
1075 		/* trap exception */
1076 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1077 				== NOTIFY_STOP)
1078 			goto bail;
1079 
1080 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1081 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1082 			regs->nip += 4;
1083 			goto bail;
1084 		}
1085 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1086 		goto bail;
1087 	}
1088 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1089 	if (reason & REASON_TM) {
1090 		/* This is a TM "Bad Thing Exception" program check.
1091 		 * This occurs when:
1092 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1093 		 *    transition in TM states.
1094 		 * -  A trechkpt is attempted when transactional.
1095 		 * -  A treclaim is attempted when non transactional.
1096 		 * -  A tend is illegally attempted.
1097 		 * -  writing a TM SPR when transactional.
1098 		 */
1099 		if (!user_mode(regs) &&
1100 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1101 			regs->nip += 4;
1102 			goto bail;
1103 		}
1104 		/* If usermode caused this, it's done something illegal and
1105 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1106 		 * operand to distinguish from the instruction just being bad
1107 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1108 		 * illegal /placement/ of a valid instruction.
1109 		 */
1110 		if (user_mode(regs)) {
1111 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1112 			goto bail;
1113 		} else {
1114 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1115 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1116 			die("Unrecoverable exception", regs, SIGABRT);
1117 		}
1118 	}
1119 #endif
1120 
1121 	/* We restore the interrupt state now */
1122 	if (!arch_irq_disabled_regs(regs))
1123 		local_irq_enable();
1124 
1125 #ifdef CONFIG_MATH_EMULATION
1126 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1127 	 * but there seems to be a hardware bug on the 405GP (RevD)
1128 	 * that means ESR is sometimes set incorrectly - either to
1129 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1130 	 * hardware people - not sure if it can happen on any illegal
1131 	 * instruction or only on FP instructions, whether there is a
1132 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1133 	 */
1134 
1135 	/*
1136 	 * If we support a HW FPU, we need to ensure the FP state
1137 	 * if flushed into the thread_struct before attempting
1138 	 * emulation
1139 	 */
1140 #ifdef CONFIG_PPC_FPU
1141 	flush_fp_to_thread(current);
1142 #endif
1143 	switch (do_mathemu(regs)) {
1144 	case 0:
1145 		emulate_single_step(regs);
1146 		goto bail;
1147 	case 1: {
1148 			int code = 0;
1149 			code = __parse_fpscr(current->thread.fpscr.val);
1150 			_exception(SIGFPE, regs, code, regs->nip);
1151 			goto bail;
1152 		}
1153 	case -EFAULT:
1154 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1155 		goto bail;
1156 	}
1157 	/* fall through on any other errors */
1158 #endif /* CONFIG_MATH_EMULATION */
1159 
1160 	/* Try to emulate it if we should. */
1161 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1162 		switch (emulate_instruction(regs)) {
1163 		case 0:
1164 			regs->nip += 4;
1165 			emulate_single_step(regs);
1166 			goto bail;
1167 		case -EFAULT:
1168 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1169 			goto bail;
1170 		}
1171 	}
1172 
1173 	if (reason & REASON_PRIVILEGED)
1174 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1175 	else
1176 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1177 
1178 bail:
1179 	exception_exit(prev_state);
1180 }
1181 
1182 /*
1183  * This occurs when running in hypervisor mode on POWER6 or later
1184  * and an illegal instruction is encountered.
1185  */
1186 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1187 {
1188 	regs->msr |= REASON_ILLEGAL;
1189 	program_check_exception(regs);
1190 }
1191 
1192 void alignment_exception(struct pt_regs *regs)
1193 {
1194 	enum ctx_state prev_state = exception_enter();
1195 	int sig, code, fixed = 0;
1196 
1197 	/* We restore the interrupt state now */
1198 	if (!arch_irq_disabled_regs(regs))
1199 		local_irq_enable();
1200 
1201 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1202 		goto bail;
1203 
1204 	/* we don't implement logging of alignment exceptions */
1205 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1206 		fixed = fix_alignment(regs);
1207 
1208 	if (fixed == 1) {
1209 		regs->nip += 4;	/* skip over emulated instruction */
1210 		emulate_single_step(regs);
1211 		goto bail;
1212 	}
1213 
1214 	/* Operand address was bad */
1215 	if (fixed == -EFAULT) {
1216 		sig = SIGSEGV;
1217 		code = SEGV_ACCERR;
1218 	} else {
1219 		sig = SIGBUS;
1220 		code = BUS_ADRALN;
1221 	}
1222 	if (user_mode(regs))
1223 		_exception(sig, regs, code, regs->dar);
1224 	else
1225 		bad_page_fault(regs, regs->dar, sig);
1226 
1227 bail:
1228 	exception_exit(prev_state);
1229 }
1230 
1231 void StackOverflow(struct pt_regs *regs)
1232 {
1233 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1234 	       current, regs->gpr[1]);
1235 	debugger(regs);
1236 	show_regs(regs);
1237 	panic("kernel stack overflow");
1238 }
1239 
1240 void nonrecoverable_exception(struct pt_regs *regs)
1241 {
1242 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1243 	       regs->nip, regs->msr);
1244 	debugger(regs);
1245 	die("nonrecoverable exception", regs, SIGKILL);
1246 }
1247 
1248 void trace_syscall(struct pt_regs *regs)
1249 {
1250 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1251 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1252 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1253 }
1254 
1255 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1256 {
1257 	enum ctx_state prev_state = exception_enter();
1258 
1259 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1260 			  "%lx at %lx\n", regs->trap, regs->nip);
1261 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1262 
1263 	exception_exit(prev_state);
1264 }
1265 
1266 void altivec_unavailable_exception(struct pt_regs *regs)
1267 {
1268 	enum ctx_state prev_state = exception_enter();
1269 
1270 	if (user_mode(regs)) {
1271 		/* A user program has executed an altivec instruction,
1272 		   but this kernel doesn't support altivec. */
1273 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1274 		goto bail;
1275 	}
1276 
1277 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1278 			"%lx at %lx\n", regs->trap, regs->nip);
1279 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1280 
1281 bail:
1282 	exception_exit(prev_state);
1283 }
1284 
1285 void vsx_unavailable_exception(struct pt_regs *regs)
1286 {
1287 	if (user_mode(regs)) {
1288 		/* A user program has executed an vsx instruction,
1289 		   but this kernel doesn't support vsx. */
1290 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1291 		return;
1292 	}
1293 
1294 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1295 			"%lx at %lx\n", regs->trap, regs->nip);
1296 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1297 }
1298 
1299 void facility_unavailable_exception(struct pt_regs *regs)
1300 {
1301 	static char *facility_strings[] = {
1302 		"FPU",
1303 		"VMX/VSX",
1304 		"DSCR",
1305 		"PMU SPRs",
1306 		"BHRB",
1307 		"TM",
1308 		"AT",
1309 		"EBB",
1310 		"TAR",
1311 	};
1312 	char *facility, *prefix;
1313 	u64 value;
1314 
1315 	if (regs->trap == 0xf60) {
1316 		value = mfspr(SPRN_FSCR);
1317 		prefix = "";
1318 	} else {
1319 		value = mfspr(SPRN_HFSCR);
1320 		prefix = "Hypervisor ";
1321 	}
1322 
1323 	value = value >> 56;
1324 
1325 	/* We restore the interrupt state now */
1326 	if (!arch_irq_disabled_regs(regs))
1327 		local_irq_enable();
1328 
1329 	if (value < ARRAY_SIZE(facility_strings))
1330 		facility = facility_strings[value];
1331 	else
1332 		facility = "unknown";
1333 
1334 	pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1335 		prefix, facility, regs->nip, regs->msr);
1336 
1337 	if (user_mode(regs)) {
1338 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1339 		return;
1340 	}
1341 
1342 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1343 }
1344 
1345 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1346 
1347 extern void do_load_up_fpu(struct pt_regs *regs);
1348 
1349 void fp_unavailable_tm(struct pt_regs *regs)
1350 {
1351 	/* Note:  This does not handle any kind of FP laziness. */
1352 
1353 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1354 		 regs->nip, regs->msr);
1355 	tm_enable();
1356 
1357         /* We can only have got here if the task started using FP after
1358          * beginning the transaction.  So, the transactional regs are just a
1359          * copy of the checkpointed ones.  But, we still need to recheckpoint
1360          * as we're enabling FP for the process; it will return, abort the
1361          * transaction, and probably retry but now with FP enabled.  So the
1362          * checkpointed FP registers need to be loaded.
1363 	 */
1364 	tm_reclaim(&current->thread, current->thread.regs->msr,
1365 		   TM_CAUSE_FAC_UNAV);
1366 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1367 
1368 	/* Enable FP for the task: */
1369 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1370 
1371 	/* This loads and recheckpoints the FP registers from
1372 	 * thread.fpr[].  They will remain in registers after the
1373 	 * checkpoint so we don't need to reload them after.
1374 	 */
1375 	tm_recheckpoint(&current->thread, regs->msr);
1376 }
1377 
1378 #ifdef CONFIG_ALTIVEC
1379 extern void do_load_up_altivec(struct pt_regs *regs);
1380 
1381 void altivec_unavailable_tm(struct pt_regs *regs)
1382 {
1383 	/* See the comments in fp_unavailable_tm().  This function operates
1384 	 * the same way.
1385 	 */
1386 
1387 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1388 		 "MSR=%lx\n",
1389 		 regs->nip, regs->msr);
1390 	tm_enable();
1391 	tm_reclaim(&current->thread, current->thread.regs->msr,
1392 		   TM_CAUSE_FAC_UNAV);
1393 	regs->msr |= MSR_VEC;
1394 	tm_recheckpoint(&current->thread, regs->msr);
1395 	current->thread.used_vr = 1;
1396 }
1397 #endif
1398 
1399 #ifdef CONFIG_VSX
1400 void vsx_unavailable_tm(struct pt_regs *regs)
1401 {
1402 	/* See the comments in fp_unavailable_tm().  This works similarly,
1403 	 * though we're loading both FP and VEC registers in here.
1404 	 *
1405 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1406 	 * regs.  Either way, set MSR_VSX.
1407 	 */
1408 
1409 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1410 		 "MSR=%lx\n",
1411 		 regs->nip, regs->msr);
1412 
1413 	tm_enable();
1414 	/* This reclaims FP and/or VR regs if they're already enabled */
1415 	tm_reclaim(&current->thread, current->thread.regs->msr,
1416 		   TM_CAUSE_FAC_UNAV);
1417 
1418 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1419 		MSR_VSX;
1420 	/* This loads & recheckpoints FP and VRs. */
1421 	tm_recheckpoint(&current->thread, regs->msr);
1422 	current->thread.used_vsr = 1;
1423 }
1424 #endif
1425 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1426 
1427 void performance_monitor_exception(struct pt_regs *regs)
1428 {
1429 	__get_cpu_var(irq_stat).pmu_irqs++;
1430 
1431 	perf_irq(regs);
1432 }
1433 
1434 #ifdef CONFIG_8xx
1435 void SoftwareEmulation(struct pt_regs *regs)
1436 {
1437 	extern int do_mathemu(struct pt_regs *);
1438 #if defined(CONFIG_MATH_EMULATION)
1439 	int errcode;
1440 #endif
1441 
1442 	CHECK_FULL_REGS(regs);
1443 
1444 	if (!user_mode(regs)) {
1445 		debugger(regs);
1446 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1447 	}
1448 
1449 #ifdef CONFIG_MATH_EMULATION
1450 	errcode = do_mathemu(regs);
1451 	if (errcode >= 0)
1452 		PPC_WARN_EMULATED(math, regs);
1453 
1454 	switch (errcode) {
1455 	case 0:
1456 		emulate_single_step(regs);
1457 		return;
1458 	case 1: {
1459 			int code = 0;
1460 			code = __parse_fpscr(current->thread.fpscr.val);
1461 			_exception(SIGFPE, regs, code, regs->nip);
1462 			return;
1463 		}
1464 	case -EFAULT:
1465 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1466 		return;
1467 	default:
1468 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1469 		return;
1470 	}
1471 #else
1472 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1473 #endif
1474 }
1475 #endif /* CONFIG_8xx */
1476 
1477 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1478 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1479 {
1480 	int changed = 0;
1481 	/*
1482 	 * Determine the cause of the debug event, clear the
1483 	 * event flags and send a trap to the handler. Torez
1484 	 */
1485 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1486 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1487 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1488 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1489 #endif
1490 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1491 			     5);
1492 		changed |= 0x01;
1493 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1494 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1495 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1496 			     6);
1497 		changed |= 0x01;
1498 	}  else if (debug_status & DBSR_IAC1) {
1499 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1500 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1501 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1502 			     1);
1503 		changed |= 0x01;
1504 	}  else if (debug_status & DBSR_IAC2) {
1505 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1506 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1507 			     2);
1508 		changed |= 0x01;
1509 	}  else if (debug_status & DBSR_IAC3) {
1510 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1511 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1512 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1513 			     3);
1514 		changed |= 0x01;
1515 	}  else if (debug_status & DBSR_IAC4) {
1516 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1517 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1518 			     4);
1519 		changed |= 0x01;
1520 	}
1521 	/*
1522 	 * At the point this routine was called, the MSR(DE) was turned off.
1523 	 * Check all other debug flags and see if that bit needs to be turned
1524 	 * back on or not.
1525 	 */
1526 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1527 		regs->msr |= MSR_DE;
1528 	else
1529 		/* Make sure the IDM flag is off */
1530 		current->thread.dbcr0 &= ~DBCR0_IDM;
1531 
1532 	if (changed & 0x01)
1533 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1534 }
1535 
1536 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1537 {
1538 	current->thread.dbsr = debug_status;
1539 
1540 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1541 	 * on server, it stops on the target of the branch. In order to simulate
1542 	 * the server behaviour, we thus restart right away with a single step
1543 	 * instead of stopping here when hitting a BT
1544 	 */
1545 	if (debug_status & DBSR_BT) {
1546 		regs->msr &= ~MSR_DE;
1547 
1548 		/* Disable BT */
1549 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1550 		/* Clear the BT event */
1551 		mtspr(SPRN_DBSR, DBSR_BT);
1552 
1553 		/* Do the single step trick only when coming from userspace */
1554 		if (user_mode(regs)) {
1555 			current->thread.dbcr0 &= ~DBCR0_BT;
1556 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1557 			regs->msr |= MSR_DE;
1558 			return;
1559 		}
1560 
1561 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1562 			       5, SIGTRAP) == NOTIFY_STOP) {
1563 			return;
1564 		}
1565 		if (debugger_sstep(regs))
1566 			return;
1567 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1568 		regs->msr &= ~MSR_DE;
1569 
1570 		/* Disable instruction completion */
1571 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1572 		/* Clear the instruction completion event */
1573 		mtspr(SPRN_DBSR, DBSR_IC);
1574 
1575 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1576 			       5, SIGTRAP) == NOTIFY_STOP) {
1577 			return;
1578 		}
1579 
1580 		if (debugger_sstep(regs))
1581 			return;
1582 
1583 		if (user_mode(regs)) {
1584 			current->thread.dbcr0 &= ~DBCR0_IC;
1585 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1586 					       current->thread.dbcr1))
1587 				regs->msr |= MSR_DE;
1588 			else
1589 				/* Make sure the IDM bit is off */
1590 				current->thread.dbcr0 &= ~DBCR0_IDM;
1591 		}
1592 
1593 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1594 	} else
1595 		handle_debug(regs, debug_status);
1596 }
1597 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1598 
1599 #if !defined(CONFIG_TAU_INT)
1600 void TAUException(struct pt_regs *regs)
1601 {
1602 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1603 	       regs->nip, regs->msr, regs->trap, print_tainted());
1604 }
1605 #endif /* CONFIG_INT_TAU */
1606 
1607 #ifdef CONFIG_ALTIVEC
1608 void altivec_assist_exception(struct pt_regs *regs)
1609 {
1610 	int err;
1611 
1612 	if (!user_mode(regs)) {
1613 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1614 		       " at %lx\n", regs->nip);
1615 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1616 	}
1617 
1618 	flush_altivec_to_thread(current);
1619 
1620 	PPC_WARN_EMULATED(altivec, regs);
1621 	err = emulate_altivec(regs);
1622 	if (err == 0) {
1623 		regs->nip += 4;		/* skip emulated instruction */
1624 		emulate_single_step(regs);
1625 		return;
1626 	}
1627 
1628 	if (err == -EFAULT) {
1629 		/* got an error reading the instruction */
1630 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1631 	} else {
1632 		/* didn't recognize the instruction */
1633 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1634 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1635 				   "in %s at %lx\n", current->comm, regs->nip);
1636 		current->thread.vscr.u[3] |= 0x10000;
1637 	}
1638 }
1639 #endif /* CONFIG_ALTIVEC */
1640 
1641 #ifdef CONFIG_VSX
1642 void vsx_assist_exception(struct pt_regs *regs)
1643 {
1644 	if (!user_mode(regs)) {
1645 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1646 		       " at %lx\n", regs->nip);
1647 		die("Kernel VSX assist exception", regs, SIGILL);
1648 	}
1649 
1650 	flush_vsx_to_thread(current);
1651 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1652 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1653 }
1654 #endif /* CONFIG_VSX */
1655 
1656 #ifdef CONFIG_FSL_BOOKE
1657 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1658 			   unsigned long error_code)
1659 {
1660 	/* We treat cache locking instructions from the user
1661 	 * as priv ops, in the future we could try to do
1662 	 * something smarter
1663 	 */
1664 	if (error_code & (ESR_DLK|ESR_ILK))
1665 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1666 	return;
1667 }
1668 #endif /* CONFIG_FSL_BOOKE */
1669 
1670 #ifdef CONFIG_SPE
1671 void SPEFloatingPointException(struct pt_regs *regs)
1672 {
1673 	extern int do_spe_mathemu(struct pt_regs *regs);
1674 	unsigned long spefscr;
1675 	int fpexc_mode;
1676 	int code = 0;
1677 	int err;
1678 
1679 	flush_spe_to_thread(current);
1680 
1681 	spefscr = current->thread.spefscr;
1682 	fpexc_mode = current->thread.fpexc_mode;
1683 
1684 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1685 		code = FPE_FLTOVF;
1686 	}
1687 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1688 		code = FPE_FLTUND;
1689 	}
1690 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1691 		code = FPE_FLTDIV;
1692 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1693 		code = FPE_FLTINV;
1694 	}
1695 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1696 		code = FPE_FLTRES;
1697 
1698 	err = do_spe_mathemu(regs);
1699 	if (err == 0) {
1700 		regs->nip += 4;		/* skip emulated instruction */
1701 		emulate_single_step(regs);
1702 		return;
1703 	}
1704 
1705 	if (err == -EFAULT) {
1706 		/* got an error reading the instruction */
1707 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1708 	} else if (err == -EINVAL) {
1709 		/* didn't recognize the instruction */
1710 		printk(KERN_ERR "unrecognized spe instruction "
1711 		       "in %s at %lx\n", current->comm, regs->nip);
1712 	} else {
1713 		_exception(SIGFPE, regs, code, regs->nip);
1714 	}
1715 
1716 	return;
1717 }
1718 
1719 void SPEFloatingPointRoundException(struct pt_regs *regs)
1720 {
1721 	extern int speround_handler(struct pt_regs *regs);
1722 	int err;
1723 
1724 	preempt_disable();
1725 	if (regs->msr & MSR_SPE)
1726 		giveup_spe(current);
1727 	preempt_enable();
1728 
1729 	regs->nip -= 4;
1730 	err = speround_handler(regs);
1731 	if (err == 0) {
1732 		regs->nip += 4;		/* skip emulated instruction */
1733 		emulate_single_step(regs);
1734 		return;
1735 	}
1736 
1737 	if (err == -EFAULT) {
1738 		/* got an error reading the instruction */
1739 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1740 	} else if (err == -EINVAL) {
1741 		/* didn't recognize the instruction */
1742 		printk(KERN_ERR "unrecognized spe instruction "
1743 		       "in %s at %lx\n", current->comm, regs->nip);
1744 	} else {
1745 		_exception(SIGFPE, regs, 0, regs->nip);
1746 		return;
1747 	}
1748 }
1749 #endif
1750 
1751 /*
1752  * We enter here if we get an unrecoverable exception, that is, one
1753  * that happened at a point where the RI (recoverable interrupt) bit
1754  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1755  * we therefore lost state by taking this exception.
1756  */
1757 void unrecoverable_exception(struct pt_regs *regs)
1758 {
1759 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1760 	       regs->trap, regs->nip);
1761 	die("Unrecoverable exception", regs, SIGABRT);
1762 }
1763 
1764 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1765 /*
1766  * Default handler for a Watchdog exception,
1767  * spins until a reboot occurs
1768  */
1769 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1770 {
1771 	/* Generic WatchdogHandler, implement your own */
1772 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1773 	return;
1774 }
1775 
1776 void WatchdogException(struct pt_regs *regs)
1777 {
1778 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1779 	WatchdogHandler(regs);
1780 }
1781 #endif
1782 
1783 /*
1784  * We enter here if we discover during exception entry that we are
1785  * running in supervisor mode with a userspace value in the stack pointer.
1786  */
1787 void kernel_bad_stack(struct pt_regs *regs)
1788 {
1789 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1790 	       regs->gpr[1], regs->nip);
1791 	die("Bad kernel stack pointer", regs, SIGABRT);
1792 }
1793 
1794 void __init trap_init(void)
1795 {
1796 }
1797 
1798 
1799 #ifdef CONFIG_PPC_EMULATED_STATS
1800 
1801 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1802 
1803 struct ppc_emulated ppc_emulated = {
1804 #ifdef CONFIG_ALTIVEC
1805 	WARN_EMULATED_SETUP(altivec),
1806 #endif
1807 	WARN_EMULATED_SETUP(dcba),
1808 	WARN_EMULATED_SETUP(dcbz),
1809 	WARN_EMULATED_SETUP(fp_pair),
1810 	WARN_EMULATED_SETUP(isel),
1811 	WARN_EMULATED_SETUP(mcrxr),
1812 	WARN_EMULATED_SETUP(mfpvr),
1813 	WARN_EMULATED_SETUP(multiple),
1814 	WARN_EMULATED_SETUP(popcntb),
1815 	WARN_EMULATED_SETUP(spe),
1816 	WARN_EMULATED_SETUP(string),
1817 	WARN_EMULATED_SETUP(unaligned),
1818 #ifdef CONFIG_MATH_EMULATION
1819 	WARN_EMULATED_SETUP(math),
1820 #endif
1821 #ifdef CONFIG_VSX
1822 	WARN_EMULATED_SETUP(vsx),
1823 #endif
1824 #ifdef CONFIG_PPC64
1825 	WARN_EMULATED_SETUP(mfdscr),
1826 	WARN_EMULATED_SETUP(mtdscr),
1827 #endif
1828 };
1829 
1830 u32 ppc_warn_emulated;
1831 
1832 void ppc_warn_emulated_print(const char *type)
1833 {
1834 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1835 			    type);
1836 }
1837 
1838 static int __init ppc_warn_emulated_init(void)
1839 {
1840 	struct dentry *dir, *d;
1841 	unsigned int i;
1842 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1843 
1844 	if (!powerpc_debugfs_root)
1845 		return -ENODEV;
1846 
1847 	dir = debugfs_create_dir("emulated_instructions",
1848 				 powerpc_debugfs_root);
1849 	if (!dir)
1850 		return -ENOMEM;
1851 
1852 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1853 			       &ppc_warn_emulated);
1854 	if (!d)
1855 		goto fail;
1856 
1857 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1858 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1859 				       (u32 *)&entries[i].val.counter);
1860 		if (!d)
1861 			goto fail;
1862 	}
1863 
1864 	return 0;
1865 
1866 fail:
1867 	debugfs_remove_recursive(dir);
1868 	return -ENOMEM;
1869 }
1870 
1871 device_initcall(ppc_warn_emulated_init);
1872 
1873 #endif /* CONFIG_PPC_EMULATED_STATS */
1874