xref: /linux/arch/powerpc/kernel/traps.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h>	/* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40 
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69 
70 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
71 int (*__debugger)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
78 
79 EXPORT_SYMBOL(__debugger);
80 EXPORT_SYMBOL(__debugger_ipi);
81 EXPORT_SYMBOL(__debugger_bpt);
82 EXPORT_SYMBOL(__debugger_sstep);
83 EXPORT_SYMBOL(__debugger_iabr_match);
84 EXPORT_SYMBOL(__debugger_break_match);
85 EXPORT_SYMBOL(__debugger_fault_handler);
86 #endif
87 
88 /* Transactional Memory trap debug */
89 #ifdef TM_DEBUG_SW
90 #define TM_DEBUG(x...) printk(KERN_INFO x)
91 #else
92 #define TM_DEBUG(x...) do { } while(0)
93 #endif
94 
95 /*
96  * Trap & Exception support
97  */
98 
99 #ifdef CONFIG_PMAC_BACKLIGHT
100 static void pmac_backlight_unblank(void)
101 {
102 	mutex_lock(&pmac_backlight_mutex);
103 	if (pmac_backlight) {
104 		struct backlight_properties *props;
105 
106 		props = &pmac_backlight->props;
107 		props->brightness = props->max_brightness;
108 		props->power = FB_BLANK_UNBLANK;
109 		backlight_update_status(pmac_backlight);
110 	}
111 	mutex_unlock(&pmac_backlight_mutex);
112 }
113 #else
114 static inline void pmac_backlight_unblank(void) { }
115 #endif
116 
117 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
118 static int die_owner = -1;
119 static unsigned int die_nest_count;
120 static int die_counter;
121 
122 static unsigned long oops_begin(struct pt_regs *regs)
123 {
124 	int cpu;
125 	unsigned long flags;
126 
127 	oops_enter();
128 
129 	/* racy, but better than risking deadlock. */
130 	raw_local_irq_save(flags);
131 	cpu = smp_processor_id();
132 	if (!arch_spin_trylock(&die_lock)) {
133 		if (cpu == die_owner)
134 			/* nested oops. should stop eventually */;
135 		else
136 			arch_spin_lock(&die_lock);
137 	}
138 	die_nest_count++;
139 	die_owner = cpu;
140 	console_verbose();
141 	bust_spinlocks(1);
142 	if (machine_is(powermac))
143 		pmac_backlight_unblank();
144 	return flags;
145 }
146 NOKPROBE_SYMBOL(oops_begin);
147 
148 static void oops_end(unsigned long flags, struct pt_regs *regs,
149 			       int signr)
150 {
151 	bust_spinlocks(0);
152 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
153 	die_nest_count--;
154 	oops_exit();
155 	printk("\n");
156 	if (!die_nest_count) {
157 		/* Nest count reaches zero, release the lock. */
158 		die_owner = -1;
159 		arch_spin_unlock(&die_lock);
160 	}
161 	raw_local_irq_restore(flags);
162 
163 	crash_fadump(regs, "die oops");
164 
165 	/*
166 	 * A system reset (0x100) is a request to dump, so we always send
167 	 * it through the crashdump code.
168 	 */
169 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
170 		crash_kexec(regs);
171 
172 		/*
173 		 * We aren't the primary crash CPU. We need to send it
174 		 * to a holding pattern to avoid it ending up in the panic
175 		 * code.
176 		 */
177 		crash_kexec_secondary(regs);
178 	}
179 
180 	if (!signr)
181 		return;
182 
183 	/*
184 	 * While our oops output is serialised by a spinlock, output
185 	 * from panic() called below can race and corrupt it. If we
186 	 * know we are going to panic, delay for 1 second so we have a
187 	 * chance to get clean backtraces from all CPUs that are oopsing.
188 	 */
189 	if (in_interrupt() || panic_on_oops || !current->pid ||
190 	    is_global_init(current)) {
191 		mdelay(MSEC_PER_SEC);
192 	}
193 
194 	if (in_interrupt())
195 		panic("Fatal exception in interrupt");
196 	if (panic_on_oops)
197 		panic("Fatal exception");
198 	do_exit(signr);
199 }
200 NOKPROBE_SYMBOL(oops_end);
201 
202 static int __die(const char *str, struct pt_regs *regs, long err)
203 {
204 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
205 #ifdef CONFIG_PREEMPT
206 	printk("PREEMPT ");
207 #endif
208 #ifdef CONFIG_SMP
209 	printk("SMP NR_CPUS=%d ", NR_CPUS);
210 #endif
211 	if (debug_pagealloc_enabled())
212 		printk("DEBUG_PAGEALLOC ");
213 #ifdef CONFIG_NUMA
214 	printk("NUMA ");
215 #endif
216 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
217 
218 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
219 		return 1;
220 
221 	print_modules();
222 	show_regs(regs);
223 
224 	return 0;
225 }
226 NOKPROBE_SYMBOL(__die);
227 
228 void die(const char *str, struct pt_regs *regs, long err)
229 {
230 	unsigned long flags;
231 
232 	if (debugger(regs))
233 		return;
234 
235 	flags = oops_begin(regs);
236 	if (__die(str, regs, err))
237 		err = 0;
238 	oops_end(flags, regs, err);
239 }
240 
241 void user_single_step_siginfo(struct task_struct *tsk,
242 				struct pt_regs *regs, siginfo_t *info)
243 {
244 	memset(info, 0, sizeof(*info));
245 	info->si_signo = SIGTRAP;
246 	info->si_code = TRAP_TRACE;
247 	info->si_addr = (void __user *)regs->nip;
248 }
249 
250 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
251 {
252 	siginfo_t info;
253 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
254 			"at %08lx nip %08lx lr %08lx code %x\n";
255 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
256 			"at %016lx nip %016lx lr %016lx code %x\n";
257 
258 	if (!user_mode(regs)) {
259 		die("Exception in kernel mode", regs, signr);
260 		return;
261 	}
262 
263 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
264 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
265 				   current->comm, current->pid, signr,
266 				   addr, regs->nip, regs->link, code);
267 	}
268 
269 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
270 		local_irq_enable();
271 
272 	current->thread.trap_nr = code;
273 	memset(&info, 0, sizeof(info));
274 	info.si_signo = signr;
275 	info.si_code = code;
276 	info.si_addr = (void __user *) addr;
277 	force_sig_info(signr, &info, current);
278 }
279 
280 void system_reset_exception(struct pt_regs *regs)
281 {
282 	/*
283 	 * Avoid crashes in case of nested NMI exceptions. Recoverability
284 	 * is determined by RI and in_nmi
285 	 */
286 	bool nested = in_nmi();
287 	if (!nested)
288 		nmi_enter();
289 
290 	/* See if any machine dependent calls */
291 	if (ppc_md.system_reset_exception) {
292 		if (ppc_md.system_reset_exception(regs))
293 			goto out;
294 	}
295 
296 	die("System Reset", regs, SIGABRT);
297 
298 out:
299 #ifdef CONFIG_PPC_BOOK3S_64
300 	BUG_ON(get_paca()->in_nmi == 0);
301 	if (get_paca()->in_nmi > 1)
302 		panic("Unrecoverable nested System Reset");
303 #endif
304 	/* Must die if the interrupt is not recoverable */
305 	if (!(regs->msr & MSR_RI))
306 		panic("Unrecoverable System Reset");
307 
308 	if (!nested)
309 		nmi_exit();
310 
311 	/* What should we do here? We could issue a shutdown or hard reset. */
312 }
313 
314 #ifdef CONFIG_PPC64
315 /*
316  * This function is called in real mode. Strictly no printk's please.
317  *
318  * regs->nip and regs->msr contains srr0 and ssr1.
319  */
320 long machine_check_early(struct pt_regs *regs)
321 {
322 	long handled = 0;
323 
324 	__this_cpu_inc(irq_stat.mce_exceptions);
325 
326 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
327 		handled = cur_cpu_spec->machine_check_early(regs);
328 	return handled;
329 }
330 
331 long hmi_exception_realmode(struct pt_regs *regs)
332 {
333 	__this_cpu_inc(irq_stat.hmi_exceptions);
334 
335 	wait_for_subcore_guest_exit();
336 
337 	if (ppc_md.hmi_exception_early)
338 		ppc_md.hmi_exception_early(regs);
339 
340 	wait_for_tb_resync();
341 
342 	return 0;
343 }
344 
345 #endif
346 
347 /*
348  * I/O accesses can cause machine checks on powermacs.
349  * Check if the NIP corresponds to the address of a sync
350  * instruction for which there is an entry in the exception
351  * table.
352  * Note that the 601 only takes a machine check on TEA
353  * (transfer error ack) signal assertion, and does not
354  * set any of the top 16 bits of SRR1.
355  *  -- paulus.
356  */
357 static inline int check_io_access(struct pt_regs *regs)
358 {
359 #ifdef CONFIG_PPC32
360 	unsigned long msr = regs->msr;
361 	const struct exception_table_entry *entry;
362 	unsigned int *nip = (unsigned int *)regs->nip;
363 
364 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
365 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
366 		/*
367 		 * Check that it's a sync instruction, or somewhere
368 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
369 		 * As the address is in the exception table
370 		 * we should be able to read the instr there.
371 		 * For the debug message, we look at the preceding
372 		 * load or store.
373 		 */
374 		if (*nip == PPC_INST_NOP)
375 			nip -= 2;
376 		else if (*nip == PPC_INST_ISYNC)
377 			--nip;
378 		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
379 			unsigned int rb;
380 
381 			--nip;
382 			rb = (*nip >> 11) & 0x1f;
383 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
384 			       (*nip & 0x100)? "OUT to": "IN from",
385 			       regs->gpr[rb] - _IO_BASE, nip);
386 			regs->msr |= MSR_RI;
387 			regs->nip = extable_fixup(entry);
388 			return 1;
389 		}
390 	}
391 #endif /* CONFIG_PPC32 */
392 	return 0;
393 }
394 
395 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
396 /* On 4xx, the reason for the machine check or program exception
397    is in the ESR. */
398 #define get_reason(regs)	((regs)->dsisr)
399 #ifndef CONFIG_FSL_BOOKE
400 #define get_mc_reason(regs)	((regs)->dsisr)
401 #else
402 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
403 #endif
404 #define REASON_FP		ESR_FP
405 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
406 #define REASON_PRIVILEGED	ESR_PPR
407 #define REASON_TRAP		ESR_PTR
408 
409 /* single-step stuff */
410 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
411 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
412 
413 #else
414 /* On non-4xx, the reason for the machine check or program
415    exception is in the MSR. */
416 #define get_reason(regs)	((regs)->msr)
417 #define get_mc_reason(regs)	((regs)->msr)
418 #define REASON_TM		0x200000
419 #define REASON_FP		0x100000
420 #define REASON_ILLEGAL		0x80000
421 #define REASON_PRIVILEGED	0x40000
422 #define REASON_TRAP		0x20000
423 
424 #define single_stepping(regs)	((regs)->msr & MSR_SE)
425 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
426 #endif
427 
428 #if defined(CONFIG_4xx)
429 int machine_check_4xx(struct pt_regs *regs)
430 {
431 	unsigned long reason = get_mc_reason(regs);
432 
433 	if (reason & ESR_IMCP) {
434 		printk("Instruction");
435 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
436 	} else
437 		printk("Data");
438 	printk(" machine check in kernel mode.\n");
439 
440 	return 0;
441 }
442 
443 int machine_check_440A(struct pt_regs *regs)
444 {
445 	unsigned long reason = get_mc_reason(regs);
446 
447 	printk("Machine check in kernel mode.\n");
448 	if (reason & ESR_IMCP){
449 		printk("Instruction Synchronous Machine Check exception\n");
450 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
451 	}
452 	else {
453 		u32 mcsr = mfspr(SPRN_MCSR);
454 		if (mcsr & MCSR_IB)
455 			printk("Instruction Read PLB Error\n");
456 		if (mcsr & MCSR_DRB)
457 			printk("Data Read PLB Error\n");
458 		if (mcsr & MCSR_DWB)
459 			printk("Data Write PLB Error\n");
460 		if (mcsr & MCSR_TLBP)
461 			printk("TLB Parity Error\n");
462 		if (mcsr & MCSR_ICP){
463 			flush_instruction_cache();
464 			printk("I-Cache Parity Error\n");
465 		}
466 		if (mcsr & MCSR_DCSP)
467 			printk("D-Cache Search Parity Error\n");
468 		if (mcsr & MCSR_DCFP)
469 			printk("D-Cache Flush Parity Error\n");
470 		if (mcsr & MCSR_IMPE)
471 			printk("Machine Check exception is imprecise\n");
472 
473 		/* Clear MCSR */
474 		mtspr(SPRN_MCSR, mcsr);
475 	}
476 	return 0;
477 }
478 
479 int machine_check_47x(struct pt_regs *regs)
480 {
481 	unsigned long reason = get_mc_reason(regs);
482 	u32 mcsr;
483 
484 	printk(KERN_ERR "Machine check in kernel mode.\n");
485 	if (reason & ESR_IMCP) {
486 		printk(KERN_ERR
487 		       "Instruction Synchronous Machine Check exception\n");
488 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
489 		return 0;
490 	}
491 	mcsr = mfspr(SPRN_MCSR);
492 	if (mcsr & MCSR_IB)
493 		printk(KERN_ERR "Instruction Read PLB Error\n");
494 	if (mcsr & MCSR_DRB)
495 		printk(KERN_ERR "Data Read PLB Error\n");
496 	if (mcsr & MCSR_DWB)
497 		printk(KERN_ERR "Data Write PLB Error\n");
498 	if (mcsr & MCSR_TLBP)
499 		printk(KERN_ERR "TLB Parity Error\n");
500 	if (mcsr & MCSR_ICP) {
501 		flush_instruction_cache();
502 		printk(KERN_ERR "I-Cache Parity Error\n");
503 	}
504 	if (mcsr & MCSR_DCSP)
505 		printk(KERN_ERR "D-Cache Search Parity Error\n");
506 	if (mcsr & PPC47x_MCSR_GPR)
507 		printk(KERN_ERR "GPR Parity Error\n");
508 	if (mcsr & PPC47x_MCSR_FPR)
509 		printk(KERN_ERR "FPR Parity Error\n");
510 	if (mcsr & PPC47x_MCSR_IPR)
511 		printk(KERN_ERR "Machine Check exception is imprecise\n");
512 
513 	/* Clear MCSR */
514 	mtspr(SPRN_MCSR, mcsr);
515 
516 	return 0;
517 }
518 #elif defined(CONFIG_E500)
519 int machine_check_e500mc(struct pt_regs *regs)
520 {
521 	unsigned long mcsr = mfspr(SPRN_MCSR);
522 	unsigned long reason = mcsr;
523 	int recoverable = 1;
524 
525 	if (reason & MCSR_LD) {
526 		recoverable = fsl_rio_mcheck_exception(regs);
527 		if (recoverable == 1)
528 			goto silent_out;
529 	}
530 
531 	printk("Machine check in kernel mode.\n");
532 	printk("Caused by (from MCSR=%lx): ", reason);
533 
534 	if (reason & MCSR_MCP)
535 		printk("Machine Check Signal\n");
536 
537 	if (reason & MCSR_ICPERR) {
538 		printk("Instruction Cache Parity Error\n");
539 
540 		/*
541 		 * This is recoverable by invalidating the i-cache.
542 		 */
543 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
544 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
545 			;
546 
547 		/*
548 		 * This will generally be accompanied by an instruction
549 		 * fetch error report -- only treat MCSR_IF as fatal
550 		 * if it wasn't due to an L1 parity error.
551 		 */
552 		reason &= ~MCSR_IF;
553 	}
554 
555 	if (reason & MCSR_DCPERR_MC) {
556 		printk("Data Cache Parity Error\n");
557 
558 		/*
559 		 * In write shadow mode we auto-recover from the error, but it
560 		 * may still get logged and cause a machine check.  We should
561 		 * only treat the non-write shadow case as non-recoverable.
562 		 */
563 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
564 			recoverable = 0;
565 	}
566 
567 	if (reason & MCSR_L2MMU_MHIT) {
568 		printk("Hit on multiple TLB entries\n");
569 		recoverable = 0;
570 	}
571 
572 	if (reason & MCSR_NMI)
573 		printk("Non-maskable interrupt\n");
574 
575 	if (reason & MCSR_IF) {
576 		printk("Instruction Fetch Error Report\n");
577 		recoverable = 0;
578 	}
579 
580 	if (reason & MCSR_LD) {
581 		printk("Load Error Report\n");
582 		recoverable = 0;
583 	}
584 
585 	if (reason & MCSR_ST) {
586 		printk("Store Error Report\n");
587 		recoverable = 0;
588 	}
589 
590 	if (reason & MCSR_LDG) {
591 		printk("Guarded Load Error Report\n");
592 		recoverable = 0;
593 	}
594 
595 	if (reason & MCSR_TLBSYNC)
596 		printk("Simultaneous tlbsync operations\n");
597 
598 	if (reason & MCSR_BSL2_ERR) {
599 		printk("Level 2 Cache Error\n");
600 		recoverable = 0;
601 	}
602 
603 	if (reason & MCSR_MAV) {
604 		u64 addr;
605 
606 		addr = mfspr(SPRN_MCAR);
607 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
608 
609 		printk("Machine Check %s Address: %#llx\n",
610 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
611 	}
612 
613 silent_out:
614 	mtspr(SPRN_MCSR, mcsr);
615 	return mfspr(SPRN_MCSR) == 0 && recoverable;
616 }
617 
618 int machine_check_e500(struct pt_regs *regs)
619 {
620 	unsigned long reason = get_mc_reason(regs);
621 
622 	if (reason & MCSR_BUS_RBERR) {
623 		if (fsl_rio_mcheck_exception(regs))
624 			return 1;
625 		if (fsl_pci_mcheck_exception(regs))
626 			return 1;
627 	}
628 
629 	printk("Machine check in kernel mode.\n");
630 	printk("Caused by (from MCSR=%lx): ", reason);
631 
632 	if (reason & MCSR_MCP)
633 		printk("Machine Check Signal\n");
634 	if (reason & MCSR_ICPERR)
635 		printk("Instruction Cache Parity Error\n");
636 	if (reason & MCSR_DCP_PERR)
637 		printk("Data Cache Push Parity Error\n");
638 	if (reason & MCSR_DCPERR)
639 		printk("Data Cache Parity Error\n");
640 	if (reason & MCSR_BUS_IAERR)
641 		printk("Bus - Instruction Address Error\n");
642 	if (reason & MCSR_BUS_RAERR)
643 		printk("Bus - Read Address Error\n");
644 	if (reason & MCSR_BUS_WAERR)
645 		printk("Bus - Write Address Error\n");
646 	if (reason & MCSR_BUS_IBERR)
647 		printk("Bus - Instruction Data Error\n");
648 	if (reason & MCSR_BUS_RBERR)
649 		printk("Bus - Read Data Bus Error\n");
650 	if (reason & MCSR_BUS_WBERR)
651 		printk("Bus - Write Data Bus Error\n");
652 	if (reason & MCSR_BUS_IPERR)
653 		printk("Bus - Instruction Parity Error\n");
654 	if (reason & MCSR_BUS_RPERR)
655 		printk("Bus - Read Parity Error\n");
656 
657 	return 0;
658 }
659 
660 int machine_check_generic(struct pt_regs *regs)
661 {
662 	return 0;
663 }
664 #elif defined(CONFIG_E200)
665 int machine_check_e200(struct pt_regs *regs)
666 {
667 	unsigned long reason = get_mc_reason(regs);
668 
669 	printk("Machine check in kernel mode.\n");
670 	printk("Caused by (from MCSR=%lx): ", reason);
671 
672 	if (reason & MCSR_MCP)
673 		printk("Machine Check Signal\n");
674 	if (reason & MCSR_CP_PERR)
675 		printk("Cache Push Parity Error\n");
676 	if (reason & MCSR_CPERR)
677 		printk("Cache Parity Error\n");
678 	if (reason & MCSR_EXCP_ERR)
679 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
680 	if (reason & MCSR_BUS_IRERR)
681 		printk("Bus - Read Bus Error on instruction fetch\n");
682 	if (reason & MCSR_BUS_DRERR)
683 		printk("Bus - Read Bus Error on data load\n");
684 	if (reason & MCSR_BUS_WRERR)
685 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
686 
687 	return 0;
688 }
689 #elif defined(CONFIG_PPC_8xx)
690 int machine_check_8xx(struct pt_regs *regs)
691 {
692 	unsigned long reason = get_mc_reason(regs);
693 
694 	pr_err("Machine check in kernel mode.\n");
695 	pr_err("Caused by (from SRR1=%lx): ", reason);
696 	if (reason & 0x40000000)
697 		pr_err("Fetch error at address %lx\n", regs->nip);
698 	else
699 		pr_err("Data access error at address %lx\n", regs->dar);
700 
701 #ifdef CONFIG_PCI
702 	/* the qspan pci read routines can cause machine checks -- Cort
703 	 *
704 	 * yuck !!! that totally needs to go away ! There are better ways
705 	 * to deal with that than having a wart in the mcheck handler.
706 	 * -- BenH
707 	 */
708 	bad_page_fault(regs, regs->dar, SIGBUS);
709 	return 1;
710 #else
711 	return 0;
712 #endif
713 }
714 #else
715 int machine_check_generic(struct pt_regs *regs)
716 {
717 	unsigned long reason = get_mc_reason(regs);
718 
719 	printk("Machine check in kernel mode.\n");
720 	printk("Caused by (from SRR1=%lx): ", reason);
721 	switch (reason & 0x601F0000) {
722 	case 0x80000:
723 		printk("Machine check signal\n");
724 		break;
725 	case 0:		/* for 601 */
726 	case 0x40000:
727 	case 0x140000:	/* 7450 MSS error and TEA */
728 		printk("Transfer error ack signal\n");
729 		break;
730 	case 0x20000:
731 		printk("Data parity error signal\n");
732 		break;
733 	case 0x10000:
734 		printk("Address parity error signal\n");
735 		break;
736 	case 0x20000000:
737 		printk("L1 Data Cache error\n");
738 		break;
739 	case 0x40000000:
740 		printk("L1 Instruction Cache error\n");
741 		break;
742 	case 0x00100000:
743 		printk("L2 data cache parity error\n");
744 		break;
745 	default:
746 		printk("Unknown values in msr\n");
747 	}
748 	return 0;
749 }
750 #endif /* everything else */
751 
752 void machine_check_exception(struct pt_regs *regs)
753 {
754 	enum ctx_state prev_state = exception_enter();
755 	int recover = 0;
756 
757 	__this_cpu_inc(irq_stat.mce_exceptions);
758 
759 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
760 
761 	/* See if any machine dependent calls. In theory, we would want
762 	 * to call the CPU first, and call the ppc_md. one if the CPU
763 	 * one returns a positive number. However there is existing code
764 	 * that assumes the board gets a first chance, so let's keep it
765 	 * that way for now and fix things later. --BenH.
766 	 */
767 	if (ppc_md.machine_check_exception)
768 		recover = ppc_md.machine_check_exception(regs);
769 	else if (cur_cpu_spec->machine_check)
770 		recover = cur_cpu_spec->machine_check(regs);
771 
772 	if (recover > 0)
773 		goto bail;
774 
775 	if (debugger_fault_handler(regs))
776 		goto bail;
777 
778 	if (check_io_access(regs))
779 		goto bail;
780 
781 	die("Machine check", regs, SIGBUS);
782 
783 	/* Must die if the interrupt is not recoverable */
784 	if (!(regs->msr & MSR_RI))
785 		panic("Unrecoverable Machine check");
786 
787 bail:
788 	exception_exit(prev_state);
789 }
790 
791 void SMIException(struct pt_regs *regs)
792 {
793 	die("System Management Interrupt", regs, SIGABRT);
794 }
795 
796 void handle_hmi_exception(struct pt_regs *regs)
797 {
798 	struct pt_regs *old_regs;
799 
800 	old_regs = set_irq_regs(regs);
801 	irq_enter();
802 
803 	if (ppc_md.handle_hmi_exception)
804 		ppc_md.handle_hmi_exception(regs);
805 
806 	irq_exit();
807 	set_irq_regs(old_regs);
808 }
809 
810 void unknown_exception(struct pt_regs *regs)
811 {
812 	enum ctx_state prev_state = exception_enter();
813 
814 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
815 	       regs->nip, regs->msr, regs->trap);
816 
817 	_exception(SIGTRAP, regs, 0, 0);
818 
819 	exception_exit(prev_state);
820 }
821 
822 void instruction_breakpoint_exception(struct pt_regs *regs)
823 {
824 	enum ctx_state prev_state = exception_enter();
825 
826 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
827 					5, SIGTRAP) == NOTIFY_STOP)
828 		goto bail;
829 	if (debugger_iabr_match(regs))
830 		goto bail;
831 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
832 
833 bail:
834 	exception_exit(prev_state);
835 }
836 
837 void RunModeException(struct pt_regs *regs)
838 {
839 	_exception(SIGTRAP, regs, 0, 0);
840 }
841 
842 void single_step_exception(struct pt_regs *regs)
843 {
844 	enum ctx_state prev_state = exception_enter();
845 
846 	clear_single_step(regs);
847 
848 	if (kprobe_post_handler(regs))
849 		return;
850 
851 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
852 					5, SIGTRAP) == NOTIFY_STOP)
853 		goto bail;
854 	if (debugger_sstep(regs))
855 		goto bail;
856 
857 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
858 
859 bail:
860 	exception_exit(prev_state);
861 }
862 NOKPROBE_SYMBOL(single_step_exception);
863 
864 /*
865  * After we have successfully emulated an instruction, we have to
866  * check if the instruction was being single-stepped, and if so,
867  * pretend we got a single-step exception.  This was pointed out
868  * by Kumar Gala.  -- paulus
869  */
870 static void emulate_single_step(struct pt_regs *regs)
871 {
872 	if (single_stepping(regs))
873 		single_step_exception(regs);
874 }
875 
876 static inline int __parse_fpscr(unsigned long fpscr)
877 {
878 	int ret = 0;
879 
880 	/* Invalid operation */
881 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
882 		ret = FPE_FLTINV;
883 
884 	/* Overflow */
885 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
886 		ret = FPE_FLTOVF;
887 
888 	/* Underflow */
889 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
890 		ret = FPE_FLTUND;
891 
892 	/* Divide by zero */
893 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
894 		ret = FPE_FLTDIV;
895 
896 	/* Inexact result */
897 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
898 		ret = FPE_FLTRES;
899 
900 	return ret;
901 }
902 
903 static void parse_fpe(struct pt_regs *regs)
904 {
905 	int code = 0;
906 
907 	flush_fp_to_thread(current);
908 
909 	code = __parse_fpscr(current->thread.fp_state.fpscr);
910 
911 	_exception(SIGFPE, regs, code, regs->nip);
912 }
913 
914 /*
915  * Illegal instruction emulation support.  Originally written to
916  * provide the PVR to user applications using the mfspr rd, PVR.
917  * Return non-zero if we can't emulate, or -EFAULT if the associated
918  * memory access caused an access fault.  Return zero on success.
919  *
920  * There are a couple of ways to do this, either "decode" the instruction
921  * or directly match lots of bits.  In this case, matching lots of
922  * bits is faster and easier.
923  *
924  */
925 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
926 {
927 	u8 rT = (instword >> 21) & 0x1f;
928 	u8 rA = (instword >> 16) & 0x1f;
929 	u8 NB_RB = (instword >> 11) & 0x1f;
930 	u32 num_bytes;
931 	unsigned long EA;
932 	int pos = 0;
933 
934 	/* Early out if we are an invalid form of lswx */
935 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
936 		if ((rT == rA) || (rT == NB_RB))
937 			return -EINVAL;
938 
939 	EA = (rA == 0) ? 0 : regs->gpr[rA];
940 
941 	switch (instword & PPC_INST_STRING_MASK) {
942 		case PPC_INST_LSWX:
943 		case PPC_INST_STSWX:
944 			EA += NB_RB;
945 			num_bytes = regs->xer & 0x7f;
946 			break;
947 		case PPC_INST_LSWI:
948 		case PPC_INST_STSWI:
949 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
950 			break;
951 		default:
952 			return -EINVAL;
953 	}
954 
955 	while (num_bytes != 0)
956 	{
957 		u8 val;
958 		u32 shift = 8 * (3 - (pos & 0x3));
959 
960 		/* if process is 32-bit, clear upper 32 bits of EA */
961 		if ((regs->msr & MSR_64BIT) == 0)
962 			EA &= 0xFFFFFFFF;
963 
964 		switch ((instword & PPC_INST_STRING_MASK)) {
965 			case PPC_INST_LSWX:
966 			case PPC_INST_LSWI:
967 				if (get_user(val, (u8 __user *)EA))
968 					return -EFAULT;
969 				/* first time updating this reg,
970 				 * zero it out */
971 				if (pos == 0)
972 					regs->gpr[rT] = 0;
973 				regs->gpr[rT] |= val << shift;
974 				break;
975 			case PPC_INST_STSWI:
976 			case PPC_INST_STSWX:
977 				val = regs->gpr[rT] >> shift;
978 				if (put_user(val, (u8 __user *)EA))
979 					return -EFAULT;
980 				break;
981 		}
982 		/* move EA to next address */
983 		EA += 1;
984 		num_bytes--;
985 
986 		/* manage our position within the register */
987 		if (++pos == 4) {
988 			pos = 0;
989 			if (++rT == 32)
990 				rT = 0;
991 		}
992 	}
993 
994 	return 0;
995 }
996 
997 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
998 {
999 	u32 ra,rs;
1000 	unsigned long tmp;
1001 
1002 	ra = (instword >> 16) & 0x1f;
1003 	rs = (instword >> 21) & 0x1f;
1004 
1005 	tmp = regs->gpr[rs];
1006 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1007 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1008 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1009 	regs->gpr[ra] = tmp;
1010 
1011 	return 0;
1012 }
1013 
1014 static int emulate_isel(struct pt_regs *regs, u32 instword)
1015 {
1016 	u8 rT = (instword >> 21) & 0x1f;
1017 	u8 rA = (instword >> 16) & 0x1f;
1018 	u8 rB = (instword >> 11) & 0x1f;
1019 	u8 BC = (instword >> 6) & 0x1f;
1020 	u8 bit;
1021 	unsigned long tmp;
1022 
1023 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1024 	bit = (regs->ccr >> (31 - BC)) & 0x1;
1025 
1026 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1027 
1028 	return 0;
1029 }
1030 
1031 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1032 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1033 {
1034         /* If we're emulating a load/store in an active transaction, we cannot
1035          * emulate it as the kernel operates in transaction suspended context.
1036          * We need to abort the transaction.  This creates a persistent TM
1037          * abort so tell the user what caused it with a new code.
1038 	 */
1039 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1040 		tm_enable();
1041 		tm_abort(cause);
1042 		return true;
1043 	}
1044 	return false;
1045 }
1046 #else
1047 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1048 {
1049 	return false;
1050 }
1051 #endif
1052 
1053 static int emulate_instruction(struct pt_regs *regs)
1054 {
1055 	u32 instword;
1056 	u32 rd;
1057 
1058 	if (!user_mode(regs))
1059 		return -EINVAL;
1060 	CHECK_FULL_REGS(regs);
1061 
1062 	if (get_user(instword, (u32 __user *)(regs->nip)))
1063 		return -EFAULT;
1064 
1065 	/* Emulate the mfspr rD, PVR. */
1066 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1067 		PPC_WARN_EMULATED(mfpvr, regs);
1068 		rd = (instword >> 21) & 0x1f;
1069 		regs->gpr[rd] = mfspr(SPRN_PVR);
1070 		return 0;
1071 	}
1072 
1073 	/* Emulating the dcba insn is just a no-op.  */
1074 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1075 		PPC_WARN_EMULATED(dcba, regs);
1076 		return 0;
1077 	}
1078 
1079 	/* Emulate the mcrxr insn.  */
1080 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1081 		int shift = (instword >> 21) & 0x1c;
1082 		unsigned long msk = 0xf0000000UL >> shift;
1083 
1084 		PPC_WARN_EMULATED(mcrxr, regs);
1085 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1086 		regs->xer &= ~0xf0000000UL;
1087 		return 0;
1088 	}
1089 
1090 	/* Emulate load/store string insn. */
1091 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1092 		if (tm_abort_check(regs,
1093 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1094 			return -EINVAL;
1095 		PPC_WARN_EMULATED(string, regs);
1096 		return emulate_string_inst(regs, instword);
1097 	}
1098 
1099 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1100 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1101 		PPC_WARN_EMULATED(popcntb, regs);
1102 		return emulate_popcntb_inst(regs, instword);
1103 	}
1104 
1105 	/* Emulate isel (Integer Select) instruction */
1106 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1107 		PPC_WARN_EMULATED(isel, regs);
1108 		return emulate_isel(regs, instword);
1109 	}
1110 
1111 	/* Emulate sync instruction variants */
1112 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1113 		PPC_WARN_EMULATED(sync, regs);
1114 		asm volatile("sync");
1115 		return 0;
1116 	}
1117 
1118 #ifdef CONFIG_PPC64
1119 	/* Emulate the mfspr rD, DSCR. */
1120 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1121 		PPC_INST_MFSPR_DSCR_USER) ||
1122 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1123 		PPC_INST_MFSPR_DSCR)) &&
1124 			cpu_has_feature(CPU_FTR_DSCR)) {
1125 		PPC_WARN_EMULATED(mfdscr, regs);
1126 		rd = (instword >> 21) & 0x1f;
1127 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1128 		return 0;
1129 	}
1130 	/* Emulate the mtspr DSCR, rD. */
1131 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1132 		PPC_INST_MTSPR_DSCR_USER) ||
1133 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1134 		PPC_INST_MTSPR_DSCR)) &&
1135 			cpu_has_feature(CPU_FTR_DSCR)) {
1136 		PPC_WARN_EMULATED(mtdscr, regs);
1137 		rd = (instword >> 21) & 0x1f;
1138 		current->thread.dscr = regs->gpr[rd];
1139 		current->thread.dscr_inherit = 1;
1140 		mtspr(SPRN_DSCR, current->thread.dscr);
1141 		return 0;
1142 	}
1143 #endif
1144 
1145 	return -EINVAL;
1146 }
1147 
1148 int is_valid_bugaddr(unsigned long addr)
1149 {
1150 	return is_kernel_addr(addr);
1151 }
1152 
1153 #ifdef CONFIG_MATH_EMULATION
1154 static int emulate_math(struct pt_regs *regs)
1155 {
1156 	int ret;
1157 	extern int do_mathemu(struct pt_regs *regs);
1158 
1159 	ret = do_mathemu(regs);
1160 	if (ret >= 0)
1161 		PPC_WARN_EMULATED(math, regs);
1162 
1163 	switch (ret) {
1164 	case 0:
1165 		emulate_single_step(regs);
1166 		return 0;
1167 	case 1: {
1168 			int code = 0;
1169 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1170 			_exception(SIGFPE, regs, code, regs->nip);
1171 			return 0;
1172 		}
1173 	case -EFAULT:
1174 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1175 		return 0;
1176 	}
1177 
1178 	return -1;
1179 }
1180 #else
1181 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1182 #endif
1183 
1184 void program_check_exception(struct pt_regs *regs)
1185 {
1186 	enum ctx_state prev_state = exception_enter();
1187 	unsigned int reason = get_reason(regs);
1188 
1189 	/* We can now get here via a FP Unavailable exception if the core
1190 	 * has no FPU, in that case the reason flags will be 0 */
1191 
1192 	if (reason & REASON_FP) {
1193 		/* IEEE FP exception */
1194 		parse_fpe(regs);
1195 		goto bail;
1196 	}
1197 	if (reason & REASON_TRAP) {
1198 		unsigned long bugaddr;
1199 		/* Debugger is first in line to stop recursive faults in
1200 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1201 		if (debugger_bpt(regs))
1202 			goto bail;
1203 
1204 		if (kprobe_handler(regs))
1205 			goto bail;
1206 
1207 		/* trap exception */
1208 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1209 				== NOTIFY_STOP)
1210 			goto bail;
1211 
1212 		bugaddr = regs->nip;
1213 		/*
1214 		 * Fixup bugaddr for BUG_ON() in real mode
1215 		 */
1216 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1217 			bugaddr += PAGE_OFFSET;
1218 
1219 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1220 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1221 			regs->nip += 4;
1222 			goto bail;
1223 		}
1224 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1225 		goto bail;
1226 	}
1227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1228 	if (reason & REASON_TM) {
1229 		/* This is a TM "Bad Thing Exception" program check.
1230 		 * This occurs when:
1231 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1232 		 *    transition in TM states.
1233 		 * -  A trechkpt is attempted when transactional.
1234 		 * -  A treclaim is attempted when non transactional.
1235 		 * -  A tend is illegally attempted.
1236 		 * -  writing a TM SPR when transactional.
1237 		 */
1238 		if (!user_mode(regs) &&
1239 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1240 			regs->nip += 4;
1241 			goto bail;
1242 		}
1243 		/* If usermode caused this, it's done something illegal and
1244 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1245 		 * operand to distinguish from the instruction just being bad
1246 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1247 		 * illegal /placement/ of a valid instruction.
1248 		 */
1249 		if (user_mode(regs)) {
1250 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1251 			goto bail;
1252 		} else {
1253 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1254 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1255 			die("Unrecoverable exception", regs, SIGABRT);
1256 		}
1257 	}
1258 #endif
1259 
1260 	/*
1261 	 * If we took the program check in the kernel skip down to sending a
1262 	 * SIGILL. The subsequent cases all relate to emulating instructions
1263 	 * which we should only do for userspace. We also do not want to enable
1264 	 * interrupts for kernel faults because that might lead to further
1265 	 * faults, and loose the context of the original exception.
1266 	 */
1267 	if (!user_mode(regs))
1268 		goto sigill;
1269 
1270 	/* We restore the interrupt state now */
1271 	if (!arch_irq_disabled_regs(regs))
1272 		local_irq_enable();
1273 
1274 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1275 	 * but there seems to be a hardware bug on the 405GP (RevD)
1276 	 * that means ESR is sometimes set incorrectly - either to
1277 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1278 	 * hardware people - not sure if it can happen on any illegal
1279 	 * instruction or only on FP instructions, whether there is a
1280 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1281 	 */
1282 	if (!emulate_math(regs))
1283 		goto bail;
1284 
1285 	/* Try to emulate it if we should. */
1286 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1287 		switch (emulate_instruction(regs)) {
1288 		case 0:
1289 			regs->nip += 4;
1290 			emulate_single_step(regs);
1291 			goto bail;
1292 		case -EFAULT:
1293 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1294 			goto bail;
1295 		}
1296 	}
1297 
1298 sigill:
1299 	if (reason & REASON_PRIVILEGED)
1300 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1301 	else
1302 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1303 
1304 bail:
1305 	exception_exit(prev_state);
1306 }
1307 NOKPROBE_SYMBOL(program_check_exception);
1308 
1309 /*
1310  * This occurs when running in hypervisor mode on POWER6 or later
1311  * and an illegal instruction is encountered.
1312  */
1313 void emulation_assist_interrupt(struct pt_regs *regs)
1314 {
1315 	regs->msr |= REASON_ILLEGAL;
1316 	program_check_exception(regs);
1317 }
1318 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1319 
1320 void alignment_exception(struct pt_regs *regs)
1321 {
1322 	enum ctx_state prev_state = exception_enter();
1323 	int sig, code, fixed = 0;
1324 
1325 	/* We restore the interrupt state now */
1326 	if (!arch_irq_disabled_regs(regs))
1327 		local_irq_enable();
1328 
1329 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1330 		goto bail;
1331 
1332 	/* we don't implement logging of alignment exceptions */
1333 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1334 		fixed = fix_alignment(regs);
1335 
1336 	if (fixed == 1) {
1337 		regs->nip += 4;	/* skip over emulated instruction */
1338 		emulate_single_step(regs);
1339 		goto bail;
1340 	}
1341 
1342 	/* Operand address was bad */
1343 	if (fixed == -EFAULT) {
1344 		sig = SIGSEGV;
1345 		code = SEGV_ACCERR;
1346 	} else {
1347 		sig = SIGBUS;
1348 		code = BUS_ADRALN;
1349 	}
1350 	if (user_mode(regs))
1351 		_exception(sig, regs, code, regs->dar);
1352 	else
1353 		bad_page_fault(regs, regs->dar, sig);
1354 
1355 bail:
1356 	exception_exit(prev_state);
1357 }
1358 
1359 void slb_miss_bad_addr(struct pt_regs *regs)
1360 {
1361 	enum ctx_state prev_state = exception_enter();
1362 
1363 	if (user_mode(regs))
1364 		_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1365 	else
1366 		bad_page_fault(regs, regs->dar, SIGSEGV);
1367 
1368 	exception_exit(prev_state);
1369 }
1370 
1371 void StackOverflow(struct pt_regs *regs)
1372 {
1373 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1374 	       current, regs->gpr[1]);
1375 	debugger(regs);
1376 	show_regs(regs);
1377 	panic("kernel stack overflow");
1378 }
1379 
1380 void nonrecoverable_exception(struct pt_regs *regs)
1381 {
1382 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1383 	       regs->nip, regs->msr);
1384 	debugger(regs);
1385 	die("nonrecoverable exception", regs, SIGKILL);
1386 }
1387 
1388 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1389 {
1390 	enum ctx_state prev_state = exception_enter();
1391 
1392 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1393 			  "%lx at %lx\n", regs->trap, regs->nip);
1394 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1395 
1396 	exception_exit(prev_state);
1397 }
1398 
1399 void altivec_unavailable_exception(struct pt_regs *regs)
1400 {
1401 	enum ctx_state prev_state = exception_enter();
1402 
1403 	if (user_mode(regs)) {
1404 		/* A user program has executed an altivec instruction,
1405 		   but this kernel doesn't support altivec. */
1406 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1407 		goto bail;
1408 	}
1409 
1410 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1411 			"%lx at %lx\n", regs->trap, regs->nip);
1412 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1413 
1414 bail:
1415 	exception_exit(prev_state);
1416 }
1417 
1418 void vsx_unavailable_exception(struct pt_regs *regs)
1419 {
1420 	if (user_mode(regs)) {
1421 		/* A user program has executed an vsx instruction,
1422 		   but this kernel doesn't support vsx. */
1423 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1424 		return;
1425 	}
1426 
1427 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1428 			"%lx at %lx\n", regs->trap, regs->nip);
1429 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1430 }
1431 
1432 #ifdef CONFIG_PPC64
1433 static void tm_unavailable(struct pt_regs *regs)
1434 {
1435 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1436 	if (user_mode(regs)) {
1437 		current->thread.load_tm++;
1438 		regs->msr |= MSR_TM;
1439 		tm_enable();
1440 		tm_restore_sprs(&current->thread);
1441 		return;
1442 	}
1443 #endif
1444 	pr_emerg("Unrecoverable TM Unavailable Exception "
1445 			"%lx at %lx\n", regs->trap, regs->nip);
1446 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1447 }
1448 
1449 void facility_unavailable_exception(struct pt_regs *regs)
1450 {
1451 	static char *facility_strings[] = {
1452 		[FSCR_FP_LG] = "FPU",
1453 		[FSCR_VECVSX_LG] = "VMX/VSX",
1454 		[FSCR_DSCR_LG] = "DSCR",
1455 		[FSCR_PM_LG] = "PMU SPRs",
1456 		[FSCR_BHRB_LG] = "BHRB",
1457 		[FSCR_TM_LG] = "TM",
1458 		[FSCR_EBB_LG] = "EBB",
1459 		[FSCR_TAR_LG] = "TAR",
1460 		[FSCR_MSGP_LG] = "MSGP",
1461 		[FSCR_SCV_LG] = "SCV",
1462 	};
1463 	char *facility = "unknown";
1464 	u64 value;
1465 	u32 instword, rd;
1466 	u8 status;
1467 	bool hv;
1468 
1469 	hv = (regs->trap == 0xf80);
1470 	if (hv)
1471 		value = mfspr(SPRN_HFSCR);
1472 	else
1473 		value = mfspr(SPRN_FSCR);
1474 
1475 	status = value >> 56;
1476 	if (status == FSCR_DSCR_LG) {
1477 		/*
1478 		 * User is accessing the DSCR register using the problem
1479 		 * state only SPR number (0x03) either through a mfspr or
1480 		 * a mtspr instruction. If it is a write attempt through
1481 		 * a mtspr, then we set the inherit bit. This also allows
1482 		 * the user to write or read the register directly in the
1483 		 * future by setting via the FSCR DSCR bit. But in case it
1484 		 * is a read DSCR attempt through a mfspr instruction, we
1485 		 * just emulate the instruction instead. This code path will
1486 		 * always emulate all the mfspr instructions till the user
1487 		 * has attempted at least one mtspr instruction. This way it
1488 		 * preserves the same behaviour when the user is accessing
1489 		 * the DSCR through privilege level only SPR number (0x11)
1490 		 * which is emulated through illegal instruction exception.
1491 		 * We always leave HFSCR DSCR set.
1492 		 */
1493 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1494 			pr_err("Failed to fetch the user instruction\n");
1495 			return;
1496 		}
1497 
1498 		/* Write into DSCR (mtspr 0x03, RS) */
1499 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1500 				== PPC_INST_MTSPR_DSCR_USER) {
1501 			rd = (instword >> 21) & 0x1f;
1502 			current->thread.dscr = regs->gpr[rd];
1503 			current->thread.dscr_inherit = 1;
1504 			current->thread.fscr |= FSCR_DSCR;
1505 			mtspr(SPRN_FSCR, current->thread.fscr);
1506 		}
1507 
1508 		/* Read from DSCR (mfspr RT, 0x03) */
1509 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1510 				== PPC_INST_MFSPR_DSCR_USER) {
1511 			if (emulate_instruction(regs)) {
1512 				pr_err("DSCR based mfspr emulation failed\n");
1513 				return;
1514 			}
1515 			regs->nip += 4;
1516 			emulate_single_step(regs);
1517 		}
1518 		return;
1519 	}
1520 
1521 	if (status == FSCR_TM_LG) {
1522 		/*
1523 		 * If we're here then the hardware is TM aware because it
1524 		 * generated an exception with FSRM_TM set.
1525 		 *
1526 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1527 		 * told us not to do TM, or the kernel is not built with TM
1528 		 * support.
1529 		 *
1530 		 * If both of those things are true, then userspace can spam the
1531 		 * console by triggering the printk() below just by continually
1532 		 * doing tbegin (or any TM instruction). So in that case just
1533 		 * send the process a SIGILL immediately.
1534 		 */
1535 		if (!cpu_has_feature(CPU_FTR_TM))
1536 			goto out;
1537 
1538 		tm_unavailable(regs);
1539 		return;
1540 	}
1541 
1542 	if ((hv || status >= 2) &&
1543 	    (status < ARRAY_SIZE(facility_strings)) &&
1544 	    facility_strings[status])
1545 		facility = facility_strings[status];
1546 
1547 	/* We restore the interrupt state now */
1548 	if (!arch_irq_disabled_regs(regs))
1549 		local_irq_enable();
1550 
1551 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1552 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1553 
1554 out:
1555 	if (user_mode(regs)) {
1556 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1557 		return;
1558 	}
1559 
1560 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1561 }
1562 #endif
1563 
1564 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1565 
1566 void fp_unavailable_tm(struct pt_regs *regs)
1567 {
1568 	/* Note:  This does not handle any kind of FP laziness. */
1569 
1570 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1571 		 regs->nip, regs->msr);
1572 
1573         /* We can only have got here if the task started using FP after
1574          * beginning the transaction.  So, the transactional regs are just a
1575          * copy of the checkpointed ones.  But, we still need to recheckpoint
1576          * as we're enabling FP for the process; it will return, abort the
1577          * transaction, and probably retry but now with FP enabled.  So the
1578          * checkpointed FP registers need to be loaded.
1579 	 */
1580 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1581 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1582 
1583 	/* Enable FP for the task: */
1584 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1585 
1586 	/* This loads and recheckpoints the FP registers from
1587 	 * thread.fpr[].  They will remain in registers after the
1588 	 * checkpoint so we don't need to reload them after.
1589 	 * If VMX is in use, the VRs now hold checkpointed values,
1590 	 * so we don't want to load the VRs from the thread_struct.
1591 	 */
1592 	tm_recheckpoint(&current->thread, MSR_FP);
1593 
1594 	/* If VMX is in use, get the transactional values back */
1595 	if (regs->msr & MSR_VEC) {
1596 		msr_check_and_set(MSR_VEC);
1597 		load_vr_state(&current->thread.vr_state);
1598 		/* At this point all the VSX state is loaded, so enable it */
1599 		regs->msr |= MSR_VSX;
1600 	}
1601 }
1602 
1603 void altivec_unavailable_tm(struct pt_regs *regs)
1604 {
1605 	/* See the comments in fp_unavailable_tm().  This function operates
1606 	 * the same way.
1607 	 */
1608 
1609 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1610 		 "MSR=%lx\n",
1611 		 regs->nip, regs->msr);
1612 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1613 	regs->msr |= MSR_VEC;
1614 	tm_recheckpoint(&current->thread, MSR_VEC);
1615 	current->thread.used_vr = 1;
1616 
1617 	if (regs->msr & MSR_FP) {
1618 		msr_check_and_set(MSR_FP);
1619 		load_fp_state(&current->thread.fp_state);
1620 		regs->msr |= MSR_VSX;
1621 	}
1622 }
1623 
1624 void vsx_unavailable_tm(struct pt_regs *regs)
1625 {
1626 	unsigned long orig_msr = regs->msr;
1627 
1628 	/* See the comments in fp_unavailable_tm().  This works similarly,
1629 	 * though we're loading both FP and VEC registers in here.
1630 	 *
1631 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1632 	 * regs.  Either way, set MSR_VSX.
1633 	 */
1634 
1635 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1636 		 "MSR=%lx\n",
1637 		 regs->nip, regs->msr);
1638 
1639 	current->thread.used_vsr = 1;
1640 
1641 	/* If FP and VMX are already loaded, we have all the state we need */
1642 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1643 		regs->msr |= MSR_VSX;
1644 		return;
1645 	}
1646 
1647 	/* This reclaims FP and/or VR regs if they're already enabled */
1648 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1649 
1650 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1651 		MSR_VSX;
1652 
1653 	/* This loads & recheckpoints FP and VRs; but we have
1654 	 * to be sure not to overwrite previously-valid state.
1655 	 */
1656 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1657 
1658 	msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1659 
1660 	if (orig_msr & MSR_FP)
1661 		load_fp_state(&current->thread.fp_state);
1662 	if (orig_msr & MSR_VEC)
1663 		load_vr_state(&current->thread.vr_state);
1664 }
1665 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1666 
1667 void performance_monitor_exception(struct pt_regs *regs)
1668 {
1669 	__this_cpu_inc(irq_stat.pmu_irqs);
1670 
1671 	perf_irq(regs);
1672 }
1673 
1674 #ifdef CONFIG_8xx
1675 void SoftwareEmulation(struct pt_regs *regs)
1676 {
1677 	CHECK_FULL_REGS(regs);
1678 
1679 	if (!user_mode(regs)) {
1680 		debugger(regs);
1681 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1682 			regs, SIGFPE);
1683 	}
1684 
1685 	if (!emulate_math(regs))
1686 		return;
1687 
1688 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1689 }
1690 #endif /* CONFIG_8xx */
1691 
1692 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1693 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1694 {
1695 	int changed = 0;
1696 	/*
1697 	 * Determine the cause of the debug event, clear the
1698 	 * event flags and send a trap to the handler. Torez
1699 	 */
1700 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1701 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1702 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1703 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1704 #endif
1705 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1706 			     5);
1707 		changed |= 0x01;
1708 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1709 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1710 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1711 			     6);
1712 		changed |= 0x01;
1713 	}  else if (debug_status & DBSR_IAC1) {
1714 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1715 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1716 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1717 			     1);
1718 		changed |= 0x01;
1719 	}  else if (debug_status & DBSR_IAC2) {
1720 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1721 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1722 			     2);
1723 		changed |= 0x01;
1724 	}  else if (debug_status & DBSR_IAC3) {
1725 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1726 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1727 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1728 			     3);
1729 		changed |= 0x01;
1730 	}  else if (debug_status & DBSR_IAC4) {
1731 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1732 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1733 			     4);
1734 		changed |= 0x01;
1735 	}
1736 	/*
1737 	 * At the point this routine was called, the MSR(DE) was turned off.
1738 	 * Check all other debug flags and see if that bit needs to be turned
1739 	 * back on or not.
1740 	 */
1741 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1742 			       current->thread.debug.dbcr1))
1743 		regs->msr |= MSR_DE;
1744 	else
1745 		/* Make sure the IDM flag is off */
1746 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1747 
1748 	if (changed & 0x01)
1749 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1750 }
1751 
1752 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1753 {
1754 	current->thread.debug.dbsr = debug_status;
1755 
1756 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1757 	 * on server, it stops on the target of the branch. In order to simulate
1758 	 * the server behaviour, we thus restart right away with a single step
1759 	 * instead of stopping here when hitting a BT
1760 	 */
1761 	if (debug_status & DBSR_BT) {
1762 		regs->msr &= ~MSR_DE;
1763 
1764 		/* Disable BT */
1765 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1766 		/* Clear the BT event */
1767 		mtspr(SPRN_DBSR, DBSR_BT);
1768 
1769 		/* Do the single step trick only when coming from userspace */
1770 		if (user_mode(regs)) {
1771 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1772 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1773 			regs->msr |= MSR_DE;
1774 			return;
1775 		}
1776 
1777 		if (kprobe_post_handler(regs))
1778 			return;
1779 
1780 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1781 			       5, SIGTRAP) == NOTIFY_STOP) {
1782 			return;
1783 		}
1784 		if (debugger_sstep(regs))
1785 			return;
1786 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1787 		regs->msr &= ~MSR_DE;
1788 
1789 		/* Disable instruction completion */
1790 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1791 		/* Clear the instruction completion event */
1792 		mtspr(SPRN_DBSR, DBSR_IC);
1793 
1794 		if (kprobe_post_handler(regs))
1795 			return;
1796 
1797 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1798 			       5, SIGTRAP) == NOTIFY_STOP) {
1799 			return;
1800 		}
1801 
1802 		if (debugger_sstep(regs))
1803 			return;
1804 
1805 		if (user_mode(regs)) {
1806 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1807 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1808 					       current->thread.debug.dbcr1))
1809 				regs->msr |= MSR_DE;
1810 			else
1811 				/* Make sure the IDM bit is off */
1812 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1813 		}
1814 
1815 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1816 	} else
1817 		handle_debug(regs, debug_status);
1818 }
1819 NOKPROBE_SYMBOL(DebugException);
1820 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1821 
1822 #if !defined(CONFIG_TAU_INT)
1823 void TAUException(struct pt_regs *regs)
1824 {
1825 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1826 	       regs->nip, regs->msr, regs->trap, print_tainted());
1827 }
1828 #endif /* CONFIG_INT_TAU */
1829 
1830 #ifdef CONFIG_ALTIVEC
1831 void altivec_assist_exception(struct pt_regs *regs)
1832 {
1833 	int err;
1834 
1835 	if (!user_mode(regs)) {
1836 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1837 		       " at %lx\n", regs->nip);
1838 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1839 	}
1840 
1841 	flush_altivec_to_thread(current);
1842 
1843 	PPC_WARN_EMULATED(altivec, regs);
1844 	err = emulate_altivec(regs);
1845 	if (err == 0) {
1846 		regs->nip += 4;		/* skip emulated instruction */
1847 		emulate_single_step(regs);
1848 		return;
1849 	}
1850 
1851 	if (err == -EFAULT) {
1852 		/* got an error reading the instruction */
1853 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1854 	} else {
1855 		/* didn't recognize the instruction */
1856 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1857 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1858 				   "in %s at %lx\n", current->comm, regs->nip);
1859 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1860 	}
1861 }
1862 #endif /* CONFIG_ALTIVEC */
1863 
1864 #ifdef CONFIG_FSL_BOOKE
1865 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1866 			   unsigned long error_code)
1867 {
1868 	/* We treat cache locking instructions from the user
1869 	 * as priv ops, in the future we could try to do
1870 	 * something smarter
1871 	 */
1872 	if (error_code & (ESR_DLK|ESR_ILK))
1873 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1874 	return;
1875 }
1876 #endif /* CONFIG_FSL_BOOKE */
1877 
1878 #ifdef CONFIG_SPE
1879 void SPEFloatingPointException(struct pt_regs *regs)
1880 {
1881 	extern int do_spe_mathemu(struct pt_regs *regs);
1882 	unsigned long spefscr;
1883 	int fpexc_mode;
1884 	int code = 0;
1885 	int err;
1886 
1887 	flush_spe_to_thread(current);
1888 
1889 	spefscr = current->thread.spefscr;
1890 	fpexc_mode = current->thread.fpexc_mode;
1891 
1892 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1893 		code = FPE_FLTOVF;
1894 	}
1895 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1896 		code = FPE_FLTUND;
1897 	}
1898 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1899 		code = FPE_FLTDIV;
1900 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1901 		code = FPE_FLTINV;
1902 	}
1903 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1904 		code = FPE_FLTRES;
1905 
1906 	err = do_spe_mathemu(regs);
1907 	if (err == 0) {
1908 		regs->nip += 4;		/* skip emulated instruction */
1909 		emulate_single_step(regs);
1910 		return;
1911 	}
1912 
1913 	if (err == -EFAULT) {
1914 		/* got an error reading the instruction */
1915 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1916 	} else if (err == -EINVAL) {
1917 		/* didn't recognize the instruction */
1918 		printk(KERN_ERR "unrecognized spe instruction "
1919 		       "in %s at %lx\n", current->comm, regs->nip);
1920 	} else {
1921 		_exception(SIGFPE, regs, code, regs->nip);
1922 	}
1923 
1924 	return;
1925 }
1926 
1927 void SPEFloatingPointRoundException(struct pt_regs *regs)
1928 {
1929 	extern int speround_handler(struct pt_regs *regs);
1930 	int err;
1931 
1932 	preempt_disable();
1933 	if (regs->msr & MSR_SPE)
1934 		giveup_spe(current);
1935 	preempt_enable();
1936 
1937 	regs->nip -= 4;
1938 	err = speround_handler(regs);
1939 	if (err == 0) {
1940 		regs->nip += 4;		/* skip emulated instruction */
1941 		emulate_single_step(regs);
1942 		return;
1943 	}
1944 
1945 	if (err == -EFAULT) {
1946 		/* got an error reading the instruction */
1947 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1948 	} else if (err == -EINVAL) {
1949 		/* didn't recognize the instruction */
1950 		printk(KERN_ERR "unrecognized spe instruction "
1951 		       "in %s at %lx\n", current->comm, regs->nip);
1952 	} else {
1953 		_exception(SIGFPE, regs, 0, regs->nip);
1954 		return;
1955 	}
1956 }
1957 #endif
1958 
1959 /*
1960  * We enter here if we get an unrecoverable exception, that is, one
1961  * that happened at a point where the RI (recoverable interrupt) bit
1962  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1963  * we therefore lost state by taking this exception.
1964  */
1965 void unrecoverable_exception(struct pt_regs *regs)
1966 {
1967 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1968 	       regs->trap, regs->nip);
1969 	die("Unrecoverable exception", regs, SIGABRT);
1970 }
1971 
1972 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1973 /*
1974  * Default handler for a Watchdog exception,
1975  * spins until a reboot occurs
1976  */
1977 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1978 {
1979 	/* Generic WatchdogHandler, implement your own */
1980 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1981 	return;
1982 }
1983 
1984 void WatchdogException(struct pt_regs *regs)
1985 {
1986 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1987 	WatchdogHandler(regs);
1988 }
1989 #endif
1990 
1991 /*
1992  * We enter here if we discover during exception entry that we are
1993  * running in supervisor mode with a userspace value in the stack pointer.
1994  */
1995 void kernel_bad_stack(struct pt_regs *regs)
1996 {
1997 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1998 	       regs->gpr[1], regs->nip);
1999 	die("Bad kernel stack pointer", regs, SIGABRT);
2000 }
2001 
2002 void __init trap_init(void)
2003 {
2004 }
2005 
2006 
2007 #ifdef CONFIG_PPC_EMULATED_STATS
2008 
2009 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2010 
2011 struct ppc_emulated ppc_emulated = {
2012 #ifdef CONFIG_ALTIVEC
2013 	WARN_EMULATED_SETUP(altivec),
2014 #endif
2015 	WARN_EMULATED_SETUP(dcba),
2016 	WARN_EMULATED_SETUP(dcbz),
2017 	WARN_EMULATED_SETUP(fp_pair),
2018 	WARN_EMULATED_SETUP(isel),
2019 	WARN_EMULATED_SETUP(mcrxr),
2020 	WARN_EMULATED_SETUP(mfpvr),
2021 	WARN_EMULATED_SETUP(multiple),
2022 	WARN_EMULATED_SETUP(popcntb),
2023 	WARN_EMULATED_SETUP(spe),
2024 	WARN_EMULATED_SETUP(string),
2025 	WARN_EMULATED_SETUP(sync),
2026 	WARN_EMULATED_SETUP(unaligned),
2027 #ifdef CONFIG_MATH_EMULATION
2028 	WARN_EMULATED_SETUP(math),
2029 #endif
2030 #ifdef CONFIG_VSX
2031 	WARN_EMULATED_SETUP(vsx),
2032 #endif
2033 #ifdef CONFIG_PPC64
2034 	WARN_EMULATED_SETUP(mfdscr),
2035 	WARN_EMULATED_SETUP(mtdscr),
2036 	WARN_EMULATED_SETUP(lq_stq),
2037 #endif
2038 };
2039 
2040 u32 ppc_warn_emulated;
2041 
2042 void ppc_warn_emulated_print(const char *type)
2043 {
2044 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2045 			    type);
2046 }
2047 
2048 static int __init ppc_warn_emulated_init(void)
2049 {
2050 	struct dentry *dir, *d;
2051 	unsigned int i;
2052 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2053 
2054 	if (!powerpc_debugfs_root)
2055 		return -ENODEV;
2056 
2057 	dir = debugfs_create_dir("emulated_instructions",
2058 				 powerpc_debugfs_root);
2059 	if (!dir)
2060 		return -ENOMEM;
2061 
2062 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2063 			       &ppc_warn_emulated);
2064 	if (!d)
2065 		goto fail;
2066 
2067 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2068 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2069 				       (u32 *)&entries[i].val.counter);
2070 		if (!d)
2071 			goto fail;
2072 	}
2073 
2074 	return 0;
2075 
2076 fail:
2077 	debugfs_remove_recursive(dir);
2078 	return -ENOMEM;
2079 }
2080 
2081 device_initcall(ppc_warn_emulated_init);
2082 
2083 #endif /* CONFIG_PPC_EMULATED_STATS */
2084