xref: /linux/arch/powerpc/kernel/traps.c (revision 6eb2fb3170549737207974c2c6ad34bcc2f3025e)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 
39 #include <asm/emulated_ops.h>
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/machdep.h>
44 #include <asm/rtas.h>
45 #include <asm/pmc.h>
46 #ifdef CONFIG_PPC32
47 #include <asm/reg.h>
48 #endif
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 
64 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
65 int (*__debugger)(struct pt_regs *regs) __read_mostly;
66 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
72 
73 EXPORT_SYMBOL(__debugger);
74 EXPORT_SYMBOL(__debugger_ipi);
75 EXPORT_SYMBOL(__debugger_bpt);
76 EXPORT_SYMBOL(__debugger_sstep);
77 EXPORT_SYMBOL(__debugger_iabr_match);
78 EXPORT_SYMBOL(__debugger_break_match);
79 EXPORT_SYMBOL(__debugger_fault_handler);
80 #endif
81 
82 /* Transactional Memory trap debug */
83 #ifdef TM_DEBUG_SW
84 #define TM_DEBUG(x...) printk(KERN_INFO x)
85 #else
86 #define TM_DEBUG(x...) do { } while(0)
87 #endif
88 
89 /*
90  * Trap & Exception support
91  */
92 
93 #ifdef CONFIG_PMAC_BACKLIGHT
94 static void pmac_backlight_unblank(void)
95 {
96 	mutex_lock(&pmac_backlight_mutex);
97 	if (pmac_backlight) {
98 		struct backlight_properties *props;
99 
100 		props = &pmac_backlight->props;
101 		props->brightness = props->max_brightness;
102 		props->power = FB_BLANK_UNBLANK;
103 		backlight_update_status(pmac_backlight);
104 	}
105 	mutex_unlock(&pmac_backlight_mutex);
106 }
107 #else
108 static inline void pmac_backlight_unblank(void) { }
109 #endif
110 
111 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
112 static int die_owner = -1;
113 static unsigned int die_nest_count;
114 static int die_counter;
115 
116 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
117 {
118 	int cpu;
119 	unsigned long flags;
120 
121 	if (debugger(regs))
122 		return 1;
123 
124 	oops_enter();
125 
126 	/* racy, but better than risking deadlock. */
127 	raw_local_irq_save(flags);
128 	cpu = smp_processor_id();
129 	if (!arch_spin_trylock(&die_lock)) {
130 		if (cpu == die_owner)
131 			/* nested oops. should stop eventually */;
132 		else
133 			arch_spin_lock(&die_lock);
134 	}
135 	die_nest_count++;
136 	die_owner = cpu;
137 	console_verbose();
138 	bust_spinlocks(1);
139 	if (machine_is(powermac))
140 		pmac_backlight_unblank();
141 	return flags;
142 }
143 
144 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
145 			       int signr)
146 {
147 	bust_spinlocks(0);
148 	die_owner = -1;
149 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
150 	die_nest_count--;
151 	oops_exit();
152 	printk("\n");
153 	if (!die_nest_count)
154 		/* Nest count reaches zero, release the lock. */
155 		arch_spin_unlock(&die_lock);
156 	raw_local_irq_restore(flags);
157 
158 	crash_fadump(regs, "die oops");
159 
160 	/*
161 	 * A system reset (0x100) is a request to dump, so we always send
162 	 * it through the crashdump code.
163 	 */
164 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
165 		crash_kexec(regs);
166 
167 		/*
168 		 * We aren't the primary crash CPU. We need to send it
169 		 * to a holding pattern to avoid it ending up in the panic
170 		 * code.
171 		 */
172 		crash_kexec_secondary(regs);
173 	}
174 
175 	if (!signr)
176 		return;
177 
178 	/*
179 	 * While our oops output is serialised by a spinlock, output
180 	 * from panic() called below can race and corrupt it. If we
181 	 * know we are going to panic, delay for 1 second so we have a
182 	 * chance to get clean backtraces from all CPUs that are oopsing.
183 	 */
184 	if (in_interrupt() || panic_on_oops || !current->pid ||
185 	    is_global_init(current)) {
186 		mdelay(MSEC_PER_SEC);
187 	}
188 
189 	if (in_interrupt())
190 		panic("Fatal exception in interrupt");
191 	if (panic_on_oops)
192 		panic("Fatal exception");
193 	do_exit(signr);
194 }
195 
196 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
197 {
198 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
199 #ifdef CONFIG_PREEMPT
200 	printk("PREEMPT ");
201 #endif
202 #ifdef CONFIG_SMP
203 	printk("SMP NR_CPUS=%d ", NR_CPUS);
204 #endif
205 #ifdef CONFIG_DEBUG_PAGEALLOC
206 	printk("DEBUG_PAGEALLOC ");
207 #endif
208 #ifdef CONFIG_NUMA
209 	printk("NUMA ");
210 #endif
211 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
212 
213 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
214 		return 1;
215 
216 	print_modules();
217 	show_regs(regs);
218 
219 	return 0;
220 }
221 
222 void die(const char *str, struct pt_regs *regs, long err)
223 {
224 	unsigned long flags = oops_begin(regs);
225 
226 	if (__die(str, regs, err))
227 		err = 0;
228 	oops_end(flags, regs, err);
229 }
230 
231 void user_single_step_siginfo(struct task_struct *tsk,
232 				struct pt_regs *regs, siginfo_t *info)
233 {
234 	memset(info, 0, sizeof(*info));
235 	info->si_signo = SIGTRAP;
236 	info->si_code = TRAP_TRACE;
237 	info->si_addr = (void __user *)regs->nip;
238 }
239 
240 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
241 {
242 	siginfo_t info;
243 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
244 			"at %08lx nip %08lx lr %08lx code %x\n";
245 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 			"at %016lx nip %016lx lr %016lx code %x\n";
247 
248 	if (!user_mode(regs)) {
249 		die("Exception in kernel mode", regs, signr);
250 		return;
251 	}
252 
253 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
254 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
255 				   current->comm, current->pid, signr,
256 				   addr, regs->nip, regs->link, code);
257 	}
258 
259 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
260 		local_irq_enable();
261 
262 	current->thread.trap_nr = code;
263 	memset(&info, 0, sizeof(info));
264 	info.si_signo = signr;
265 	info.si_code = code;
266 	info.si_addr = (void __user *) addr;
267 	force_sig_info(signr, &info, current);
268 }
269 
270 #ifdef CONFIG_PPC64
271 void system_reset_exception(struct pt_regs *regs)
272 {
273 	/* See if any machine dependent calls */
274 	if (ppc_md.system_reset_exception) {
275 		if (ppc_md.system_reset_exception(regs))
276 			return;
277 	}
278 
279 	die("System Reset", regs, SIGABRT);
280 
281 	/* Must die if the interrupt is not recoverable */
282 	if (!(regs->msr & MSR_RI))
283 		panic("Unrecoverable System Reset");
284 
285 	/* What should we do here? We could issue a shutdown or hard reset. */
286 }
287 #endif
288 
289 /*
290  * I/O accesses can cause machine checks on powermacs.
291  * Check if the NIP corresponds to the address of a sync
292  * instruction for which there is an entry in the exception
293  * table.
294  * Note that the 601 only takes a machine check on TEA
295  * (transfer error ack) signal assertion, and does not
296  * set any of the top 16 bits of SRR1.
297  *  -- paulus.
298  */
299 static inline int check_io_access(struct pt_regs *regs)
300 {
301 #ifdef CONFIG_PPC32
302 	unsigned long msr = regs->msr;
303 	const struct exception_table_entry *entry;
304 	unsigned int *nip = (unsigned int *)regs->nip;
305 
306 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
307 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
308 		/*
309 		 * Check that it's a sync instruction, or somewhere
310 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
311 		 * As the address is in the exception table
312 		 * we should be able to read the instr there.
313 		 * For the debug message, we look at the preceding
314 		 * load or store.
315 		 */
316 		if (*nip == 0x60000000)		/* nop */
317 			nip -= 2;
318 		else if (*nip == 0x4c00012c)	/* isync */
319 			--nip;
320 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
321 			/* sync or twi */
322 			unsigned int rb;
323 
324 			--nip;
325 			rb = (*nip >> 11) & 0x1f;
326 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
327 			       (*nip & 0x100)? "OUT to": "IN from",
328 			       regs->gpr[rb] - _IO_BASE, nip);
329 			regs->msr |= MSR_RI;
330 			regs->nip = entry->fixup;
331 			return 1;
332 		}
333 	}
334 #endif /* CONFIG_PPC32 */
335 	return 0;
336 }
337 
338 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
339 /* On 4xx, the reason for the machine check or program exception
340    is in the ESR. */
341 #define get_reason(regs)	((regs)->dsisr)
342 #ifndef CONFIG_FSL_BOOKE
343 #define get_mc_reason(regs)	((regs)->dsisr)
344 #else
345 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
346 #endif
347 #define REASON_FP		ESR_FP
348 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
349 #define REASON_PRIVILEGED	ESR_PPR
350 #define REASON_TRAP		ESR_PTR
351 
352 /* single-step stuff */
353 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
354 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
355 
356 #else
357 /* On non-4xx, the reason for the machine check or program
358    exception is in the MSR. */
359 #define get_reason(regs)	((regs)->msr)
360 #define get_mc_reason(regs)	((regs)->msr)
361 #define REASON_TM		0x200000
362 #define REASON_FP		0x100000
363 #define REASON_ILLEGAL		0x80000
364 #define REASON_PRIVILEGED	0x40000
365 #define REASON_TRAP		0x20000
366 
367 #define single_stepping(regs)	((regs)->msr & MSR_SE)
368 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
369 #endif
370 
371 #if defined(CONFIG_4xx)
372 int machine_check_4xx(struct pt_regs *regs)
373 {
374 	unsigned long reason = get_mc_reason(regs);
375 
376 	if (reason & ESR_IMCP) {
377 		printk("Instruction");
378 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
379 	} else
380 		printk("Data");
381 	printk(" machine check in kernel mode.\n");
382 
383 	return 0;
384 }
385 
386 int machine_check_440A(struct pt_regs *regs)
387 {
388 	unsigned long reason = get_mc_reason(regs);
389 
390 	printk("Machine check in kernel mode.\n");
391 	if (reason & ESR_IMCP){
392 		printk("Instruction Synchronous Machine Check exception\n");
393 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
394 	}
395 	else {
396 		u32 mcsr = mfspr(SPRN_MCSR);
397 		if (mcsr & MCSR_IB)
398 			printk("Instruction Read PLB Error\n");
399 		if (mcsr & MCSR_DRB)
400 			printk("Data Read PLB Error\n");
401 		if (mcsr & MCSR_DWB)
402 			printk("Data Write PLB Error\n");
403 		if (mcsr & MCSR_TLBP)
404 			printk("TLB Parity Error\n");
405 		if (mcsr & MCSR_ICP){
406 			flush_instruction_cache();
407 			printk("I-Cache Parity Error\n");
408 		}
409 		if (mcsr & MCSR_DCSP)
410 			printk("D-Cache Search Parity Error\n");
411 		if (mcsr & MCSR_DCFP)
412 			printk("D-Cache Flush Parity Error\n");
413 		if (mcsr & MCSR_IMPE)
414 			printk("Machine Check exception is imprecise\n");
415 
416 		/* Clear MCSR */
417 		mtspr(SPRN_MCSR, mcsr);
418 	}
419 	return 0;
420 }
421 
422 int machine_check_47x(struct pt_regs *regs)
423 {
424 	unsigned long reason = get_mc_reason(regs);
425 	u32 mcsr;
426 
427 	printk(KERN_ERR "Machine check in kernel mode.\n");
428 	if (reason & ESR_IMCP) {
429 		printk(KERN_ERR
430 		       "Instruction Synchronous Machine Check exception\n");
431 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
432 		return 0;
433 	}
434 	mcsr = mfspr(SPRN_MCSR);
435 	if (mcsr & MCSR_IB)
436 		printk(KERN_ERR "Instruction Read PLB Error\n");
437 	if (mcsr & MCSR_DRB)
438 		printk(KERN_ERR "Data Read PLB Error\n");
439 	if (mcsr & MCSR_DWB)
440 		printk(KERN_ERR "Data Write PLB Error\n");
441 	if (mcsr & MCSR_TLBP)
442 		printk(KERN_ERR "TLB Parity Error\n");
443 	if (mcsr & MCSR_ICP) {
444 		flush_instruction_cache();
445 		printk(KERN_ERR "I-Cache Parity Error\n");
446 	}
447 	if (mcsr & MCSR_DCSP)
448 		printk(KERN_ERR "D-Cache Search Parity Error\n");
449 	if (mcsr & PPC47x_MCSR_GPR)
450 		printk(KERN_ERR "GPR Parity Error\n");
451 	if (mcsr & PPC47x_MCSR_FPR)
452 		printk(KERN_ERR "FPR Parity Error\n");
453 	if (mcsr & PPC47x_MCSR_IPR)
454 		printk(KERN_ERR "Machine Check exception is imprecise\n");
455 
456 	/* Clear MCSR */
457 	mtspr(SPRN_MCSR, mcsr);
458 
459 	return 0;
460 }
461 #elif defined(CONFIG_E500)
462 int machine_check_e500mc(struct pt_regs *regs)
463 {
464 	unsigned long mcsr = mfspr(SPRN_MCSR);
465 	unsigned long reason = mcsr;
466 	int recoverable = 1;
467 
468 	if (reason & MCSR_LD) {
469 		recoverable = fsl_rio_mcheck_exception(regs);
470 		if (recoverable == 1)
471 			goto silent_out;
472 	}
473 
474 	printk("Machine check in kernel mode.\n");
475 	printk("Caused by (from MCSR=%lx): ", reason);
476 
477 	if (reason & MCSR_MCP)
478 		printk("Machine Check Signal\n");
479 
480 	if (reason & MCSR_ICPERR) {
481 		printk("Instruction Cache Parity Error\n");
482 
483 		/*
484 		 * This is recoverable by invalidating the i-cache.
485 		 */
486 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
487 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
488 			;
489 
490 		/*
491 		 * This will generally be accompanied by an instruction
492 		 * fetch error report -- only treat MCSR_IF as fatal
493 		 * if it wasn't due to an L1 parity error.
494 		 */
495 		reason &= ~MCSR_IF;
496 	}
497 
498 	if (reason & MCSR_DCPERR_MC) {
499 		printk("Data Cache Parity Error\n");
500 
501 		/*
502 		 * In write shadow mode we auto-recover from the error, but it
503 		 * may still get logged and cause a machine check.  We should
504 		 * only treat the non-write shadow case as non-recoverable.
505 		 */
506 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
507 			recoverable = 0;
508 	}
509 
510 	if (reason & MCSR_L2MMU_MHIT) {
511 		printk("Hit on multiple TLB entries\n");
512 		recoverable = 0;
513 	}
514 
515 	if (reason & MCSR_NMI)
516 		printk("Non-maskable interrupt\n");
517 
518 	if (reason & MCSR_IF) {
519 		printk("Instruction Fetch Error Report\n");
520 		recoverable = 0;
521 	}
522 
523 	if (reason & MCSR_LD) {
524 		printk("Load Error Report\n");
525 		recoverable = 0;
526 	}
527 
528 	if (reason & MCSR_ST) {
529 		printk("Store Error Report\n");
530 		recoverable = 0;
531 	}
532 
533 	if (reason & MCSR_LDG) {
534 		printk("Guarded Load Error Report\n");
535 		recoverable = 0;
536 	}
537 
538 	if (reason & MCSR_TLBSYNC)
539 		printk("Simultaneous tlbsync operations\n");
540 
541 	if (reason & MCSR_BSL2_ERR) {
542 		printk("Level 2 Cache Error\n");
543 		recoverable = 0;
544 	}
545 
546 	if (reason & MCSR_MAV) {
547 		u64 addr;
548 
549 		addr = mfspr(SPRN_MCAR);
550 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
551 
552 		printk("Machine Check %s Address: %#llx\n",
553 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
554 	}
555 
556 silent_out:
557 	mtspr(SPRN_MCSR, mcsr);
558 	return mfspr(SPRN_MCSR) == 0 && recoverable;
559 }
560 
561 int machine_check_e500(struct pt_regs *regs)
562 {
563 	unsigned long reason = get_mc_reason(regs);
564 
565 	if (reason & MCSR_BUS_RBERR) {
566 		if (fsl_rio_mcheck_exception(regs))
567 			return 1;
568 	}
569 
570 	printk("Machine check in kernel mode.\n");
571 	printk("Caused by (from MCSR=%lx): ", reason);
572 
573 	if (reason & MCSR_MCP)
574 		printk("Machine Check Signal\n");
575 	if (reason & MCSR_ICPERR)
576 		printk("Instruction Cache Parity Error\n");
577 	if (reason & MCSR_DCP_PERR)
578 		printk("Data Cache Push Parity Error\n");
579 	if (reason & MCSR_DCPERR)
580 		printk("Data Cache Parity Error\n");
581 	if (reason & MCSR_BUS_IAERR)
582 		printk("Bus - Instruction Address Error\n");
583 	if (reason & MCSR_BUS_RAERR)
584 		printk("Bus - Read Address Error\n");
585 	if (reason & MCSR_BUS_WAERR)
586 		printk("Bus - Write Address Error\n");
587 	if (reason & MCSR_BUS_IBERR)
588 		printk("Bus - Instruction Data Error\n");
589 	if (reason & MCSR_BUS_RBERR)
590 		printk("Bus - Read Data Bus Error\n");
591 	if (reason & MCSR_BUS_WBERR)
592 		printk("Bus - Read Data Bus Error\n");
593 	if (reason & MCSR_BUS_IPERR)
594 		printk("Bus - Instruction Parity Error\n");
595 	if (reason & MCSR_BUS_RPERR)
596 		printk("Bus - Read Parity Error\n");
597 
598 	return 0;
599 }
600 
601 int machine_check_generic(struct pt_regs *regs)
602 {
603 	return 0;
604 }
605 #elif defined(CONFIG_E200)
606 int machine_check_e200(struct pt_regs *regs)
607 {
608 	unsigned long reason = get_mc_reason(regs);
609 
610 	printk("Machine check in kernel mode.\n");
611 	printk("Caused by (from MCSR=%lx): ", reason);
612 
613 	if (reason & MCSR_MCP)
614 		printk("Machine Check Signal\n");
615 	if (reason & MCSR_CP_PERR)
616 		printk("Cache Push Parity Error\n");
617 	if (reason & MCSR_CPERR)
618 		printk("Cache Parity Error\n");
619 	if (reason & MCSR_EXCP_ERR)
620 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
621 	if (reason & MCSR_BUS_IRERR)
622 		printk("Bus - Read Bus Error on instruction fetch\n");
623 	if (reason & MCSR_BUS_DRERR)
624 		printk("Bus - Read Bus Error on data load\n");
625 	if (reason & MCSR_BUS_WRERR)
626 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
627 
628 	return 0;
629 }
630 #else
631 int machine_check_generic(struct pt_regs *regs)
632 {
633 	unsigned long reason = get_mc_reason(regs);
634 
635 	printk("Machine check in kernel mode.\n");
636 	printk("Caused by (from SRR1=%lx): ", reason);
637 	switch (reason & 0x601F0000) {
638 	case 0x80000:
639 		printk("Machine check signal\n");
640 		break;
641 	case 0:		/* for 601 */
642 	case 0x40000:
643 	case 0x140000:	/* 7450 MSS error and TEA */
644 		printk("Transfer error ack signal\n");
645 		break;
646 	case 0x20000:
647 		printk("Data parity error signal\n");
648 		break;
649 	case 0x10000:
650 		printk("Address parity error signal\n");
651 		break;
652 	case 0x20000000:
653 		printk("L1 Data Cache error\n");
654 		break;
655 	case 0x40000000:
656 		printk("L1 Instruction Cache error\n");
657 		break;
658 	case 0x00100000:
659 		printk("L2 data cache parity error\n");
660 		break;
661 	default:
662 		printk("Unknown values in msr\n");
663 	}
664 	return 0;
665 }
666 #endif /* everything else */
667 
668 void machine_check_exception(struct pt_regs *regs)
669 {
670 	int recover = 0;
671 
672 	__get_cpu_var(irq_stat).mce_exceptions++;
673 
674 	/* See if any machine dependent calls. In theory, we would want
675 	 * to call the CPU first, and call the ppc_md. one if the CPU
676 	 * one returns a positive number. However there is existing code
677 	 * that assumes the board gets a first chance, so let's keep it
678 	 * that way for now and fix things later. --BenH.
679 	 */
680 	if (ppc_md.machine_check_exception)
681 		recover = ppc_md.machine_check_exception(regs);
682 	else if (cur_cpu_spec->machine_check)
683 		recover = cur_cpu_spec->machine_check(regs);
684 
685 	if (recover > 0)
686 		return;
687 
688 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
689 	/* the qspan pci read routines can cause machine checks -- Cort
690 	 *
691 	 * yuck !!! that totally needs to go away ! There are better ways
692 	 * to deal with that than having a wart in the mcheck handler.
693 	 * -- BenH
694 	 */
695 	bad_page_fault(regs, regs->dar, SIGBUS);
696 	return;
697 #endif
698 
699 	if (debugger_fault_handler(regs))
700 		return;
701 
702 	if (check_io_access(regs))
703 		return;
704 
705 	die("Machine check", regs, SIGBUS);
706 
707 	/* Must die if the interrupt is not recoverable */
708 	if (!(regs->msr & MSR_RI))
709 		panic("Unrecoverable Machine check");
710 }
711 
712 void SMIException(struct pt_regs *regs)
713 {
714 	die("System Management Interrupt", regs, SIGABRT);
715 }
716 
717 void unknown_exception(struct pt_regs *regs)
718 {
719 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
720 	       regs->nip, regs->msr, regs->trap);
721 
722 	_exception(SIGTRAP, regs, 0, 0);
723 }
724 
725 void instruction_breakpoint_exception(struct pt_regs *regs)
726 {
727 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
728 					5, SIGTRAP) == NOTIFY_STOP)
729 		return;
730 	if (debugger_iabr_match(regs))
731 		return;
732 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
733 }
734 
735 void RunModeException(struct pt_regs *regs)
736 {
737 	_exception(SIGTRAP, regs, 0, 0);
738 }
739 
740 void __kprobes single_step_exception(struct pt_regs *regs)
741 {
742 	clear_single_step(regs);
743 
744 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
745 					5, SIGTRAP) == NOTIFY_STOP)
746 		return;
747 	if (debugger_sstep(regs))
748 		return;
749 
750 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
751 }
752 
753 /*
754  * After we have successfully emulated an instruction, we have to
755  * check if the instruction was being single-stepped, and if so,
756  * pretend we got a single-step exception.  This was pointed out
757  * by Kumar Gala.  -- paulus
758  */
759 static void emulate_single_step(struct pt_regs *regs)
760 {
761 	if (single_stepping(regs))
762 		single_step_exception(regs);
763 }
764 
765 static inline int __parse_fpscr(unsigned long fpscr)
766 {
767 	int ret = 0;
768 
769 	/* Invalid operation */
770 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
771 		ret = FPE_FLTINV;
772 
773 	/* Overflow */
774 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
775 		ret = FPE_FLTOVF;
776 
777 	/* Underflow */
778 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
779 		ret = FPE_FLTUND;
780 
781 	/* Divide by zero */
782 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
783 		ret = FPE_FLTDIV;
784 
785 	/* Inexact result */
786 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
787 		ret = FPE_FLTRES;
788 
789 	return ret;
790 }
791 
792 static void parse_fpe(struct pt_regs *regs)
793 {
794 	int code = 0;
795 
796 	flush_fp_to_thread(current);
797 
798 	code = __parse_fpscr(current->thread.fpscr.val);
799 
800 	_exception(SIGFPE, regs, code, regs->nip);
801 }
802 
803 /*
804  * Illegal instruction emulation support.  Originally written to
805  * provide the PVR to user applications using the mfspr rd, PVR.
806  * Return non-zero if we can't emulate, or -EFAULT if the associated
807  * memory access caused an access fault.  Return zero on success.
808  *
809  * There are a couple of ways to do this, either "decode" the instruction
810  * or directly match lots of bits.  In this case, matching lots of
811  * bits is faster and easier.
812  *
813  */
814 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
815 {
816 	u8 rT = (instword >> 21) & 0x1f;
817 	u8 rA = (instword >> 16) & 0x1f;
818 	u8 NB_RB = (instword >> 11) & 0x1f;
819 	u32 num_bytes;
820 	unsigned long EA;
821 	int pos = 0;
822 
823 	/* Early out if we are an invalid form of lswx */
824 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
825 		if ((rT == rA) || (rT == NB_RB))
826 			return -EINVAL;
827 
828 	EA = (rA == 0) ? 0 : regs->gpr[rA];
829 
830 	switch (instword & PPC_INST_STRING_MASK) {
831 		case PPC_INST_LSWX:
832 		case PPC_INST_STSWX:
833 			EA += NB_RB;
834 			num_bytes = regs->xer & 0x7f;
835 			break;
836 		case PPC_INST_LSWI:
837 		case PPC_INST_STSWI:
838 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
839 			break;
840 		default:
841 			return -EINVAL;
842 	}
843 
844 	while (num_bytes != 0)
845 	{
846 		u8 val;
847 		u32 shift = 8 * (3 - (pos & 0x3));
848 
849 		switch ((instword & PPC_INST_STRING_MASK)) {
850 			case PPC_INST_LSWX:
851 			case PPC_INST_LSWI:
852 				if (get_user(val, (u8 __user *)EA))
853 					return -EFAULT;
854 				/* first time updating this reg,
855 				 * zero it out */
856 				if (pos == 0)
857 					regs->gpr[rT] = 0;
858 				regs->gpr[rT] |= val << shift;
859 				break;
860 			case PPC_INST_STSWI:
861 			case PPC_INST_STSWX:
862 				val = regs->gpr[rT] >> shift;
863 				if (put_user(val, (u8 __user *)EA))
864 					return -EFAULT;
865 				break;
866 		}
867 		/* move EA to next address */
868 		EA += 1;
869 		num_bytes--;
870 
871 		/* manage our position within the register */
872 		if (++pos == 4) {
873 			pos = 0;
874 			if (++rT == 32)
875 				rT = 0;
876 		}
877 	}
878 
879 	return 0;
880 }
881 
882 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
883 {
884 	u32 ra,rs;
885 	unsigned long tmp;
886 
887 	ra = (instword >> 16) & 0x1f;
888 	rs = (instword >> 21) & 0x1f;
889 
890 	tmp = regs->gpr[rs];
891 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
892 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
893 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
894 	regs->gpr[ra] = tmp;
895 
896 	return 0;
897 }
898 
899 static int emulate_isel(struct pt_regs *regs, u32 instword)
900 {
901 	u8 rT = (instword >> 21) & 0x1f;
902 	u8 rA = (instword >> 16) & 0x1f;
903 	u8 rB = (instword >> 11) & 0x1f;
904 	u8 BC = (instword >> 6) & 0x1f;
905 	u8 bit;
906 	unsigned long tmp;
907 
908 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
909 	bit = (regs->ccr >> (31 - BC)) & 0x1;
910 
911 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
912 
913 	return 0;
914 }
915 
916 static int emulate_instruction(struct pt_regs *regs)
917 {
918 	u32 instword;
919 	u32 rd;
920 
921 	if (!user_mode(regs) || (regs->msr & MSR_LE))
922 		return -EINVAL;
923 	CHECK_FULL_REGS(regs);
924 
925 	if (get_user(instword, (u32 __user *)(regs->nip)))
926 		return -EFAULT;
927 
928 	/* Emulate the mfspr rD, PVR. */
929 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
930 		PPC_WARN_EMULATED(mfpvr, regs);
931 		rd = (instword >> 21) & 0x1f;
932 		regs->gpr[rd] = mfspr(SPRN_PVR);
933 		return 0;
934 	}
935 
936 	/* Emulating the dcba insn is just a no-op.  */
937 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
938 		PPC_WARN_EMULATED(dcba, regs);
939 		return 0;
940 	}
941 
942 	/* Emulate the mcrxr insn.  */
943 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
944 		int shift = (instword >> 21) & 0x1c;
945 		unsigned long msk = 0xf0000000UL >> shift;
946 
947 		PPC_WARN_EMULATED(mcrxr, regs);
948 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
949 		regs->xer &= ~0xf0000000UL;
950 		return 0;
951 	}
952 
953 	/* Emulate load/store string insn. */
954 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
955 		PPC_WARN_EMULATED(string, regs);
956 		return emulate_string_inst(regs, instword);
957 	}
958 
959 	/* Emulate the popcntb (Population Count Bytes) instruction. */
960 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
961 		PPC_WARN_EMULATED(popcntb, regs);
962 		return emulate_popcntb_inst(regs, instword);
963 	}
964 
965 	/* Emulate isel (Integer Select) instruction */
966 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
967 		PPC_WARN_EMULATED(isel, regs);
968 		return emulate_isel(regs, instword);
969 	}
970 
971 #ifdef CONFIG_PPC64
972 	/* Emulate the mfspr rD, DSCR. */
973 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
974 		PPC_INST_MFSPR_DSCR_USER) ||
975 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
976 		PPC_INST_MFSPR_DSCR)) &&
977 			cpu_has_feature(CPU_FTR_DSCR)) {
978 		PPC_WARN_EMULATED(mfdscr, regs);
979 		rd = (instword >> 21) & 0x1f;
980 		regs->gpr[rd] = mfspr(SPRN_DSCR);
981 		return 0;
982 	}
983 	/* Emulate the mtspr DSCR, rD. */
984 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
985 		PPC_INST_MTSPR_DSCR_USER) ||
986 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
987 		PPC_INST_MTSPR_DSCR)) &&
988 			cpu_has_feature(CPU_FTR_DSCR)) {
989 		PPC_WARN_EMULATED(mtdscr, regs);
990 		rd = (instword >> 21) & 0x1f;
991 		current->thread.dscr = regs->gpr[rd];
992 		current->thread.dscr_inherit = 1;
993 		mtspr(SPRN_DSCR, current->thread.dscr);
994 		return 0;
995 	}
996 #endif
997 
998 	return -EINVAL;
999 }
1000 
1001 int is_valid_bugaddr(unsigned long addr)
1002 {
1003 	return is_kernel_addr(addr);
1004 }
1005 
1006 void __kprobes program_check_exception(struct pt_regs *regs)
1007 {
1008 	unsigned int reason = get_reason(regs);
1009 	extern int do_mathemu(struct pt_regs *regs);
1010 
1011 	/* We can now get here via a FP Unavailable exception if the core
1012 	 * has no FPU, in that case the reason flags will be 0 */
1013 
1014 	if (reason & REASON_FP) {
1015 		/* IEEE FP exception */
1016 		parse_fpe(regs);
1017 		return;
1018 	}
1019 	if (reason & REASON_TRAP) {
1020 		/* Debugger is first in line to stop recursive faults in
1021 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1022 		if (debugger_bpt(regs))
1023 			return;
1024 
1025 		/* trap exception */
1026 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1027 				== NOTIFY_STOP)
1028 			return;
1029 
1030 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1031 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1032 			regs->nip += 4;
1033 			return;
1034 		}
1035 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1036 		return;
1037 	}
1038 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1039 	if (reason & REASON_TM) {
1040 		/* This is a TM "Bad Thing Exception" program check.
1041 		 * This occurs when:
1042 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1043 		 *    transition in TM states.
1044 		 * -  A trechkpt is attempted when transactional.
1045 		 * -  A treclaim is attempted when non transactional.
1046 		 * -  A tend is illegally attempted.
1047 		 * -  writing a TM SPR when transactional.
1048 		 */
1049 		if (!user_mode(regs) &&
1050 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1051 			regs->nip += 4;
1052 			return;
1053 		}
1054 		/* If usermode caused this, it's done something illegal and
1055 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1056 		 * operand to distinguish from the instruction just being bad
1057 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1058 		 * illegal /placement/ of a valid instruction.
1059 		 */
1060 		if (user_mode(regs)) {
1061 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1062 			return;
1063 		} else {
1064 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1065 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1066 			die("Unrecoverable exception", regs, SIGABRT);
1067 		}
1068 	}
1069 #endif
1070 
1071 	/* We restore the interrupt state now */
1072 	if (!arch_irq_disabled_regs(regs))
1073 		local_irq_enable();
1074 
1075 #ifdef CONFIG_MATH_EMULATION
1076 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1077 	 * but there seems to be a hardware bug on the 405GP (RevD)
1078 	 * that means ESR is sometimes set incorrectly - either to
1079 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1080 	 * hardware people - not sure if it can happen on any illegal
1081 	 * instruction or only on FP instructions, whether there is a
1082 	 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
1083 	switch (do_mathemu(regs)) {
1084 	case 0:
1085 		emulate_single_step(regs);
1086 		return;
1087 	case 1: {
1088 			int code = 0;
1089 			code = __parse_fpscr(current->thread.fpscr.val);
1090 			_exception(SIGFPE, regs, code, regs->nip);
1091 			return;
1092 		}
1093 	case -EFAULT:
1094 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1095 		return;
1096 	}
1097 	/* fall through on any other errors */
1098 #endif /* CONFIG_MATH_EMULATION */
1099 
1100 	/* Try to emulate it if we should. */
1101 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1102 		switch (emulate_instruction(regs)) {
1103 		case 0:
1104 			regs->nip += 4;
1105 			emulate_single_step(regs);
1106 			return;
1107 		case -EFAULT:
1108 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1109 			return;
1110 		}
1111 	}
1112 
1113 	if (reason & REASON_PRIVILEGED)
1114 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1115 	else
1116 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1117 }
1118 
1119 void alignment_exception(struct pt_regs *regs)
1120 {
1121 	int sig, code, fixed = 0;
1122 
1123 	/* We restore the interrupt state now */
1124 	if (!arch_irq_disabled_regs(regs))
1125 		local_irq_enable();
1126 
1127 	/* we don't implement logging of alignment exceptions */
1128 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1129 		fixed = fix_alignment(regs);
1130 
1131 	if (fixed == 1) {
1132 		regs->nip += 4;	/* skip over emulated instruction */
1133 		emulate_single_step(regs);
1134 		return;
1135 	}
1136 
1137 	/* Operand address was bad */
1138 	if (fixed == -EFAULT) {
1139 		sig = SIGSEGV;
1140 		code = SEGV_ACCERR;
1141 	} else {
1142 		sig = SIGBUS;
1143 		code = BUS_ADRALN;
1144 	}
1145 	if (user_mode(regs))
1146 		_exception(sig, regs, code, regs->dar);
1147 	else
1148 		bad_page_fault(regs, regs->dar, sig);
1149 }
1150 
1151 void StackOverflow(struct pt_regs *regs)
1152 {
1153 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1154 	       current, regs->gpr[1]);
1155 	debugger(regs);
1156 	show_regs(regs);
1157 	panic("kernel stack overflow");
1158 }
1159 
1160 void nonrecoverable_exception(struct pt_regs *regs)
1161 {
1162 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1163 	       regs->nip, regs->msr);
1164 	debugger(regs);
1165 	die("nonrecoverable exception", regs, SIGKILL);
1166 }
1167 
1168 void trace_syscall(struct pt_regs *regs)
1169 {
1170 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1171 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1172 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1173 }
1174 
1175 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1176 {
1177 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1178 			  "%lx at %lx\n", regs->trap, regs->nip);
1179 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1180 }
1181 
1182 void altivec_unavailable_exception(struct pt_regs *regs)
1183 {
1184 	if (user_mode(regs)) {
1185 		/* A user program has executed an altivec instruction,
1186 		   but this kernel doesn't support altivec. */
1187 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1188 		return;
1189 	}
1190 
1191 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1192 			"%lx at %lx\n", regs->trap, regs->nip);
1193 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1194 }
1195 
1196 void vsx_unavailable_exception(struct pt_regs *regs)
1197 {
1198 	if (user_mode(regs)) {
1199 		/* A user program has executed an vsx instruction,
1200 		   but this kernel doesn't support vsx. */
1201 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1202 		return;
1203 	}
1204 
1205 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1206 			"%lx at %lx\n", regs->trap, regs->nip);
1207 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1208 }
1209 
1210 void tm_unavailable_exception(struct pt_regs *regs)
1211 {
1212 	/* We restore the interrupt state now */
1213 	if (!arch_irq_disabled_regs(regs))
1214 		local_irq_enable();
1215 
1216 	/* Currently we never expect a TMU exception.  Catch
1217 	 * this and kill the process!
1218 	 */
1219 	printk(KERN_EMERG "Unexpected TM unavailable exception at %lx "
1220 	       "(msr %lx)\n",
1221 	       regs->nip, regs->msr);
1222 
1223 	if (user_mode(regs)) {
1224 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1225 		return;
1226 	}
1227 
1228 	die("Unexpected TM unavailable exception", regs, SIGABRT);
1229 }
1230 
1231 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1232 
1233 extern void do_load_up_fpu(struct pt_regs *regs);
1234 
1235 void fp_unavailable_tm(struct pt_regs *regs)
1236 {
1237 	/* Note:  This does not handle any kind of FP laziness. */
1238 
1239 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1240 		 regs->nip, regs->msr);
1241 	tm_enable();
1242 
1243         /* We can only have got here if the task started using FP after
1244          * beginning the transaction.  So, the transactional regs are just a
1245          * copy of the checkpointed ones.  But, we still need to recheckpoint
1246          * as we're enabling FP for the process; it will return, abort the
1247          * transaction, and probably retry but now with FP enabled.  So the
1248          * checkpointed FP registers need to be loaded.
1249 	 */
1250 	tm_reclaim(&current->thread, current->thread.regs->msr,
1251 		   TM_CAUSE_FAC_UNAV);
1252 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1253 
1254 	/* Enable FP for the task: */
1255 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1256 
1257 	/* This loads and recheckpoints the FP registers from
1258 	 * thread.fpr[].  They will remain in registers after the
1259 	 * checkpoint so we don't need to reload them after.
1260 	 */
1261 	tm_recheckpoint(&current->thread, regs->msr);
1262 }
1263 
1264 #ifdef CONFIG_ALTIVEC
1265 extern void do_load_up_altivec(struct pt_regs *regs);
1266 
1267 void altivec_unavailable_tm(struct pt_regs *regs)
1268 {
1269 	/* See the comments in fp_unavailable_tm().  This function operates
1270 	 * the same way.
1271 	 */
1272 
1273 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1274 		 "MSR=%lx\n",
1275 		 regs->nip, regs->msr);
1276 	tm_enable();
1277 	tm_reclaim(&current->thread, current->thread.regs->msr,
1278 		   TM_CAUSE_FAC_UNAV);
1279 	regs->msr |= MSR_VEC;
1280 	tm_recheckpoint(&current->thread, regs->msr);
1281 	current->thread.used_vr = 1;
1282 }
1283 #endif
1284 
1285 #ifdef CONFIG_VSX
1286 void vsx_unavailable_tm(struct pt_regs *regs)
1287 {
1288 	/* See the comments in fp_unavailable_tm().  This works similarly,
1289 	 * though we're loading both FP and VEC registers in here.
1290 	 *
1291 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1292 	 * regs.  Either way, set MSR_VSX.
1293 	 */
1294 
1295 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1296 		 "MSR=%lx\n",
1297 		 regs->nip, regs->msr);
1298 
1299 	tm_enable();
1300 	/* This reclaims FP and/or VR regs if they're already enabled */
1301 	tm_reclaim(&current->thread, current->thread.regs->msr,
1302 		   TM_CAUSE_FAC_UNAV);
1303 
1304 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1305 		MSR_VSX;
1306 	/* This loads & recheckpoints FP and VRs. */
1307 	tm_recheckpoint(&current->thread, regs->msr);
1308 	current->thread.used_vsr = 1;
1309 }
1310 #endif
1311 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1312 
1313 void performance_monitor_exception(struct pt_regs *regs)
1314 {
1315 	__get_cpu_var(irq_stat).pmu_irqs++;
1316 
1317 	perf_irq(regs);
1318 }
1319 
1320 #ifdef CONFIG_8xx
1321 void SoftwareEmulation(struct pt_regs *regs)
1322 {
1323 	extern int do_mathemu(struct pt_regs *);
1324 	extern int Soft_emulate_8xx(struct pt_regs *);
1325 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1326 	int errcode;
1327 #endif
1328 
1329 	CHECK_FULL_REGS(regs);
1330 
1331 	if (!user_mode(regs)) {
1332 		debugger(regs);
1333 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1334 	}
1335 
1336 #ifdef CONFIG_MATH_EMULATION
1337 	errcode = do_mathemu(regs);
1338 	if (errcode >= 0)
1339 		PPC_WARN_EMULATED(math, regs);
1340 
1341 	switch (errcode) {
1342 	case 0:
1343 		emulate_single_step(regs);
1344 		return;
1345 	case 1: {
1346 			int code = 0;
1347 			code = __parse_fpscr(current->thread.fpscr.val);
1348 			_exception(SIGFPE, regs, code, regs->nip);
1349 			return;
1350 		}
1351 	case -EFAULT:
1352 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1353 		return;
1354 	default:
1355 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1356 		return;
1357 	}
1358 
1359 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1360 	errcode = Soft_emulate_8xx(regs);
1361 	if (errcode >= 0)
1362 		PPC_WARN_EMULATED(8xx, regs);
1363 
1364 	switch (errcode) {
1365 	case 0:
1366 		emulate_single_step(regs);
1367 		return;
1368 	case 1:
1369 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1370 		return;
1371 	case -EFAULT:
1372 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1373 		return;
1374 	}
1375 #else
1376 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1377 #endif
1378 }
1379 #endif /* CONFIG_8xx */
1380 
1381 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1382 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1383 {
1384 	int changed = 0;
1385 	/*
1386 	 * Determine the cause of the debug event, clear the
1387 	 * event flags and send a trap to the handler. Torez
1388 	 */
1389 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1390 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1391 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1392 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1393 #endif
1394 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1395 			     5);
1396 		changed |= 0x01;
1397 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1398 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1399 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1400 			     6);
1401 		changed |= 0x01;
1402 	}  else if (debug_status & DBSR_IAC1) {
1403 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1404 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1405 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1406 			     1);
1407 		changed |= 0x01;
1408 	}  else if (debug_status & DBSR_IAC2) {
1409 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1410 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1411 			     2);
1412 		changed |= 0x01;
1413 	}  else if (debug_status & DBSR_IAC3) {
1414 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1415 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1416 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1417 			     3);
1418 		changed |= 0x01;
1419 	}  else if (debug_status & DBSR_IAC4) {
1420 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1421 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1422 			     4);
1423 		changed |= 0x01;
1424 	}
1425 	/*
1426 	 * At the point this routine was called, the MSR(DE) was turned off.
1427 	 * Check all other debug flags and see if that bit needs to be turned
1428 	 * back on or not.
1429 	 */
1430 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1431 		regs->msr |= MSR_DE;
1432 	else
1433 		/* Make sure the IDM flag is off */
1434 		current->thread.dbcr0 &= ~DBCR0_IDM;
1435 
1436 	if (changed & 0x01)
1437 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1438 }
1439 
1440 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1441 {
1442 	current->thread.dbsr = debug_status;
1443 
1444 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1445 	 * on server, it stops on the target of the branch. In order to simulate
1446 	 * the server behaviour, we thus restart right away with a single step
1447 	 * instead of stopping here when hitting a BT
1448 	 */
1449 	if (debug_status & DBSR_BT) {
1450 		regs->msr &= ~MSR_DE;
1451 
1452 		/* Disable BT */
1453 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1454 		/* Clear the BT event */
1455 		mtspr(SPRN_DBSR, DBSR_BT);
1456 
1457 		/* Do the single step trick only when coming from userspace */
1458 		if (user_mode(regs)) {
1459 			current->thread.dbcr0 &= ~DBCR0_BT;
1460 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1461 			regs->msr |= MSR_DE;
1462 			return;
1463 		}
1464 
1465 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1466 			       5, SIGTRAP) == NOTIFY_STOP) {
1467 			return;
1468 		}
1469 		if (debugger_sstep(regs))
1470 			return;
1471 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1472 		regs->msr &= ~MSR_DE;
1473 
1474 		/* Disable instruction completion */
1475 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1476 		/* Clear the instruction completion event */
1477 		mtspr(SPRN_DBSR, DBSR_IC);
1478 
1479 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1480 			       5, SIGTRAP) == NOTIFY_STOP) {
1481 			return;
1482 		}
1483 
1484 		if (debugger_sstep(regs))
1485 			return;
1486 
1487 		if (user_mode(regs)) {
1488 			current->thread.dbcr0 &= ~DBCR0_IC;
1489 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1490 					       current->thread.dbcr1))
1491 				regs->msr |= MSR_DE;
1492 			else
1493 				/* Make sure the IDM bit is off */
1494 				current->thread.dbcr0 &= ~DBCR0_IDM;
1495 		}
1496 
1497 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1498 	} else
1499 		handle_debug(regs, debug_status);
1500 }
1501 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1502 
1503 #if !defined(CONFIG_TAU_INT)
1504 void TAUException(struct pt_regs *regs)
1505 {
1506 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1507 	       regs->nip, regs->msr, regs->trap, print_tainted());
1508 }
1509 #endif /* CONFIG_INT_TAU */
1510 
1511 #ifdef CONFIG_ALTIVEC
1512 void altivec_assist_exception(struct pt_regs *regs)
1513 {
1514 	int err;
1515 
1516 	if (!user_mode(regs)) {
1517 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1518 		       " at %lx\n", regs->nip);
1519 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1520 	}
1521 
1522 	flush_altivec_to_thread(current);
1523 
1524 	PPC_WARN_EMULATED(altivec, regs);
1525 	err = emulate_altivec(regs);
1526 	if (err == 0) {
1527 		regs->nip += 4;		/* skip emulated instruction */
1528 		emulate_single_step(regs);
1529 		return;
1530 	}
1531 
1532 	if (err == -EFAULT) {
1533 		/* got an error reading the instruction */
1534 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1535 	} else {
1536 		/* didn't recognize the instruction */
1537 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1538 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1539 				   "in %s at %lx\n", current->comm, regs->nip);
1540 		current->thread.vscr.u[3] |= 0x10000;
1541 	}
1542 }
1543 #endif /* CONFIG_ALTIVEC */
1544 
1545 #ifdef CONFIG_VSX
1546 void vsx_assist_exception(struct pt_regs *regs)
1547 {
1548 	if (!user_mode(regs)) {
1549 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1550 		       " at %lx\n", regs->nip);
1551 		die("Kernel VSX assist exception", regs, SIGILL);
1552 	}
1553 
1554 	flush_vsx_to_thread(current);
1555 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1556 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1557 }
1558 #endif /* CONFIG_VSX */
1559 
1560 #ifdef CONFIG_FSL_BOOKE
1561 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1562 			   unsigned long error_code)
1563 {
1564 	/* We treat cache locking instructions from the user
1565 	 * as priv ops, in the future we could try to do
1566 	 * something smarter
1567 	 */
1568 	if (error_code & (ESR_DLK|ESR_ILK))
1569 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1570 	return;
1571 }
1572 #endif /* CONFIG_FSL_BOOKE */
1573 
1574 #ifdef CONFIG_SPE
1575 void SPEFloatingPointException(struct pt_regs *regs)
1576 {
1577 	extern int do_spe_mathemu(struct pt_regs *regs);
1578 	unsigned long spefscr;
1579 	int fpexc_mode;
1580 	int code = 0;
1581 	int err;
1582 
1583 	flush_spe_to_thread(current);
1584 
1585 	spefscr = current->thread.spefscr;
1586 	fpexc_mode = current->thread.fpexc_mode;
1587 
1588 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1589 		code = FPE_FLTOVF;
1590 	}
1591 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1592 		code = FPE_FLTUND;
1593 	}
1594 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1595 		code = FPE_FLTDIV;
1596 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1597 		code = FPE_FLTINV;
1598 	}
1599 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1600 		code = FPE_FLTRES;
1601 
1602 	err = do_spe_mathemu(regs);
1603 	if (err == 0) {
1604 		regs->nip += 4;		/* skip emulated instruction */
1605 		emulate_single_step(regs);
1606 		return;
1607 	}
1608 
1609 	if (err == -EFAULT) {
1610 		/* got an error reading the instruction */
1611 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1612 	} else if (err == -EINVAL) {
1613 		/* didn't recognize the instruction */
1614 		printk(KERN_ERR "unrecognized spe instruction "
1615 		       "in %s at %lx\n", current->comm, regs->nip);
1616 	} else {
1617 		_exception(SIGFPE, regs, code, regs->nip);
1618 	}
1619 
1620 	return;
1621 }
1622 
1623 void SPEFloatingPointRoundException(struct pt_regs *regs)
1624 {
1625 	extern int speround_handler(struct pt_regs *regs);
1626 	int err;
1627 
1628 	preempt_disable();
1629 	if (regs->msr & MSR_SPE)
1630 		giveup_spe(current);
1631 	preempt_enable();
1632 
1633 	regs->nip -= 4;
1634 	err = speround_handler(regs);
1635 	if (err == 0) {
1636 		regs->nip += 4;		/* skip emulated instruction */
1637 		emulate_single_step(regs);
1638 		return;
1639 	}
1640 
1641 	if (err == -EFAULT) {
1642 		/* got an error reading the instruction */
1643 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1644 	} else if (err == -EINVAL) {
1645 		/* didn't recognize the instruction */
1646 		printk(KERN_ERR "unrecognized spe instruction "
1647 		       "in %s at %lx\n", current->comm, regs->nip);
1648 	} else {
1649 		_exception(SIGFPE, regs, 0, regs->nip);
1650 		return;
1651 	}
1652 }
1653 #endif
1654 
1655 /*
1656  * We enter here if we get an unrecoverable exception, that is, one
1657  * that happened at a point where the RI (recoverable interrupt) bit
1658  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1659  * we therefore lost state by taking this exception.
1660  */
1661 void unrecoverable_exception(struct pt_regs *regs)
1662 {
1663 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1664 	       regs->trap, regs->nip);
1665 	die("Unrecoverable exception", regs, SIGABRT);
1666 }
1667 
1668 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1669 /*
1670  * Default handler for a Watchdog exception,
1671  * spins until a reboot occurs
1672  */
1673 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1674 {
1675 	/* Generic WatchdogHandler, implement your own */
1676 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1677 	return;
1678 }
1679 
1680 void WatchdogException(struct pt_regs *regs)
1681 {
1682 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1683 	WatchdogHandler(regs);
1684 }
1685 #endif
1686 
1687 /*
1688  * We enter here if we discover during exception entry that we are
1689  * running in supervisor mode with a userspace value in the stack pointer.
1690  */
1691 void kernel_bad_stack(struct pt_regs *regs)
1692 {
1693 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1694 	       regs->gpr[1], regs->nip);
1695 	die("Bad kernel stack pointer", regs, SIGABRT);
1696 }
1697 
1698 void __init trap_init(void)
1699 {
1700 }
1701 
1702 
1703 #ifdef CONFIG_PPC_EMULATED_STATS
1704 
1705 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1706 
1707 struct ppc_emulated ppc_emulated = {
1708 #ifdef CONFIG_ALTIVEC
1709 	WARN_EMULATED_SETUP(altivec),
1710 #endif
1711 	WARN_EMULATED_SETUP(dcba),
1712 	WARN_EMULATED_SETUP(dcbz),
1713 	WARN_EMULATED_SETUP(fp_pair),
1714 	WARN_EMULATED_SETUP(isel),
1715 	WARN_EMULATED_SETUP(mcrxr),
1716 	WARN_EMULATED_SETUP(mfpvr),
1717 	WARN_EMULATED_SETUP(multiple),
1718 	WARN_EMULATED_SETUP(popcntb),
1719 	WARN_EMULATED_SETUP(spe),
1720 	WARN_EMULATED_SETUP(string),
1721 	WARN_EMULATED_SETUP(unaligned),
1722 #ifdef CONFIG_MATH_EMULATION
1723 	WARN_EMULATED_SETUP(math),
1724 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1725 	WARN_EMULATED_SETUP(8xx),
1726 #endif
1727 #ifdef CONFIG_VSX
1728 	WARN_EMULATED_SETUP(vsx),
1729 #endif
1730 #ifdef CONFIG_PPC64
1731 	WARN_EMULATED_SETUP(mfdscr),
1732 	WARN_EMULATED_SETUP(mtdscr),
1733 #endif
1734 };
1735 
1736 u32 ppc_warn_emulated;
1737 
1738 void ppc_warn_emulated_print(const char *type)
1739 {
1740 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1741 			    type);
1742 }
1743 
1744 static int __init ppc_warn_emulated_init(void)
1745 {
1746 	struct dentry *dir, *d;
1747 	unsigned int i;
1748 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1749 
1750 	if (!powerpc_debugfs_root)
1751 		return -ENODEV;
1752 
1753 	dir = debugfs_create_dir("emulated_instructions",
1754 				 powerpc_debugfs_root);
1755 	if (!dir)
1756 		return -ENOMEM;
1757 
1758 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1759 			       &ppc_warn_emulated);
1760 	if (!d)
1761 		goto fail;
1762 
1763 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1764 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1765 				       (u32 *)&entries[i].val.counter);
1766 		if (!d)
1767 			goto fail;
1768 	}
1769 
1770 	return 0;
1771 
1772 fail:
1773 	debugfs_remove_recursive(dir);
1774 	return -ENOMEM;
1775 }
1776 
1777 device_initcall(ppc_warn_emulated_init);
1778 
1779 #endif /* CONFIG_PPC_EMULATED_STATS */
1780