1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * Copyright 2007-2010 Freescale Semiconductor, Inc. 5 * 6 * Modified by Cort Dougan (cort@cs.nmt.edu) 7 * and Paul Mackerras (paulus@samba.org) 8 */ 9 10 /* 11 * This file handles the architecture-dependent parts of hardware exceptions 12 */ 13 14 #include <linux/errno.h> 15 #include <linux/sched.h> 16 #include <linux/sched/debug.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/pkeys.h> 20 #include <linux/stddef.h> 21 #include <linux/unistd.h> 22 #include <linux/ptrace.h> 23 #include <linux/user.h> 24 #include <linux/interrupt.h> 25 #include <linux/init.h> 26 #include <linux/extable.h> 27 #include <linux/module.h> /* print_modules */ 28 #include <linux/prctl.h> 29 #include <linux/delay.h> 30 #include <linux/kprobes.h> 31 #include <linux/kexec.h> 32 #include <linux/backlight.h> 33 #include <linux/bug.h> 34 #include <linux/kdebug.h> 35 #include <linux/ratelimit.h> 36 #include <linux/context_tracking.h> 37 #include <linux/smp.h> 38 #include <linux/console.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/debugfs.h> 41 42 #include <asm/emulated_ops.h> 43 #include <linux/uaccess.h> 44 #include <asm/interrupt.h> 45 #include <asm/io.h> 46 #include <asm/machdep.h> 47 #include <asm/rtas.h> 48 #include <asm/pmc.h> 49 #include <asm/reg.h> 50 #ifdef CONFIG_PMAC_BACKLIGHT 51 #include <asm/backlight.h> 52 #endif 53 #ifdef CONFIG_PPC64 54 #include <asm/firmware.h> 55 #include <asm/processor.h> 56 #endif 57 #include <asm/kexec.h> 58 #include <asm/ppc-opcode.h> 59 #include <asm/rio.h> 60 #include <asm/fadump.h> 61 #include <asm/switch_to.h> 62 #include <asm/tm.h> 63 #include <asm/debug.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/hmi.h> 66 #include <sysdev/fsl_pci.h> 67 #include <asm/kprobes.h> 68 #include <asm/stacktrace.h> 69 #include <asm/nmi.h> 70 #include <asm/disassemble.h> 71 72 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE) 73 int (*__debugger)(struct pt_regs *regs) __read_mostly; 74 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly; 75 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly; 76 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly; 77 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly; 78 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly; 79 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly; 80 81 EXPORT_SYMBOL(__debugger); 82 EXPORT_SYMBOL(__debugger_ipi); 83 EXPORT_SYMBOL(__debugger_bpt); 84 EXPORT_SYMBOL(__debugger_sstep); 85 EXPORT_SYMBOL(__debugger_iabr_match); 86 EXPORT_SYMBOL(__debugger_break_match); 87 EXPORT_SYMBOL(__debugger_fault_handler); 88 #endif 89 90 /* Transactional Memory trap debug */ 91 #ifdef TM_DEBUG_SW 92 #define TM_DEBUG(x...) printk(KERN_INFO x) 93 #else 94 #define TM_DEBUG(x...) do { } while(0) 95 #endif 96 97 static const char *signame(int signr) 98 { 99 switch (signr) { 100 case SIGBUS: return "bus error"; 101 case SIGFPE: return "floating point exception"; 102 case SIGILL: return "illegal instruction"; 103 case SIGSEGV: return "segfault"; 104 case SIGTRAP: return "unhandled trap"; 105 } 106 107 return "unknown signal"; 108 } 109 110 /* 111 * Trap & Exception support 112 */ 113 114 #ifdef CONFIG_PMAC_BACKLIGHT 115 static void pmac_backlight_unblank(void) 116 { 117 mutex_lock(&pmac_backlight_mutex); 118 if (pmac_backlight) { 119 struct backlight_properties *props; 120 121 props = &pmac_backlight->props; 122 props->brightness = props->max_brightness; 123 props->power = FB_BLANK_UNBLANK; 124 backlight_update_status(pmac_backlight); 125 } 126 mutex_unlock(&pmac_backlight_mutex); 127 } 128 #else 129 static inline void pmac_backlight_unblank(void) { } 130 #endif 131 132 /* 133 * If oops/die is expected to crash the machine, return true here. 134 * 135 * This should not be expected to be 100% accurate, there may be 136 * notifiers registered or other unexpected conditions that may bring 137 * down the kernel. Or if the current process in the kernel is holding 138 * locks or has other critical state, the kernel may become effectively 139 * unusable anyway. 140 */ 141 bool die_will_crash(void) 142 { 143 if (should_fadump_crash()) 144 return true; 145 if (kexec_should_crash(current)) 146 return true; 147 if (in_interrupt() || panic_on_oops || 148 !current->pid || is_global_init(current)) 149 return true; 150 151 return false; 152 } 153 154 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 155 static int die_owner = -1; 156 static unsigned int die_nest_count; 157 static int die_counter; 158 159 extern void panic_flush_kmsg_start(void) 160 { 161 /* 162 * These are mostly taken from kernel/panic.c, but tries to do 163 * relatively minimal work. Don't use delay functions (TB may 164 * be broken), don't crash dump (need to set a firmware log), 165 * don't run notifiers. We do want to get some information to 166 * Linux console. 167 */ 168 console_verbose(); 169 bust_spinlocks(1); 170 } 171 172 extern void panic_flush_kmsg_end(void) 173 { 174 kmsg_dump(KMSG_DUMP_PANIC); 175 bust_spinlocks(0); 176 debug_locks_off(); 177 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 178 } 179 180 static unsigned long oops_begin(struct pt_regs *regs) 181 { 182 int cpu; 183 unsigned long flags; 184 185 oops_enter(); 186 187 /* racy, but better than risking deadlock. */ 188 raw_local_irq_save(flags); 189 cpu = smp_processor_id(); 190 if (!arch_spin_trylock(&die_lock)) { 191 if (cpu == die_owner) 192 /* nested oops. should stop eventually */; 193 else 194 arch_spin_lock(&die_lock); 195 } 196 die_nest_count++; 197 die_owner = cpu; 198 console_verbose(); 199 bust_spinlocks(1); 200 if (machine_is(powermac)) 201 pmac_backlight_unblank(); 202 return flags; 203 } 204 NOKPROBE_SYMBOL(oops_begin); 205 206 static void oops_end(unsigned long flags, struct pt_regs *regs, 207 int signr) 208 { 209 bust_spinlocks(0); 210 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 211 die_nest_count--; 212 oops_exit(); 213 printk("\n"); 214 if (!die_nest_count) { 215 /* Nest count reaches zero, release the lock. */ 216 die_owner = -1; 217 arch_spin_unlock(&die_lock); 218 } 219 raw_local_irq_restore(flags); 220 221 /* 222 * system_reset_excption handles debugger, crash dump, panic, for 0x100 223 */ 224 if (TRAP(regs) == INTERRUPT_SYSTEM_RESET) 225 return; 226 227 crash_fadump(regs, "die oops"); 228 229 if (kexec_should_crash(current)) 230 crash_kexec(regs); 231 232 if (!signr) 233 return; 234 235 /* 236 * While our oops output is serialised by a spinlock, output 237 * from panic() called below can race and corrupt it. If we 238 * know we are going to panic, delay for 1 second so we have a 239 * chance to get clean backtraces from all CPUs that are oopsing. 240 */ 241 if (in_interrupt() || panic_on_oops || !current->pid || 242 is_global_init(current)) { 243 mdelay(MSEC_PER_SEC); 244 } 245 246 if (panic_on_oops) 247 panic("Fatal exception"); 248 make_task_dead(signr); 249 } 250 NOKPROBE_SYMBOL(oops_end); 251 252 static char *get_mmu_str(void) 253 { 254 if (early_radix_enabled()) 255 return " MMU=Radix"; 256 if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE)) 257 return " MMU=Hash"; 258 return ""; 259 } 260 261 static int __die(const char *str, struct pt_regs *regs, long err) 262 { 263 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); 264 265 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n", 266 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE", 267 PAGE_SIZE / 1024, get_mmu_str(), 268 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "", 269 IS_ENABLED(CONFIG_SMP) ? " SMP" : "", 270 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "", 271 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", 272 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "", 273 ppc_md.name ? ppc_md.name : ""); 274 275 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP) 276 return 1; 277 278 print_modules(); 279 show_regs(regs); 280 281 return 0; 282 } 283 NOKPROBE_SYMBOL(__die); 284 285 void die(const char *str, struct pt_regs *regs, long err) 286 { 287 unsigned long flags; 288 289 /* 290 * system_reset_excption handles debugger, crash dump, panic, for 0x100 291 */ 292 if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) { 293 if (debugger(regs)) 294 return; 295 } 296 297 flags = oops_begin(regs); 298 if (__die(str, regs, err)) 299 err = 0; 300 oops_end(flags, regs, err); 301 } 302 NOKPROBE_SYMBOL(die); 303 304 void user_single_step_report(struct pt_regs *regs) 305 { 306 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip); 307 } 308 309 static void show_signal_msg(int signr, struct pt_regs *regs, int code, 310 unsigned long addr) 311 { 312 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 313 DEFAULT_RATELIMIT_BURST); 314 315 if (!show_unhandled_signals) 316 return; 317 318 if (!unhandled_signal(current, signr)) 319 return; 320 321 if (!__ratelimit(&rs)) 322 return; 323 324 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x", 325 current->comm, current->pid, signame(signr), signr, 326 addr, regs->nip, regs->link, code); 327 328 print_vma_addr(KERN_CONT " in ", regs->nip); 329 330 pr_cont("\n"); 331 332 show_user_instructions(regs); 333 } 334 335 static bool exception_common(int signr, struct pt_regs *regs, int code, 336 unsigned long addr) 337 { 338 if (!user_mode(regs)) { 339 die("Exception in kernel mode", regs, signr); 340 return false; 341 } 342 343 /* 344 * Must not enable interrupts even for user-mode exception, because 345 * this can be called from machine check, which may be a NMI or IRQ 346 * which don't like interrupts being enabled. Could check for 347 * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good 348 * reason why _exception() should enable irqs for an exception handler, 349 * the handlers themselves do that directly. 350 */ 351 352 show_signal_msg(signr, regs, code, addr); 353 354 current->thread.trap_nr = code; 355 356 return true; 357 } 358 359 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key) 360 { 361 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr)) 362 return; 363 364 force_sig_pkuerr((void __user *) addr, key); 365 } 366 367 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr) 368 { 369 if (!exception_common(signr, regs, code, addr)) 370 return; 371 372 force_sig_fault(signr, code, (void __user *)addr); 373 } 374 375 /* 376 * The interrupt architecture has a quirk in that the HV interrupts excluding 377 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing 378 * that an interrupt handler must do is save off a GPR into a scratch register, 379 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch. 380 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing 381 * that it is non-reentrant, which leads to random data corruption. 382 * 383 * The solution is for NMI interrupts in HV mode to check if they originated 384 * from these critical HV interrupt regions. If so, then mark them not 385 * recoverable. 386 * 387 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the 388 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux 389 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so 390 * that would work. However any other guest OS that may have the SPRG live 391 * and MSR[RI]=1 could encounter silent corruption. 392 * 393 * Builds that do not support KVM could take this second option to increase 394 * the recoverability of NMIs. 395 */ 396 noinstr void hv_nmi_check_nonrecoverable(struct pt_regs *regs) 397 { 398 #ifdef CONFIG_PPC_POWERNV 399 unsigned long kbase = (unsigned long)_stext; 400 unsigned long nip = regs->nip; 401 402 if (!(regs->msr & MSR_RI)) 403 return; 404 if (!(regs->msr & MSR_HV)) 405 return; 406 if (regs->msr & MSR_PR) 407 return; 408 409 /* 410 * Now test if the interrupt has hit a range that may be using 411 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The 412 * problem ranges all run un-relocated. Test real and virt modes 413 * at the same time by dropping the high bit of the nip (virt mode 414 * entry points still have the +0x4000 offset). 415 */ 416 nip &= ~0xc000000000000000ULL; 417 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600)) 418 goto nonrecoverable; 419 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00)) 420 goto nonrecoverable; 421 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0)) 422 goto nonrecoverable; 423 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0)) 424 goto nonrecoverable; 425 426 /* Trampoline code runs un-relocated so subtract kbase. */ 427 if (nip >= (unsigned long)(start_real_trampolines - kbase) && 428 nip < (unsigned long)(end_real_trampolines - kbase)) 429 goto nonrecoverable; 430 if (nip >= (unsigned long)(start_virt_trampolines - kbase) && 431 nip < (unsigned long)(end_virt_trampolines - kbase)) 432 goto nonrecoverable; 433 return; 434 435 nonrecoverable: 436 regs->msr &= ~MSR_RI; 437 local_paca->hsrr_valid = 0; 438 local_paca->srr_valid = 0; 439 #endif 440 } 441 DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception) 442 { 443 unsigned long hsrr0, hsrr1; 444 bool saved_hsrrs = false; 445 446 /* 447 * System reset can interrupt code where HSRRs are live and MSR[RI]=1. 448 * The system reset interrupt itself may clobber HSRRs (e.g., to call 449 * OPAL), so save them here and restore them before returning. 450 * 451 * Machine checks don't need to save HSRRs, as the real mode handler 452 * is careful to avoid them, and the regular handler is not delivered 453 * as an NMI. 454 */ 455 if (cpu_has_feature(CPU_FTR_HVMODE)) { 456 hsrr0 = mfspr(SPRN_HSRR0); 457 hsrr1 = mfspr(SPRN_HSRR1); 458 saved_hsrrs = true; 459 } 460 461 hv_nmi_check_nonrecoverable(regs); 462 463 __this_cpu_inc(irq_stat.sreset_irqs); 464 465 /* See if any machine dependent calls */ 466 if (ppc_md.system_reset_exception) { 467 if (ppc_md.system_reset_exception(regs)) 468 goto out; 469 } 470 471 if (debugger(regs)) 472 goto out; 473 474 kmsg_dump(KMSG_DUMP_OOPS); 475 /* 476 * A system reset is a request to dump, so we always send 477 * it through the crashdump code (if fadump or kdump are 478 * registered). 479 */ 480 crash_fadump(regs, "System Reset"); 481 482 crash_kexec(regs); 483 484 /* 485 * We aren't the primary crash CPU. We need to send it 486 * to a holding pattern to avoid it ending up in the panic 487 * code. 488 */ 489 crash_kexec_secondary(regs); 490 491 /* 492 * No debugger or crash dump registered, print logs then 493 * panic. 494 */ 495 die("System Reset", regs, SIGABRT); 496 497 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */ 498 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 499 nmi_panic(regs, "System Reset"); 500 501 out: 502 #ifdef CONFIG_PPC_BOOK3S_64 503 BUG_ON(get_paca()->in_nmi == 0); 504 if (get_paca()->in_nmi > 1) 505 die("Unrecoverable nested System Reset", regs, SIGABRT); 506 #endif 507 /* Must die if the interrupt is not recoverable */ 508 if (regs_is_unrecoverable(regs)) { 509 /* For the reason explained in die_mce, nmi_exit before die */ 510 nmi_exit(); 511 die("Unrecoverable System Reset", regs, SIGABRT); 512 } 513 514 if (saved_hsrrs) { 515 mtspr(SPRN_HSRR0, hsrr0); 516 mtspr(SPRN_HSRR1, hsrr1); 517 } 518 519 /* What should we do here? We could issue a shutdown or hard reset. */ 520 521 return 0; 522 } 523 524 /* 525 * I/O accesses can cause machine checks on powermacs. 526 * Check if the NIP corresponds to the address of a sync 527 * instruction for which there is an entry in the exception 528 * table. 529 * -- paulus. 530 */ 531 static inline int check_io_access(struct pt_regs *regs) 532 { 533 #ifdef CONFIG_PPC32 534 unsigned long msr = regs->msr; 535 const struct exception_table_entry *entry; 536 unsigned int *nip = (unsigned int *)regs->nip; 537 538 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000))) 539 && (entry = search_exception_tables(regs->nip)) != NULL) { 540 /* 541 * Check that it's a sync instruction, or somewhere 542 * in the twi; isync; nop sequence that inb/inw/inl uses. 543 * As the address is in the exception table 544 * we should be able to read the instr there. 545 * For the debug message, we look at the preceding 546 * load or store. 547 */ 548 if (*nip == PPC_RAW_NOP()) 549 nip -= 2; 550 else if (*nip == PPC_RAW_ISYNC()) 551 --nip; 552 if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) { 553 unsigned int rb; 554 555 --nip; 556 rb = (*nip >> 11) & 0x1f; 557 printk(KERN_DEBUG "%s bad port %lx at %p\n", 558 (*nip & 0x100)? "OUT to": "IN from", 559 regs->gpr[rb] - _IO_BASE, nip); 560 regs_set_recoverable(regs); 561 regs_set_return_ip(regs, extable_fixup(entry)); 562 return 1; 563 } 564 } 565 #endif /* CONFIG_PPC32 */ 566 return 0; 567 } 568 569 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 570 /* On 4xx, the reason for the machine check or program exception 571 is in the ESR. */ 572 #define get_reason(regs) ((regs)->esr) 573 #define REASON_FP ESR_FP 574 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO) 575 #define REASON_PRIVILEGED ESR_PPR 576 #define REASON_TRAP ESR_PTR 577 #define REASON_PREFIXED 0 578 #define REASON_BOUNDARY 0 579 580 /* single-step stuff */ 581 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC) 582 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC) 583 #define clear_br_trace(regs) do {} while(0) 584 #else 585 /* On non-4xx, the reason for the machine check or program 586 exception is in the MSR. */ 587 #define get_reason(regs) ((regs)->msr) 588 #define REASON_TM SRR1_PROGTM 589 #define REASON_FP SRR1_PROGFPE 590 #define REASON_ILLEGAL SRR1_PROGILL 591 #define REASON_PRIVILEGED SRR1_PROGPRIV 592 #define REASON_TRAP SRR1_PROGTRAP 593 #define REASON_PREFIXED SRR1_PREFIXED 594 #define REASON_BOUNDARY SRR1_BOUNDARY 595 596 #define single_stepping(regs) ((regs)->msr & MSR_SE) 597 #define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE)) 598 #define clear_br_trace(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE)) 599 #endif 600 601 #define inst_length(reason) (((reason) & REASON_PREFIXED) ? 8 : 4) 602 603 #if defined(CONFIG_E500) 604 int machine_check_e500mc(struct pt_regs *regs) 605 { 606 unsigned long mcsr = mfspr(SPRN_MCSR); 607 unsigned long pvr = mfspr(SPRN_PVR); 608 unsigned long reason = mcsr; 609 int recoverable = 1; 610 611 if (reason & MCSR_LD) { 612 recoverable = fsl_rio_mcheck_exception(regs); 613 if (recoverable == 1) 614 goto silent_out; 615 } 616 617 printk("Machine check in kernel mode.\n"); 618 printk("Caused by (from MCSR=%lx): ", reason); 619 620 if (reason & MCSR_MCP) 621 pr_cont("Machine Check Signal\n"); 622 623 if (reason & MCSR_ICPERR) { 624 pr_cont("Instruction Cache Parity Error\n"); 625 626 /* 627 * This is recoverable by invalidating the i-cache. 628 */ 629 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI); 630 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI) 631 ; 632 633 /* 634 * This will generally be accompanied by an instruction 635 * fetch error report -- only treat MCSR_IF as fatal 636 * if it wasn't due to an L1 parity error. 637 */ 638 reason &= ~MCSR_IF; 639 } 640 641 if (reason & MCSR_DCPERR_MC) { 642 pr_cont("Data Cache Parity Error\n"); 643 644 /* 645 * In write shadow mode we auto-recover from the error, but it 646 * may still get logged and cause a machine check. We should 647 * only treat the non-write shadow case as non-recoverable. 648 */ 649 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit 650 * is not implemented but L1 data cache always runs in write 651 * shadow mode. Hence on data cache parity errors HW will 652 * automatically invalidate the L1 Data Cache. 653 */ 654 if (PVR_VER(pvr) != PVR_VER_E6500) { 655 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS)) 656 recoverable = 0; 657 } 658 } 659 660 if (reason & MCSR_L2MMU_MHIT) { 661 pr_cont("Hit on multiple TLB entries\n"); 662 recoverable = 0; 663 } 664 665 if (reason & MCSR_NMI) 666 pr_cont("Non-maskable interrupt\n"); 667 668 if (reason & MCSR_IF) { 669 pr_cont("Instruction Fetch Error Report\n"); 670 recoverable = 0; 671 } 672 673 if (reason & MCSR_LD) { 674 pr_cont("Load Error Report\n"); 675 recoverable = 0; 676 } 677 678 if (reason & MCSR_ST) { 679 pr_cont("Store Error Report\n"); 680 recoverable = 0; 681 } 682 683 if (reason & MCSR_LDG) { 684 pr_cont("Guarded Load Error Report\n"); 685 recoverable = 0; 686 } 687 688 if (reason & MCSR_TLBSYNC) 689 pr_cont("Simultaneous tlbsync operations\n"); 690 691 if (reason & MCSR_BSL2_ERR) { 692 pr_cont("Level 2 Cache Error\n"); 693 recoverable = 0; 694 } 695 696 if (reason & MCSR_MAV) { 697 u64 addr; 698 699 addr = mfspr(SPRN_MCAR); 700 addr |= (u64)mfspr(SPRN_MCARU) << 32; 701 702 pr_cont("Machine Check %s Address: %#llx\n", 703 reason & MCSR_MEA ? "Effective" : "Physical", addr); 704 } 705 706 silent_out: 707 mtspr(SPRN_MCSR, mcsr); 708 return mfspr(SPRN_MCSR) == 0 && recoverable; 709 } 710 711 int machine_check_e500(struct pt_regs *regs) 712 { 713 unsigned long reason = mfspr(SPRN_MCSR); 714 715 if (reason & MCSR_BUS_RBERR) { 716 if (fsl_rio_mcheck_exception(regs)) 717 return 1; 718 if (fsl_pci_mcheck_exception(regs)) 719 return 1; 720 } 721 722 printk("Machine check in kernel mode.\n"); 723 printk("Caused by (from MCSR=%lx): ", reason); 724 725 if (reason & MCSR_MCP) 726 pr_cont("Machine Check Signal\n"); 727 if (reason & MCSR_ICPERR) 728 pr_cont("Instruction Cache Parity Error\n"); 729 if (reason & MCSR_DCP_PERR) 730 pr_cont("Data Cache Push Parity Error\n"); 731 if (reason & MCSR_DCPERR) 732 pr_cont("Data Cache Parity Error\n"); 733 if (reason & MCSR_BUS_IAERR) 734 pr_cont("Bus - Instruction Address Error\n"); 735 if (reason & MCSR_BUS_RAERR) 736 pr_cont("Bus - Read Address Error\n"); 737 if (reason & MCSR_BUS_WAERR) 738 pr_cont("Bus - Write Address Error\n"); 739 if (reason & MCSR_BUS_IBERR) 740 pr_cont("Bus - Instruction Data Error\n"); 741 if (reason & MCSR_BUS_RBERR) 742 pr_cont("Bus - Read Data Bus Error\n"); 743 if (reason & MCSR_BUS_WBERR) 744 pr_cont("Bus - Write Data Bus Error\n"); 745 if (reason & MCSR_BUS_IPERR) 746 pr_cont("Bus - Instruction Parity Error\n"); 747 if (reason & MCSR_BUS_RPERR) 748 pr_cont("Bus - Read Parity Error\n"); 749 750 return 0; 751 } 752 753 int machine_check_generic(struct pt_regs *regs) 754 { 755 return 0; 756 } 757 #elif defined(CONFIG_PPC32) 758 int machine_check_generic(struct pt_regs *regs) 759 { 760 unsigned long reason = regs->msr; 761 762 printk("Machine check in kernel mode.\n"); 763 printk("Caused by (from SRR1=%lx): ", reason); 764 switch (reason & 0x601F0000) { 765 case 0x80000: 766 pr_cont("Machine check signal\n"); 767 break; 768 case 0x40000: 769 case 0x140000: /* 7450 MSS error and TEA */ 770 pr_cont("Transfer error ack signal\n"); 771 break; 772 case 0x20000: 773 pr_cont("Data parity error signal\n"); 774 break; 775 case 0x10000: 776 pr_cont("Address parity error signal\n"); 777 break; 778 case 0x20000000: 779 pr_cont("L1 Data Cache error\n"); 780 break; 781 case 0x40000000: 782 pr_cont("L1 Instruction Cache error\n"); 783 break; 784 case 0x00100000: 785 pr_cont("L2 data cache parity error\n"); 786 break; 787 default: 788 pr_cont("Unknown values in msr\n"); 789 } 790 return 0; 791 } 792 #endif /* everything else */ 793 794 void die_mce(const char *str, struct pt_regs *regs, long err) 795 { 796 /* 797 * The machine check wants to kill the interrupted context, 798 * but make_task_dead() checks for in_interrupt() and panics 799 * in that case, so exit the irq/nmi before calling die. 800 */ 801 if (in_nmi()) 802 nmi_exit(); 803 else 804 irq_exit(); 805 die(str, regs, err); 806 } 807 808 /* 809 * BOOK3S_64 does not usually call this handler as a non-maskable interrupt 810 * (it uses its own early real-mode handler to handle the MCE proper 811 * and then raises irq_work to call this handler when interrupts are 812 * enabled). The only time when this is not true is if the early handler 813 * is unrecoverable, then it does call this directly to try to get a 814 * message out. 815 */ 816 static void __machine_check_exception(struct pt_regs *regs) 817 { 818 int recover = 0; 819 820 __this_cpu_inc(irq_stat.mce_exceptions); 821 822 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 823 824 /* See if any machine dependent calls. In theory, we would want 825 * to call the CPU first, and call the ppc_md. one if the CPU 826 * one returns a positive number. However there is existing code 827 * that assumes the board gets a first chance, so let's keep it 828 * that way for now and fix things later. --BenH. 829 */ 830 if (ppc_md.machine_check_exception) 831 recover = ppc_md.machine_check_exception(regs); 832 else if (cur_cpu_spec->machine_check) 833 recover = cur_cpu_spec->machine_check(regs); 834 835 if (recover > 0) 836 goto bail; 837 838 if (debugger_fault_handler(regs)) 839 goto bail; 840 841 if (check_io_access(regs)) 842 goto bail; 843 844 die_mce("Machine check", regs, SIGBUS); 845 846 bail: 847 /* Must die if the interrupt is not recoverable */ 848 if (regs_is_unrecoverable(regs)) 849 die_mce("Unrecoverable Machine check", regs, SIGBUS); 850 } 851 852 #ifdef CONFIG_PPC_BOOK3S_64 853 DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async) 854 { 855 __machine_check_exception(regs); 856 } 857 #endif 858 DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception) 859 { 860 __machine_check_exception(regs); 861 862 return 0; 863 } 864 865 DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */ 866 { 867 die("System Management Interrupt", regs, SIGABRT); 868 } 869 870 #ifdef CONFIG_VSX 871 static void p9_hmi_special_emu(struct pt_regs *regs) 872 { 873 unsigned int ra, rb, t, i, sel, instr, rc; 874 const void __user *addr; 875 u8 vbuf[16] __aligned(16), *vdst; 876 unsigned long ea, msr, msr_mask; 877 bool swap; 878 879 if (__get_user(instr, (unsigned int __user *)regs->nip)) 880 return; 881 882 /* 883 * lxvb16x opcode: 0x7c0006d8 884 * lxvd2x opcode: 0x7c000698 885 * lxvh8x opcode: 0x7c000658 886 * lxvw4x opcode: 0x7c000618 887 */ 888 if ((instr & 0xfc00073e) != 0x7c000618) { 889 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx" 890 " instr=%08x\n", 891 smp_processor_id(), current->comm, current->pid, 892 regs->nip, instr); 893 return; 894 } 895 896 /* Grab vector registers into the task struct */ 897 msr = regs->msr; /* Grab msr before we flush the bits */ 898 flush_vsx_to_thread(current); 899 enable_kernel_altivec(); 900 901 /* 902 * Is userspace running with a different endian (this is rare but 903 * not impossible) 904 */ 905 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE); 906 907 /* Decode the instruction */ 908 ra = (instr >> 16) & 0x1f; 909 rb = (instr >> 11) & 0x1f; 910 t = (instr >> 21) & 0x1f; 911 if (instr & 1) 912 vdst = (u8 *)¤t->thread.vr_state.vr[t]; 913 else 914 vdst = (u8 *)¤t->thread.fp_state.fpr[t][0]; 915 916 /* Grab the vector address */ 917 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0); 918 if (is_32bit_task()) 919 ea &= 0xfffffffful; 920 addr = (__force const void __user *)ea; 921 922 /* Check it */ 923 if (!access_ok(addr, 16)) { 924 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx" 925 " instr=%08x addr=%016lx\n", 926 smp_processor_id(), current->comm, current->pid, 927 regs->nip, instr, (unsigned long)addr); 928 return; 929 } 930 931 /* Read the vector */ 932 rc = 0; 933 if ((unsigned long)addr & 0xfUL) 934 /* unaligned case */ 935 rc = __copy_from_user_inatomic(vbuf, addr, 16); 936 else 937 __get_user_atomic_128_aligned(vbuf, addr, rc); 938 if (rc) { 939 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx" 940 " instr=%08x addr=%016lx\n", 941 smp_processor_id(), current->comm, current->pid, 942 regs->nip, instr, (unsigned long)addr); 943 return; 944 } 945 946 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx" 947 " instr=%08x addr=%016lx\n", 948 smp_processor_id(), current->comm, current->pid, regs->nip, 949 instr, (unsigned long) addr); 950 951 /* Grab instruction "selector" */ 952 sel = (instr >> 6) & 3; 953 954 /* 955 * Check to make sure the facility is actually enabled. This 956 * could happen if we get a false positive hit. 957 * 958 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2 959 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3 960 */ 961 msr_mask = MSR_VSX; 962 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */ 963 msr_mask = MSR_VEC; 964 if (!(msr & msr_mask)) { 965 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx" 966 " instr=%08x msr:%016lx\n", 967 smp_processor_id(), current->comm, current->pid, 968 regs->nip, instr, msr); 969 return; 970 } 971 972 /* Do logging here before we modify sel based on endian */ 973 switch (sel) { 974 case 0: /* lxvw4x */ 975 PPC_WARN_EMULATED(lxvw4x, regs); 976 break; 977 case 1: /* lxvh8x */ 978 PPC_WARN_EMULATED(lxvh8x, regs); 979 break; 980 case 2: /* lxvd2x */ 981 PPC_WARN_EMULATED(lxvd2x, regs); 982 break; 983 case 3: /* lxvb16x */ 984 PPC_WARN_EMULATED(lxvb16x, regs); 985 break; 986 } 987 988 #ifdef __LITTLE_ENDIAN__ 989 /* 990 * An LE kernel stores the vector in the task struct as an LE 991 * byte array (effectively swapping both the components and 992 * the content of the components). Those instructions expect 993 * the components to remain in ascending address order, so we 994 * swap them back. 995 * 996 * If we are running a BE user space, the expectation is that 997 * of a simple memcpy, so forcing the emulation to look like 998 * a lxvb16x should do the trick. 999 */ 1000 if (swap) 1001 sel = 3; 1002 1003 switch (sel) { 1004 case 0: /* lxvw4x */ 1005 for (i = 0; i < 4; i++) 1006 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i]; 1007 break; 1008 case 1: /* lxvh8x */ 1009 for (i = 0; i < 8; i++) 1010 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i]; 1011 break; 1012 case 2: /* lxvd2x */ 1013 for (i = 0; i < 2; i++) 1014 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i]; 1015 break; 1016 case 3: /* lxvb16x */ 1017 for (i = 0; i < 16; i++) 1018 vdst[i] = vbuf[15-i]; 1019 break; 1020 } 1021 #else /* __LITTLE_ENDIAN__ */ 1022 /* On a big endian kernel, a BE userspace only needs a memcpy */ 1023 if (!swap) 1024 sel = 3; 1025 1026 /* Otherwise, we need to swap the content of the components */ 1027 switch (sel) { 1028 case 0: /* lxvw4x */ 1029 for (i = 0; i < 4; i++) 1030 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]); 1031 break; 1032 case 1: /* lxvh8x */ 1033 for (i = 0; i < 8; i++) 1034 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]); 1035 break; 1036 case 2: /* lxvd2x */ 1037 for (i = 0; i < 2; i++) 1038 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]); 1039 break; 1040 case 3: /* lxvb16x */ 1041 memcpy(vdst, vbuf, 16); 1042 break; 1043 } 1044 #endif /* !__LITTLE_ENDIAN__ */ 1045 1046 /* Go to next instruction */ 1047 regs_add_return_ip(regs, 4); 1048 } 1049 #endif /* CONFIG_VSX */ 1050 1051 DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception) 1052 { 1053 struct pt_regs *old_regs; 1054 1055 old_regs = set_irq_regs(regs); 1056 1057 #ifdef CONFIG_VSX 1058 /* Real mode flagged P9 special emu is needed */ 1059 if (local_paca->hmi_p9_special_emu) { 1060 local_paca->hmi_p9_special_emu = 0; 1061 1062 /* 1063 * We don't want to take page faults while doing the 1064 * emulation, we just replay the instruction if necessary. 1065 */ 1066 pagefault_disable(); 1067 p9_hmi_special_emu(regs); 1068 pagefault_enable(); 1069 } 1070 #endif /* CONFIG_VSX */ 1071 1072 if (ppc_md.handle_hmi_exception) 1073 ppc_md.handle_hmi_exception(regs); 1074 1075 set_irq_regs(old_regs); 1076 } 1077 1078 DEFINE_INTERRUPT_HANDLER(unknown_exception) 1079 { 1080 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", 1081 regs->nip, regs->msr, regs->trap); 1082 1083 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1084 } 1085 1086 DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception) 1087 { 1088 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", 1089 regs->nip, regs->msr, regs->trap); 1090 1091 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1092 } 1093 1094 DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception) 1095 { 1096 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", 1097 regs->nip, regs->msr, regs->trap); 1098 1099 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1100 1101 return 0; 1102 } 1103 1104 DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception) 1105 { 1106 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5, 1107 5, SIGTRAP) == NOTIFY_STOP) 1108 return; 1109 if (debugger_iabr_match(regs)) 1110 return; 1111 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 1112 } 1113 1114 DEFINE_INTERRUPT_HANDLER(RunModeException) 1115 { 1116 _exception(SIGTRAP, regs, TRAP_UNK, 0); 1117 } 1118 1119 static void __single_step_exception(struct pt_regs *regs) 1120 { 1121 clear_single_step(regs); 1122 clear_br_trace(regs); 1123 1124 if (kprobe_post_handler(regs)) 1125 return; 1126 1127 if (notify_die(DIE_SSTEP, "single_step", regs, 5, 1128 5, SIGTRAP) == NOTIFY_STOP) 1129 return; 1130 if (debugger_sstep(regs)) 1131 return; 1132 1133 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); 1134 } 1135 1136 DEFINE_INTERRUPT_HANDLER(single_step_exception) 1137 { 1138 __single_step_exception(regs); 1139 } 1140 1141 /* 1142 * After we have successfully emulated an instruction, we have to 1143 * check if the instruction was being single-stepped, and if so, 1144 * pretend we got a single-step exception. This was pointed out 1145 * by Kumar Gala. -- paulus 1146 */ 1147 static void emulate_single_step(struct pt_regs *regs) 1148 { 1149 if (single_stepping(regs)) 1150 __single_step_exception(regs); 1151 } 1152 1153 static inline int __parse_fpscr(unsigned long fpscr) 1154 { 1155 int ret = FPE_FLTUNK; 1156 1157 /* Invalid operation */ 1158 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX)) 1159 ret = FPE_FLTINV; 1160 1161 /* Overflow */ 1162 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX)) 1163 ret = FPE_FLTOVF; 1164 1165 /* Underflow */ 1166 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX)) 1167 ret = FPE_FLTUND; 1168 1169 /* Divide by zero */ 1170 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX)) 1171 ret = FPE_FLTDIV; 1172 1173 /* Inexact result */ 1174 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX)) 1175 ret = FPE_FLTRES; 1176 1177 return ret; 1178 } 1179 1180 static void parse_fpe(struct pt_regs *regs) 1181 { 1182 int code = 0; 1183 1184 flush_fp_to_thread(current); 1185 1186 #ifdef CONFIG_PPC_FPU_REGS 1187 code = __parse_fpscr(current->thread.fp_state.fpscr); 1188 #endif 1189 1190 _exception(SIGFPE, regs, code, regs->nip); 1191 } 1192 1193 /* 1194 * Illegal instruction emulation support. Originally written to 1195 * provide the PVR to user applications using the mfspr rd, PVR. 1196 * Return non-zero if we can't emulate, or -EFAULT if the associated 1197 * memory access caused an access fault. Return zero on success. 1198 * 1199 * There are a couple of ways to do this, either "decode" the instruction 1200 * or directly match lots of bits. In this case, matching lots of 1201 * bits is faster and easier. 1202 * 1203 */ 1204 static int emulate_string_inst(struct pt_regs *regs, u32 instword) 1205 { 1206 u8 rT = (instword >> 21) & 0x1f; 1207 u8 rA = (instword >> 16) & 0x1f; 1208 u8 NB_RB = (instword >> 11) & 0x1f; 1209 u32 num_bytes; 1210 unsigned long EA; 1211 int pos = 0; 1212 1213 /* Early out if we are an invalid form of lswx */ 1214 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX) 1215 if ((rT == rA) || (rT == NB_RB)) 1216 return -EINVAL; 1217 1218 EA = (rA == 0) ? 0 : regs->gpr[rA]; 1219 1220 switch (instword & PPC_INST_STRING_MASK) { 1221 case PPC_INST_LSWX: 1222 case PPC_INST_STSWX: 1223 EA += NB_RB; 1224 num_bytes = regs->xer & 0x7f; 1225 break; 1226 case PPC_INST_LSWI: 1227 case PPC_INST_STSWI: 1228 num_bytes = (NB_RB == 0) ? 32 : NB_RB; 1229 break; 1230 default: 1231 return -EINVAL; 1232 } 1233 1234 while (num_bytes != 0) 1235 { 1236 u8 val; 1237 u32 shift = 8 * (3 - (pos & 0x3)); 1238 1239 /* if process is 32-bit, clear upper 32 bits of EA */ 1240 if ((regs->msr & MSR_64BIT) == 0) 1241 EA &= 0xFFFFFFFF; 1242 1243 switch ((instword & PPC_INST_STRING_MASK)) { 1244 case PPC_INST_LSWX: 1245 case PPC_INST_LSWI: 1246 if (get_user(val, (u8 __user *)EA)) 1247 return -EFAULT; 1248 /* first time updating this reg, 1249 * zero it out */ 1250 if (pos == 0) 1251 regs->gpr[rT] = 0; 1252 regs->gpr[rT] |= val << shift; 1253 break; 1254 case PPC_INST_STSWI: 1255 case PPC_INST_STSWX: 1256 val = regs->gpr[rT] >> shift; 1257 if (put_user(val, (u8 __user *)EA)) 1258 return -EFAULT; 1259 break; 1260 } 1261 /* move EA to next address */ 1262 EA += 1; 1263 num_bytes--; 1264 1265 /* manage our position within the register */ 1266 if (++pos == 4) { 1267 pos = 0; 1268 if (++rT == 32) 1269 rT = 0; 1270 } 1271 } 1272 1273 return 0; 1274 } 1275 1276 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword) 1277 { 1278 u32 ra,rs; 1279 unsigned long tmp; 1280 1281 ra = (instword >> 16) & 0x1f; 1282 rs = (instword >> 21) & 0x1f; 1283 1284 tmp = regs->gpr[rs]; 1285 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL); 1286 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL); 1287 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL; 1288 regs->gpr[ra] = tmp; 1289 1290 return 0; 1291 } 1292 1293 static int emulate_isel(struct pt_regs *regs, u32 instword) 1294 { 1295 u8 rT = (instword >> 21) & 0x1f; 1296 u8 rA = (instword >> 16) & 0x1f; 1297 u8 rB = (instword >> 11) & 0x1f; 1298 u8 BC = (instword >> 6) & 0x1f; 1299 u8 bit; 1300 unsigned long tmp; 1301 1302 tmp = (rA == 0) ? 0 : regs->gpr[rA]; 1303 bit = (regs->ccr >> (31 - BC)) & 0x1; 1304 1305 regs->gpr[rT] = bit ? tmp : regs->gpr[rB]; 1306 1307 return 0; 1308 } 1309 1310 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1311 static inline bool tm_abort_check(struct pt_regs *regs, int cause) 1312 { 1313 /* If we're emulating a load/store in an active transaction, we cannot 1314 * emulate it as the kernel operates in transaction suspended context. 1315 * We need to abort the transaction. This creates a persistent TM 1316 * abort so tell the user what caused it with a new code. 1317 */ 1318 if (MSR_TM_TRANSACTIONAL(regs->msr)) { 1319 tm_enable(); 1320 tm_abort(cause); 1321 return true; 1322 } 1323 return false; 1324 } 1325 #else 1326 static inline bool tm_abort_check(struct pt_regs *regs, int reason) 1327 { 1328 return false; 1329 } 1330 #endif 1331 1332 static int emulate_instruction(struct pt_regs *regs) 1333 { 1334 u32 instword; 1335 u32 rd; 1336 1337 if (!user_mode(regs)) 1338 return -EINVAL; 1339 1340 if (get_user(instword, (u32 __user *)(regs->nip))) 1341 return -EFAULT; 1342 1343 /* Emulate the mfspr rD, PVR. */ 1344 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) { 1345 PPC_WARN_EMULATED(mfpvr, regs); 1346 rd = (instword >> 21) & 0x1f; 1347 regs->gpr[rd] = mfspr(SPRN_PVR); 1348 return 0; 1349 } 1350 1351 /* Emulating the dcba insn is just a no-op. */ 1352 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) { 1353 PPC_WARN_EMULATED(dcba, regs); 1354 return 0; 1355 } 1356 1357 /* Emulate the mcrxr insn. */ 1358 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) { 1359 int shift = (instword >> 21) & 0x1c; 1360 unsigned long msk = 0xf0000000UL >> shift; 1361 1362 PPC_WARN_EMULATED(mcrxr, regs); 1363 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk); 1364 regs->xer &= ~0xf0000000UL; 1365 return 0; 1366 } 1367 1368 /* Emulate load/store string insn. */ 1369 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) { 1370 if (tm_abort_check(regs, 1371 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT)) 1372 return -EINVAL; 1373 PPC_WARN_EMULATED(string, regs); 1374 return emulate_string_inst(regs, instword); 1375 } 1376 1377 /* Emulate the popcntb (Population Count Bytes) instruction. */ 1378 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) { 1379 PPC_WARN_EMULATED(popcntb, regs); 1380 return emulate_popcntb_inst(regs, instword); 1381 } 1382 1383 /* Emulate isel (Integer Select) instruction */ 1384 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) { 1385 PPC_WARN_EMULATED(isel, regs); 1386 return emulate_isel(regs, instword); 1387 } 1388 1389 /* Emulate sync instruction variants */ 1390 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) { 1391 PPC_WARN_EMULATED(sync, regs); 1392 asm volatile("sync"); 1393 return 0; 1394 } 1395 1396 #ifdef CONFIG_PPC64 1397 /* Emulate the mfspr rD, DSCR. */ 1398 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) == 1399 PPC_INST_MFSPR_DSCR_USER) || 1400 ((instword & PPC_INST_MFSPR_DSCR_MASK) == 1401 PPC_INST_MFSPR_DSCR)) && 1402 cpu_has_feature(CPU_FTR_DSCR)) { 1403 PPC_WARN_EMULATED(mfdscr, regs); 1404 rd = (instword >> 21) & 0x1f; 1405 regs->gpr[rd] = mfspr(SPRN_DSCR); 1406 return 0; 1407 } 1408 /* Emulate the mtspr DSCR, rD. */ 1409 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) == 1410 PPC_INST_MTSPR_DSCR_USER) || 1411 ((instword & PPC_INST_MTSPR_DSCR_MASK) == 1412 PPC_INST_MTSPR_DSCR)) && 1413 cpu_has_feature(CPU_FTR_DSCR)) { 1414 PPC_WARN_EMULATED(mtdscr, regs); 1415 rd = (instword >> 21) & 0x1f; 1416 current->thread.dscr = regs->gpr[rd]; 1417 current->thread.dscr_inherit = 1; 1418 mtspr(SPRN_DSCR, current->thread.dscr); 1419 return 0; 1420 } 1421 #endif 1422 1423 return -EINVAL; 1424 } 1425 1426 int is_valid_bugaddr(unsigned long addr) 1427 { 1428 return is_kernel_addr(addr); 1429 } 1430 1431 #ifdef CONFIG_MATH_EMULATION 1432 static int emulate_math(struct pt_regs *regs) 1433 { 1434 int ret; 1435 1436 ret = do_mathemu(regs); 1437 if (ret >= 0) 1438 PPC_WARN_EMULATED(math, regs); 1439 1440 switch (ret) { 1441 case 0: 1442 emulate_single_step(regs); 1443 return 0; 1444 case 1: { 1445 int code = 0; 1446 code = __parse_fpscr(current->thread.fp_state.fpscr); 1447 _exception(SIGFPE, regs, code, regs->nip); 1448 return 0; 1449 } 1450 case -EFAULT: 1451 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1452 return 0; 1453 } 1454 1455 return -1; 1456 } 1457 #else 1458 static inline int emulate_math(struct pt_regs *regs) { return -1; } 1459 #endif 1460 1461 static void do_program_check(struct pt_regs *regs) 1462 { 1463 unsigned int reason = get_reason(regs); 1464 1465 /* We can now get here via a FP Unavailable exception if the core 1466 * has no FPU, in that case the reason flags will be 0 */ 1467 1468 if (reason & REASON_FP) { 1469 /* IEEE FP exception */ 1470 parse_fpe(regs); 1471 return; 1472 } 1473 if (reason & REASON_TRAP) { 1474 unsigned long bugaddr; 1475 /* Debugger is first in line to stop recursive faults in 1476 * rcu_lock, notify_die, or atomic_notifier_call_chain */ 1477 if (debugger_bpt(regs)) 1478 return; 1479 1480 if (kprobe_handler(regs)) 1481 return; 1482 1483 /* trap exception */ 1484 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP) 1485 == NOTIFY_STOP) 1486 return; 1487 1488 bugaddr = regs->nip; 1489 /* 1490 * Fixup bugaddr for BUG_ON() in real mode 1491 */ 1492 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR)) 1493 bugaddr += PAGE_OFFSET; 1494 1495 if (!(regs->msr & MSR_PR) && /* not user-mode */ 1496 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) { 1497 const struct exception_table_entry *entry; 1498 1499 entry = search_exception_tables(bugaddr); 1500 if (entry) { 1501 regs_set_return_ip(regs, extable_fixup(entry) + regs->nip - bugaddr); 1502 return; 1503 } 1504 } 1505 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); 1506 return; 1507 } 1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1509 if (reason & REASON_TM) { 1510 /* This is a TM "Bad Thing Exception" program check. 1511 * This occurs when: 1512 * - An rfid/hrfid/mtmsrd attempts to cause an illegal 1513 * transition in TM states. 1514 * - A trechkpt is attempted when transactional. 1515 * - A treclaim is attempted when non transactional. 1516 * - A tend is illegally attempted. 1517 * - writing a TM SPR when transactional. 1518 * 1519 * If usermode caused this, it's done something illegal and 1520 * gets a SIGILL slap on the wrist. We call it an illegal 1521 * operand to distinguish from the instruction just being bad 1522 * (e.g. executing a 'tend' on a CPU without TM!); it's an 1523 * illegal /placement/ of a valid instruction. 1524 */ 1525 if (user_mode(regs)) { 1526 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip); 1527 return; 1528 } else { 1529 printk(KERN_EMERG "Unexpected TM Bad Thing exception " 1530 "at %lx (msr 0x%lx) tm_scratch=%llx\n", 1531 regs->nip, regs->msr, get_paca()->tm_scratch); 1532 die("Unrecoverable exception", regs, SIGABRT); 1533 } 1534 } 1535 #endif 1536 1537 /* 1538 * If we took the program check in the kernel skip down to sending a 1539 * SIGILL. The subsequent cases all relate to emulating instructions 1540 * which we should only do for userspace. We also do not want to enable 1541 * interrupts for kernel faults because that might lead to further 1542 * faults, and loose the context of the original exception. 1543 */ 1544 if (!user_mode(regs)) 1545 goto sigill; 1546 1547 interrupt_cond_local_irq_enable(regs); 1548 1549 /* (reason & REASON_ILLEGAL) would be the obvious thing here, 1550 * but there seems to be a hardware bug on the 405GP (RevD) 1551 * that means ESR is sometimes set incorrectly - either to 1552 * ESR_DST (!?) or 0. In the process of chasing this with the 1553 * hardware people - not sure if it can happen on any illegal 1554 * instruction or only on FP instructions, whether there is a 1555 * pattern to occurrences etc. -dgibson 31/Mar/2003 1556 */ 1557 if (!emulate_math(regs)) 1558 return; 1559 1560 /* Try to emulate it if we should. */ 1561 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) { 1562 switch (emulate_instruction(regs)) { 1563 case 0: 1564 regs_add_return_ip(regs, 4); 1565 emulate_single_step(regs); 1566 return; 1567 case -EFAULT: 1568 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); 1569 return; 1570 } 1571 } 1572 1573 sigill: 1574 if (reason & REASON_PRIVILEGED) 1575 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); 1576 else 1577 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1578 1579 } 1580 1581 DEFINE_INTERRUPT_HANDLER(program_check_exception) 1582 { 1583 do_program_check(regs); 1584 } 1585 1586 /* 1587 * This occurs when running in hypervisor mode on POWER6 or later 1588 * and an illegal instruction is encountered. 1589 */ 1590 DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt) 1591 { 1592 regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL); 1593 do_program_check(regs); 1594 } 1595 1596 DEFINE_INTERRUPT_HANDLER(alignment_exception) 1597 { 1598 int sig, code, fixed = 0; 1599 unsigned long reason; 1600 1601 interrupt_cond_local_irq_enable(regs); 1602 1603 reason = get_reason(regs); 1604 if (reason & REASON_BOUNDARY) { 1605 sig = SIGBUS; 1606 code = BUS_ADRALN; 1607 goto bad; 1608 } 1609 1610 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT)) 1611 return; 1612 1613 /* we don't implement logging of alignment exceptions */ 1614 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS)) 1615 fixed = fix_alignment(regs); 1616 1617 if (fixed == 1) { 1618 /* skip over emulated instruction */ 1619 regs_add_return_ip(regs, inst_length(reason)); 1620 emulate_single_step(regs); 1621 return; 1622 } 1623 1624 /* Operand address was bad */ 1625 if (fixed == -EFAULT) { 1626 sig = SIGSEGV; 1627 code = SEGV_ACCERR; 1628 } else { 1629 sig = SIGBUS; 1630 code = BUS_ADRALN; 1631 } 1632 bad: 1633 if (user_mode(regs)) 1634 _exception(sig, regs, code, regs->dar); 1635 else 1636 bad_page_fault(regs, sig); 1637 } 1638 1639 DEFINE_INTERRUPT_HANDLER(stack_overflow_exception) 1640 { 1641 die("Kernel stack overflow", regs, SIGSEGV); 1642 } 1643 1644 DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception) 1645 { 1646 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception " 1647 "%lx at %lx\n", regs->trap, regs->nip); 1648 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT); 1649 } 1650 1651 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception) 1652 { 1653 if (user_mode(regs)) { 1654 /* A user program has executed an altivec instruction, 1655 but this kernel doesn't support altivec. */ 1656 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1657 return; 1658 } 1659 1660 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception " 1661 "%lx at %lx\n", regs->trap, regs->nip); 1662 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT); 1663 } 1664 1665 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception) 1666 { 1667 if (user_mode(regs)) { 1668 /* A user program has executed an vsx instruction, 1669 but this kernel doesn't support vsx. */ 1670 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1671 return; 1672 } 1673 1674 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception " 1675 "%lx at %lx\n", regs->trap, regs->nip); 1676 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT); 1677 } 1678 1679 #ifdef CONFIG_PPC_BOOK3S_64 1680 static void tm_unavailable(struct pt_regs *regs) 1681 { 1682 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1683 if (user_mode(regs)) { 1684 current->thread.load_tm++; 1685 regs_set_return_msr(regs, regs->msr | MSR_TM); 1686 tm_enable(); 1687 tm_restore_sprs(¤t->thread); 1688 return; 1689 } 1690 #endif 1691 pr_emerg("Unrecoverable TM Unavailable Exception " 1692 "%lx at %lx\n", regs->trap, regs->nip); 1693 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT); 1694 } 1695 1696 DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception) 1697 { 1698 static char *facility_strings[] = { 1699 [FSCR_FP_LG] = "FPU", 1700 [FSCR_VECVSX_LG] = "VMX/VSX", 1701 [FSCR_DSCR_LG] = "DSCR", 1702 [FSCR_PM_LG] = "PMU SPRs", 1703 [FSCR_BHRB_LG] = "BHRB", 1704 [FSCR_TM_LG] = "TM", 1705 [FSCR_EBB_LG] = "EBB", 1706 [FSCR_TAR_LG] = "TAR", 1707 [FSCR_MSGP_LG] = "MSGP", 1708 [FSCR_SCV_LG] = "SCV", 1709 [FSCR_PREFIX_LG] = "PREFIX", 1710 }; 1711 char *facility = "unknown"; 1712 u64 value; 1713 u32 instword, rd; 1714 u8 status; 1715 bool hv; 1716 1717 hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL); 1718 if (hv) 1719 value = mfspr(SPRN_HFSCR); 1720 else 1721 value = mfspr(SPRN_FSCR); 1722 1723 status = value >> 56; 1724 if ((hv || status >= 2) && 1725 (status < ARRAY_SIZE(facility_strings)) && 1726 facility_strings[status]) 1727 facility = facility_strings[status]; 1728 1729 /* We should not have taken this interrupt in kernel */ 1730 if (!user_mode(regs)) { 1731 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n", 1732 facility, status, regs->nip); 1733 die("Unexpected facility unavailable exception", regs, SIGABRT); 1734 } 1735 1736 interrupt_cond_local_irq_enable(regs); 1737 1738 if (status == FSCR_DSCR_LG) { 1739 /* 1740 * User is accessing the DSCR register using the problem 1741 * state only SPR number (0x03) either through a mfspr or 1742 * a mtspr instruction. If it is a write attempt through 1743 * a mtspr, then we set the inherit bit. This also allows 1744 * the user to write or read the register directly in the 1745 * future by setting via the FSCR DSCR bit. But in case it 1746 * is a read DSCR attempt through a mfspr instruction, we 1747 * just emulate the instruction instead. This code path will 1748 * always emulate all the mfspr instructions till the user 1749 * has attempted at least one mtspr instruction. This way it 1750 * preserves the same behaviour when the user is accessing 1751 * the DSCR through privilege level only SPR number (0x11) 1752 * which is emulated through illegal instruction exception. 1753 * We always leave HFSCR DSCR set. 1754 */ 1755 if (get_user(instword, (u32 __user *)(regs->nip))) { 1756 pr_err("Failed to fetch the user instruction\n"); 1757 return; 1758 } 1759 1760 /* Write into DSCR (mtspr 0x03, RS) */ 1761 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK) 1762 == PPC_INST_MTSPR_DSCR_USER) { 1763 rd = (instword >> 21) & 0x1f; 1764 current->thread.dscr = regs->gpr[rd]; 1765 current->thread.dscr_inherit = 1; 1766 current->thread.fscr |= FSCR_DSCR; 1767 mtspr(SPRN_FSCR, current->thread.fscr); 1768 } 1769 1770 /* Read from DSCR (mfspr RT, 0x03) */ 1771 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK) 1772 == PPC_INST_MFSPR_DSCR_USER) { 1773 if (emulate_instruction(regs)) { 1774 pr_err("DSCR based mfspr emulation failed\n"); 1775 return; 1776 } 1777 regs_add_return_ip(regs, 4); 1778 emulate_single_step(regs); 1779 } 1780 return; 1781 } 1782 1783 if (status == FSCR_TM_LG) { 1784 /* 1785 * If we're here then the hardware is TM aware because it 1786 * generated an exception with FSRM_TM set. 1787 * 1788 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware 1789 * told us not to do TM, or the kernel is not built with TM 1790 * support. 1791 * 1792 * If both of those things are true, then userspace can spam the 1793 * console by triggering the printk() below just by continually 1794 * doing tbegin (or any TM instruction). So in that case just 1795 * send the process a SIGILL immediately. 1796 */ 1797 if (!cpu_has_feature(CPU_FTR_TM)) 1798 goto out; 1799 1800 tm_unavailable(regs); 1801 return; 1802 } 1803 1804 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n", 1805 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr); 1806 1807 out: 1808 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); 1809 } 1810 #endif 1811 1812 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1813 1814 DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm) 1815 { 1816 /* Note: This does not handle any kind of FP laziness. */ 1817 1818 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n", 1819 regs->nip, regs->msr); 1820 1821 /* We can only have got here if the task started using FP after 1822 * beginning the transaction. So, the transactional regs are just a 1823 * copy of the checkpointed ones. But, we still need to recheckpoint 1824 * as we're enabling FP for the process; it will return, abort the 1825 * transaction, and probably retry but now with FP enabled. So the 1826 * checkpointed FP registers need to be loaded. 1827 */ 1828 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1829 1830 /* 1831 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and 1832 * then it was overwrite by the thr->fp_state by tm_reclaim_thread(). 1833 * 1834 * At this point, ck{fp,vr}_state contains the exact values we want to 1835 * recheckpoint. 1836 */ 1837 1838 /* Enable FP for the task: */ 1839 current->thread.load_fp = 1; 1840 1841 /* 1842 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers. 1843 */ 1844 tm_recheckpoint(¤t->thread); 1845 } 1846 1847 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm) 1848 { 1849 /* See the comments in fp_unavailable_tm(). This function operates 1850 * the same way. 1851 */ 1852 1853 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx," 1854 "MSR=%lx\n", 1855 regs->nip, regs->msr); 1856 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1857 current->thread.load_vec = 1; 1858 tm_recheckpoint(¤t->thread); 1859 current->thread.used_vr = 1; 1860 } 1861 1862 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm) 1863 { 1864 /* See the comments in fp_unavailable_tm(). This works similarly, 1865 * though we're loading both FP and VEC registers in here. 1866 * 1867 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC 1868 * regs. Either way, set MSR_VSX. 1869 */ 1870 1871 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx," 1872 "MSR=%lx\n", 1873 regs->nip, regs->msr); 1874 1875 current->thread.used_vsr = 1; 1876 1877 /* This reclaims FP and/or VR regs if they're already enabled */ 1878 tm_reclaim_current(TM_CAUSE_FAC_UNAV); 1879 1880 current->thread.load_vec = 1; 1881 current->thread.load_fp = 1; 1882 1883 tm_recheckpoint(¤t->thread); 1884 } 1885 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1886 1887 #ifdef CONFIG_PPC64 1888 DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi); 1889 DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi) 1890 { 1891 __this_cpu_inc(irq_stat.pmu_irqs); 1892 1893 perf_irq(regs); 1894 1895 return 0; 1896 } 1897 #endif 1898 1899 DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async); 1900 DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async) 1901 { 1902 __this_cpu_inc(irq_stat.pmu_irqs); 1903 1904 perf_irq(regs); 1905 } 1906 1907 DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception) 1908 { 1909 /* 1910 * On 64-bit, if perf interrupts hit in a local_irq_disable 1911 * (soft-masked) region, we consider them as NMIs. This is required to 1912 * prevent hash faults on user addresses when reading callchains (and 1913 * looks better from an irq tracing perspective). 1914 */ 1915 if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs))) 1916 performance_monitor_exception_nmi(regs); 1917 else 1918 performance_monitor_exception_async(regs); 1919 1920 return 0; 1921 } 1922 1923 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1924 static void handle_debug(struct pt_regs *regs, unsigned long debug_status) 1925 { 1926 int changed = 0; 1927 /* 1928 * Determine the cause of the debug event, clear the 1929 * event flags and send a trap to the handler. Torez 1930 */ 1931 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) { 1932 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W); 1933 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE 1934 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; 1935 #endif 1936 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, 1937 5); 1938 changed |= 0x01; 1939 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) { 1940 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W); 1941 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, 1942 6); 1943 changed |= 0x01; 1944 } else if (debug_status & DBSR_IAC1) { 1945 current->thread.debug.dbcr0 &= ~DBCR0_IAC1; 1946 dbcr_iac_range(current) &= ~DBCR_IAC12MODE; 1947 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, 1948 1); 1949 changed |= 0x01; 1950 } else if (debug_status & DBSR_IAC2) { 1951 current->thread.debug.dbcr0 &= ~DBCR0_IAC2; 1952 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, 1953 2); 1954 changed |= 0x01; 1955 } else if (debug_status & DBSR_IAC3) { 1956 current->thread.debug.dbcr0 &= ~DBCR0_IAC3; 1957 dbcr_iac_range(current) &= ~DBCR_IAC34MODE; 1958 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, 1959 3); 1960 changed |= 0x01; 1961 } else if (debug_status & DBSR_IAC4) { 1962 current->thread.debug.dbcr0 &= ~DBCR0_IAC4; 1963 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, 1964 4); 1965 changed |= 0x01; 1966 } 1967 /* 1968 * At the point this routine was called, the MSR(DE) was turned off. 1969 * Check all other debug flags and see if that bit needs to be turned 1970 * back on or not. 1971 */ 1972 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, 1973 current->thread.debug.dbcr1)) 1974 regs_set_return_msr(regs, regs->msr | MSR_DE); 1975 else 1976 /* Make sure the IDM flag is off */ 1977 current->thread.debug.dbcr0 &= ~DBCR0_IDM; 1978 1979 if (changed & 0x01) 1980 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0); 1981 } 1982 1983 DEFINE_INTERRUPT_HANDLER(DebugException) 1984 { 1985 unsigned long debug_status = regs->dsisr; 1986 1987 current->thread.debug.dbsr = debug_status; 1988 1989 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while 1990 * on server, it stops on the target of the branch. In order to simulate 1991 * the server behaviour, we thus restart right away with a single step 1992 * instead of stopping here when hitting a BT 1993 */ 1994 if (debug_status & DBSR_BT) { 1995 regs_set_return_msr(regs, regs->msr & ~MSR_DE); 1996 1997 /* Disable BT */ 1998 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT); 1999 /* Clear the BT event */ 2000 mtspr(SPRN_DBSR, DBSR_BT); 2001 2002 /* Do the single step trick only when coming from userspace */ 2003 if (user_mode(regs)) { 2004 current->thread.debug.dbcr0 &= ~DBCR0_BT; 2005 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; 2006 regs_set_return_msr(regs, regs->msr | MSR_DE); 2007 return; 2008 } 2009 2010 if (kprobe_post_handler(regs)) 2011 return; 2012 2013 if (notify_die(DIE_SSTEP, "block_step", regs, 5, 2014 5, SIGTRAP) == NOTIFY_STOP) { 2015 return; 2016 } 2017 if (debugger_sstep(regs)) 2018 return; 2019 } else if (debug_status & DBSR_IC) { /* Instruction complete */ 2020 regs_set_return_msr(regs, regs->msr & ~MSR_DE); 2021 2022 /* Disable instruction completion */ 2023 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC); 2024 /* Clear the instruction completion event */ 2025 mtspr(SPRN_DBSR, DBSR_IC); 2026 2027 if (kprobe_post_handler(regs)) 2028 return; 2029 2030 if (notify_die(DIE_SSTEP, "single_step", regs, 5, 2031 5, SIGTRAP) == NOTIFY_STOP) { 2032 return; 2033 } 2034 2035 if (debugger_sstep(regs)) 2036 return; 2037 2038 if (user_mode(regs)) { 2039 current->thread.debug.dbcr0 &= ~DBCR0_IC; 2040 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, 2041 current->thread.debug.dbcr1)) 2042 regs_set_return_msr(regs, regs->msr | MSR_DE); 2043 else 2044 /* Make sure the IDM bit is off */ 2045 current->thread.debug.dbcr0 &= ~DBCR0_IDM; 2046 } 2047 2048 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); 2049 } else 2050 handle_debug(regs, debug_status); 2051 } 2052 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 2053 2054 #ifdef CONFIG_ALTIVEC 2055 DEFINE_INTERRUPT_HANDLER(altivec_assist_exception) 2056 { 2057 int err; 2058 2059 if (!user_mode(regs)) { 2060 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode" 2061 " at %lx\n", regs->nip); 2062 die("Kernel VMX/Altivec assist exception", regs, SIGILL); 2063 } 2064 2065 flush_altivec_to_thread(current); 2066 2067 PPC_WARN_EMULATED(altivec, regs); 2068 err = emulate_altivec(regs); 2069 if (err == 0) { 2070 regs_add_return_ip(regs, 4); /* skip emulated instruction */ 2071 emulate_single_step(regs); 2072 return; 2073 } 2074 2075 if (err == -EFAULT) { 2076 /* got an error reading the instruction */ 2077 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2078 } else { 2079 /* didn't recognize the instruction */ 2080 /* XXX quick hack for now: set the non-Java bit in the VSCR */ 2081 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction " 2082 "in %s at %lx\n", current->comm, regs->nip); 2083 current->thread.vr_state.vscr.u[3] |= 0x10000; 2084 } 2085 } 2086 #endif /* CONFIG_ALTIVEC */ 2087 2088 #ifdef CONFIG_FSL_BOOKE 2089 DEFINE_INTERRUPT_HANDLER(CacheLockingException) 2090 { 2091 unsigned long error_code = regs->dsisr; 2092 2093 /* We treat cache locking instructions from the user 2094 * as priv ops, in the future we could try to do 2095 * something smarter 2096 */ 2097 if (error_code & (ESR_DLK|ESR_ILK)) 2098 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); 2099 return; 2100 } 2101 #endif /* CONFIG_FSL_BOOKE */ 2102 2103 #ifdef CONFIG_SPE 2104 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException) 2105 { 2106 extern int do_spe_mathemu(struct pt_regs *regs); 2107 unsigned long spefscr; 2108 int fpexc_mode; 2109 int code = FPE_FLTUNK; 2110 int err; 2111 2112 interrupt_cond_local_irq_enable(regs); 2113 2114 flush_spe_to_thread(current); 2115 2116 spefscr = current->thread.spefscr; 2117 fpexc_mode = current->thread.fpexc_mode; 2118 2119 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) { 2120 code = FPE_FLTOVF; 2121 } 2122 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) { 2123 code = FPE_FLTUND; 2124 } 2125 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV)) 2126 code = FPE_FLTDIV; 2127 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) { 2128 code = FPE_FLTINV; 2129 } 2130 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES)) 2131 code = FPE_FLTRES; 2132 2133 err = do_spe_mathemu(regs); 2134 if (err == 0) { 2135 regs_add_return_ip(regs, 4); /* skip emulated instruction */ 2136 emulate_single_step(regs); 2137 return; 2138 } 2139 2140 if (err == -EFAULT) { 2141 /* got an error reading the instruction */ 2142 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2143 } else if (err == -EINVAL) { 2144 /* didn't recognize the instruction */ 2145 printk(KERN_ERR "unrecognized spe instruction " 2146 "in %s at %lx\n", current->comm, regs->nip); 2147 } else { 2148 _exception(SIGFPE, regs, code, regs->nip); 2149 } 2150 2151 return; 2152 } 2153 2154 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException) 2155 { 2156 extern int speround_handler(struct pt_regs *regs); 2157 int err; 2158 2159 interrupt_cond_local_irq_enable(regs); 2160 2161 preempt_disable(); 2162 if (regs->msr & MSR_SPE) 2163 giveup_spe(current); 2164 preempt_enable(); 2165 2166 regs_add_return_ip(regs, -4); 2167 err = speround_handler(regs); 2168 if (err == 0) { 2169 regs_add_return_ip(regs, 4); /* skip emulated instruction */ 2170 emulate_single_step(regs); 2171 return; 2172 } 2173 2174 if (err == -EFAULT) { 2175 /* got an error reading the instruction */ 2176 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); 2177 } else if (err == -EINVAL) { 2178 /* didn't recognize the instruction */ 2179 printk(KERN_ERR "unrecognized spe instruction " 2180 "in %s at %lx\n", current->comm, regs->nip); 2181 } else { 2182 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip); 2183 return; 2184 } 2185 } 2186 #endif 2187 2188 /* 2189 * We enter here if we get an unrecoverable exception, that is, one 2190 * that happened at a point where the RI (recoverable interrupt) bit 2191 * in the MSR is 0. This indicates that SRR0/1 are live, and that 2192 * we therefore lost state by taking this exception. 2193 */ 2194 void __noreturn unrecoverable_exception(struct pt_regs *regs) 2195 { 2196 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n", 2197 regs->trap, regs->nip, regs->msr); 2198 die("Unrecoverable exception", regs, SIGABRT); 2199 /* die() should not return */ 2200 for (;;) 2201 ; 2202 } 2203 2204 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x) 2205 /* 2206 * Default handler for a Watchdog exception, 2207 * spins until a reboot occurs 2208 */ 2209 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs) 2210 { 2211 /* Generic WatchdogHandler, implement your own */ 2212 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE)); 2213 return; 2214 } 2215 2216 DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException) 2217 { 2218 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n"); 2219 WatchdogHandler(regs); 2220 return 0; 2221 } 2222 #endif 2223 2224 /* 2225 * We enter here if we discover during exception entry that we are 2226 * running in supervisor mode with a userspace value in the stack pointer. 2227 */ 2228 DEFINE_INTERRUPT_HANDLER(kernel_bad_stack) 2229 { 2230 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n", 2231 regs->gpr[1], regs->nip); 2232 die("Bad kernel stack pointer", regs, SIGABRT); 2233 } 2234 2235 #ifdef CONFIG_PPC_EMULATED_STATS 2236 2237 #define WARN_EMULATED_SETUP(type) .type = { .name = #type } 2238 2239 struct ppc_emulated ppc_emulated = { 2240 #ifdef CONFIG_ALTIVEC 2241 WARN_EMULATED_SETUP(altivec), 2242 #endif 2243 WARN_EMULATED_SETUP(dcba), 2244 WARN_EMULATED_SETUP(dcbz), 2245 WARN_EMULATED_SETUP(fp_pair), 2246 WARN_EMULATED_SETUP(isel), 2247 WARN_EMULATED_SETUP(mcrxr), 2248 WARN_EMULATED_SETUP(mfpvr), 2249 WARN_EMULATED_SETUP(multiple), 2250 WARN_EMULATED_SETUP(popcntb), 2251 WARN_EMULATED_SETUP(spe), 2252 WARN_EMULATED_SETUP(string), 2253 WARN_EMULATED_SETUP(sync), 2254 WARN_EMULATED_SETUP(unaligned), 2255 #ifdef CONFIG_MATH_EMULATION 2256 WARN_EMULATED_SETUP(math), 2257 #endif 2258 #ifdef CONFIG_VSX 2259 WARN_EMULATED_SETUP(vsx), 2260 #endif 2261 #ifdef CONFIG_PPC64 2262 WARN_EMULATED_SETUP(mfdscr), 2263 WARN_EMULATED_SETUP(mtdscr), 2264 WARN_EMULATED_SETUP(lq_stq), 2265 WARN_EMULATED_SETUP(lxvw4x), 2266 WARN_EMULATED_SETUP(lxvh8x), 2267 WARN_EMULATED_SETUP(lxvd2x), 2268 WARN_EMULATED_SETUP(lxvb16x), 2269 #endif 2270 }; 2271 2272 u32 ppc_warn_emulated; 2273 2274 void ppc_warn_emulated_print(const char *type) 2275 { 2276 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm, 2277 type); 2278 } 2279 2280 static int __init ppc_warn_emulated_init(void) 2281 { 2282 struct dentry *dir; 2283 unsigned int i; 2284 struct ppc_emulated_entry *entries = (void *)&ppc_emulated; 2285 2286 dir = debugfs_create_dir("emulated_instructions", 2287 arch_debugfs_dir); 2288 2289 debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated); 2290 2291 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) 2292 debugfs_create_u32(entries[i].name, 0644, dir, 2293 (u32 *)&entries[i].val.counter); 2294 2295 return 0; 2296 } 2297 2298 device_initcall(ppc_warn_emulated_init); 2299 2300 #endif /* CONFIG_PPC_EMULATED_STATS */ 2301