xref: /linux/arch/powerpc/kernel/traps.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <asm/asm-prototypes.h>
64 #include <sysdev/fsl_pci.h>
65 
66 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
67 int (*__debugger)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
74 
75 EXPORT_SYMBOL(__debugger);
76 EXPORT_SYMBOL(__debugger_ipi);
77 EXPORT_SYMBOL(__debugger_bpt);
78 EXPORT_SYMBOL(__debugger_sstep);
79 EXPORT_SYMBOL(__debugger_iabr_match);
80 EXPORT_SYMBOL(__debugger_break_match);
81 EXPORT_SYMBOL(__debugger_fault_handler);
82 #endif
83 
84 /* Transactional Memory trap debug */
85 #ifdef TM_DEBUG_SW
86 #define TM_DEBUG(x...) printk(KERN_INFO x)
87 #else
88 #define TM_DEBUG(x...) do { } while(0)
89 #endif
90 
91 /*
92  * Trap & Exception support
93  */
94 
95 #ifdef CONFIG_PMAC_BACKLIGHT
96 static void pmac_backlight_unblank(void)
97 {
98 	mutex_lock(&pmac_backlight_mutex);
99 	if (pmac_backlight) {
100 		struct backlight_properties *props;
101 
102 		props = &pmac_backlight->props;
103 		props->brightness = props->max_brightness;
104 		props->power = FB_BLANK_UNBLANK;
105 		backlight_update_status(pmac_backlight);
106 	}
107 	mutex_unlock(&pmac_backlight_mutex);
108 }
109 #else
110 static inline void pmac_backlight_unblank(void) { }
111 #endif
112 
113 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
114 static int die_owner = -1;
115 static unsigned int die_nest_count;
116 static int die_counter;
117 
118 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
119 {
120 	int cpu;
121 	unsigned long flags;
122 
123 	if (debugger(regs))
124 		return 1;
125 
126 	oops_enter();
127 
128 	/* racy, but better than risking deadlock. */
129 	raw_local_irq_save(flags);
130 	cpu = smp_processor_id();
131 	if (!arch_spin_trylock(&die_lock)) {
132 		if (cpu == die_owner)
133 			/* nested oops. should stop eventually */;
134 		else
135 			arch_spin_lock(&die_lock);
136 	}
137 	die_nest_count++;
138 	die_owner = cpu;
139 	console_verbose();
140 	bust_spinlocks(1);
141 	if (machine_is(powermac))
142 		pmac_backlight_unblank();
143 	return flags;
144 }
145 
146 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
147 			       int signr)
148 {
149 	bust_spinlocks(0);
150 	die_owner = -1;
151 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
152 	die_nest_count--;
153 	oops_exit();
154 	printk("\n");
155 	if (!die_nest_count)
156 		/* Nest count reaches zero, release the lock. */
157 		arch_spin_unlock(&die_lock);
158 	raw_local_irq_restore(flags);
159 
160 	crash_fadump(regs, "die oops");
161 
162 	/*
163 	 * A system reset (0x100) is a request to dump, so we always send
164 	 * it through the crashdump code.
165 	 */
166 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
167 		crash_kexec(regs);
168 
169 		/*
170 		 * We aren't the primary crash CPU. We need to send it
171 		 * to a holding pattern to avoid it ending up in the panic
172 		 * code.
173 		 */
174 		crash_kexec_secondary(regs);
175 	}
176 
177 	if (!signr)
178 		return;
179 
180 	/*
181 	 * While our oops output is serialised by a spinlock, output
182 	 * from panic() called below can race and corrupt it. If we
183 	 * know we are going to panic, delay for 1 second so we have a
184 	 * chance to get clean backtraces from all CPUs that are oopsing.
185 	 */
186 	if (in_interrupt() || panic_on_oops || !current->pid ||
187 	    is_global_init(current)) {
188 		mdelay(MSEC_PER_SEC);
189 	}
190 
191 	if (in_interrupt())
192 		panic("Fatal exception in interrupt");
193 	if (panic_on_oops)
194 		panic("Fatal exception");
195 	do_exit(signr);
196 }
197 
198 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
199 {
200 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
201 #ifdef CONFIG_PREEMPT
202 	printk("PREEMPT ");
203 #endif
204 #ifdef CONFIG_SMP
205 	printk("SMP NR_CPUS=%d ", NR_CPUS);
206 #endif
207 	if (debug_pagealloc_enabled())
208 		printk("DEBUG_PAGEALLOC ");
209 #ifdef CONFIG_NUMA
210 	printk("NUMA ");
211 #endif
212 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 
214 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 		return 1;
216 
217 	print_modules();
218 	show_regs(regs);
219 
220 	return 0;
221 }
222 
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 	unsigned long flags = oops_begin(regs);
226 
227 	if (__die(str, regs, err))
228 		err = 0;
229 	oops_end(flags, regs, err);
230 }
231 
232 void user_single_step_siginfo(struct task_struct *tsk,
233 				struct pt_regs *regs, siginfo_t *info)
234 {
235 	memset(info, 0, sizeof(*info));
236 	info->si_signo = SIGTRAP;
237 	info->si_code = TRAP_TRACE;
238 	info->si_addr = (void __user *)regs->nip;
239 }
240 
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 	siginfo_t info;
244 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 			"at %08lx nip %08lx lr %08lx code %x\n";
246 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %016lx nip %016lx lr %016lx code %x\n";
248 
249 	if (!user_mode(regs)) {
250 		die("Exception in kernel mode", regs, signr);
251 		return;
252 	}
253 
254 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 				   current->comm, current->pid, signr,
257 				   addr, regs->nip, regs->link, code);
258 	}
259 
260 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 		local_irq_enable();
262 
263 	current->thread.trap_nr = code;
264 	memset(&info, 0, sizeof(info));
265 	info.si_signo = signr;
266 	info.si_code = code;
267 	info.si_addr = (void __user *) addr;
268 	force_sig_info(signr, &info, current);
269 }
270 
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 	/* See if any machine dependent calls */
275 	if (ppc_md.system_reset_exception) {
276 		if (ppc_md.system_reset_exception(regs))
277 			return;
278 	}
279 
280 	die("System Reset", regs, SIGABRT);
281 
282 	/* Must die if the interrupt is not recoverable */
283 	if (!(regs->msr & MSR_RI))
284 		panic("Unrecoverable System Reset");
285 
286 	/* What should we do here? We could issue a shutdown or hard reset. */
287 }
288 
289 /*
290  * This function is called in real mode. Strictly no printk's please.
291  *
292  * regs->nip and regs->msr contains srr0 and ssr1.
293  */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 	long handled = 0;
297 
298 	__this_cpu_inc(irq_stat.mce_exceptions);
299 
300 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
301 
302 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
303 		handled = cur_cpu_spec->machine_check_early(regs);
304 	return handled;
305 }
306 
307 long hmi_exception_realmode(struct pt_regs *regs)
308 {
309 	__this_cpu_inc(irq_stat.hmi_exceptions);
310 
311 	if (ppc_md.hmi_exception_early)
312 		ppc_md.hmi_exception_early(regs);
313 
314 	return 0;
315 }
316 
317 #endif
318 
319 /*
320  * I/O accesses can cause machine checks on powermacs.
321  * Check if the NIP corresponds to the address of a sync
322  * instruction for which there is an entry in the exception
323  * table.
324  * Note that the 601 only takes a machine check on TEA
325  * (transfer error ack) signal assertion, and does not
326  * set any of the top 16 bits of SRR1.
327  *  -- paulus.
328  */
329 static inline int check_io_access(struct pt_regs *regs)
330 {
331 #ifdef CONFIG_PPC32
332 	unsigned long msr = regs->msr;
333 	const struct exception_table_entry *entry;
334 	unsigned int *nip = (unsigned int *)regs->nip;
335 
336 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
337 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
338 		/*
339 		 * Check that it's a sync instruction, or somewhere
340 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
341 		 * As the address is in the exception table
342 		 * we should be able to read the instr there.
343 		 * For the debug message, we look at the preceding
344 		 * load or store.
345 		 */
346 		if (*nip == 0x60000000)		/* nop */
347 			nip -= 2;
348 		else if (*nip == 0x4c00012c)	/* isync */
349 			--nip;
350 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
351 			/* sync or twi */
352 			unsigned int rb;
353 
354 			--nip;
355 			rb = (*nip >> 11) & 0x1f;
356 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
357 			       (*nip & 0x100)? "OUT to": "IN from",
358 			       regs->gpr[rb] - _IO_BASE, nip);
359 			regs->msr |= MSR_RI;
360 			regs->nip = entry->fixup;
361 			return 1;
362 		}
363 	}
364 #endif /* CONFIG_PPC32 */
365 	return 0;
366 }
367 
368 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
369 /* On 4xx, the reason for the machine check or program exception
370    is in the ESR. */
371 #define get_reason(regs)	((regs)->dsisr)
372 #ifndef CONFIG_FSL_BOOKE
373 #define get_mc_reason(regs)	((regs)->dsisr)
374 #else
375 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
376 #endif
377 #define REASON_FP		ESR_FP
378 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
379 #define REASON_PRIVILEGED	ESR_PPR
380 #define REASON_TRAP		ESR_PTR
381 
382 /* single-step stuff */
383 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
384 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
385 
386 #else
387 /* On non-4xx, the reason for the machine check or program
388    exception is in the MSR. */
389 #define get_reason(regs)	((regs)->msr)
390 #define get_mc_reason(regs)	((regs)->msr)
391 #define REASON_TM		0x200000
392 #define REASON_FP		0x100000
393 #define REASON_ILLEGAL		0x80000
394 #define REASON_PRIVILEGED	0x40000
395 #define REASON_TRAP		0x20000
396 
397 #define single_stepping(regs)	((regs)->msr & MSR_SE)
398 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
399 #endif
400 
401 #if defined(CONFIG_4xx)
402 int machine_check_4xx(struct pt_regs *regs)
403 {
404 	unsigned long reason = get_mc_reason(regs);
405 
406 	if (reason & ESR_IMCP) {
407 		printk("Instruction");
408 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
409 	} else
410 		printk("Data");
411 	printk(" machine check in kernel mode.\n");
412 
413 	return 0;
414 }
415 
416 int machine_check_440A(struct pt_regs *regs)
417 {
418 	unsigned long reason = get_mc_reason(regs);
419 
420 	printk("Machine check in kernel mode.\n");
421 	if (reason & ESR_IMCP){
422 		printk("Instruction Synchronous Machine Check exception\n");
423 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
424 	}
425 	else {
426 		u32 mcsr = mfspr(SPRN_MCSR);
427 		if (mcsr & MCSR_IB)
428 			printk("Instruction Read PLB Error\n");
429 		if (mcsr & MCSR_DRB)
430 			printk("Data Read PLB Error\n");
431 		if (mcsr & MCSR_DWB)
432 			printk("Data Write PLB Error\n");
433 		if (mcsr & MCSR_TLBP)
434 			printk("TLB Parity Error\n");
435 		if (mcsr & MCSR_ICP){
436 			flush_instruction_cache();
437 			printk("I-Cache Parity Error\n");
438 		}
439 		if (mcsr & MCSR_DCSP)
440 			printk("D-Cache Search Parity Error\n");
441 		if (mcsr & MCSR_DCFP)
442 			printk("D-Cache Flush Parity Error\n");
443 		if (mcsr & MCSR_IMPE)
444 			printk("Machine Check exception is imprecise\n");
445 
446 		/* Clear MCSR */
447 		mtspr(SPRN_MCSR, mcsr);
448 	}
449 	return 0;
450 }
451 
452 int machine_check_47x(struct pt_regs *regs)
453 {
454 	unsigned long reason = get_mc_reason(regs);
455 	u32 mcsr;
456 
457 	printk(KERN_ERR "Machine check in kernel mode.\n");
458 	if (reason & ESR_IMCP) {
459 		printk(KERN_ERR
460 		       "Instruction Synchronous Machine Check exception\n");
461 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
462 		return 0;
463 	}
464 	mcsr = mfspr(SPRN_MCSR);
465 	if (mcsr & MCSR_IB)
466 		printk(KERN_ERR "Instruction Read PLB Error\n");
467 	if (mcsr & MCSR_DRB)
468 		printk(KERN_ERR "Data Read PLB Error\n");
469 	if (mcsr & MCSR_DWB)
470 		printk(KERN_ERR "Data Write PLB Error\n");
471 	if (mcsr & MCSR_TLBP)
472 		printk(KERN_ERR "TLB Parity Error\n");
473 	if (mcsr & MCSR_ICP) {
474 		flush_instruction_cache();
475 		printk(KERN_ERR "I-Cache Parity Error\n");
476 	}
477 	if (mcsr & MCSR_DCSP)
478 		printk(KERN_ERR "D-Cache Search Parity Error\n");
479 	if (mcsr & PPC47x_MCSR_GPR)
480 		printk(KERN_ERR "GPR Parity Error\n");
481 	if (mcsr & PPC47x_MCSR_FPR)
482 		printk(KERN_ERR "FPR Parity Error\n");
483 	if (mcsr & PPC47x_MCSR_IPR)
484 		printk(KERN_ERR "Machine Check exception is imprecise\n");
485 
486 	/* Clear MCSR */
487 	mtspr(SPRN_MCSR, mcsr);
488 
489 	return 0;
490 }
491 #elif defined(CONFIG_E500)
492 int machine_check_e500mc(struct pt_regs *regs)
493 {
494 	unsigned long mcsr = mfspr(SPRN_MCSR);
495 	unsigned long reason = mcsr;
496 	int recoverable = 1;
497 
498 	if (reason & MCSR_LD) {
499 		recoverable = fsl_rio_mcheck_exception(regs);
500 		if (recoverable == 1)
501 			goto silent_out;
502 	}
503 
504 	printk("Machine check in kernel mode.\n");
505 	printk("Caused by (from MCSR=%lx): ", reason);
506 
507 	if (reason & MCSR_MCP)
508 		printk("Machine Check Signal\n");
509 
510 	if (reason & MCSR_ICPERR) {
511 		printk("Instruction Cache Parity Error\n");
512 
513 		/*
514 		 * This is recoverable by invalidating the i-cache.
515 		 */
516 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
517 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
518 			;
519 
520 		/*
521 		 * This will generally be accompanied by an instruction
522 		 * fetch error report -- only treat MCSR_IF as fatal
523 		 * if it wasn't due to an L1 parity error.
524 		 */
525 		reason &= ~MCSR_IF;
526 	}
527 
528 	if (reason & MCSR_DCPERR_MC) {
529 		printk("Data Cache Parity Error\n");
530 
531 		/*
532 		 * In write shadow mode we auto-recover from the error, but it
533 		 * may still get logged and cause a machine check.  We should
534 		 * only treat the non-write shadow case as non-recoverable.
535 		 */
536 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
537 			recoverable = 0;
538 	}
539 
540 	if (reason & MCSR_L2MMU_MHIT) {
541 		printk("Hit on multiple TLB entries\n");
542 		recoverable = 0;
543 	}
544 
545 	if (reason & MCSR_NMI)
546 		printk("Non-maskable interrupt\n");
547 
548 	if (reason & MCSR_IF) {
549 		printk("Instruction Fetch Error Report\n");
550 		recoverable = 0;
551 	}
552 
553 	if (reason & MCSR_LD) {
554 		printk("Load Error Report\n");
555 		recoverable = 0;
556 	}
557 
558 	if (reason & MCSR_ST) {
559 		printk("Store Error Report\n");
560 		recoverable = 0;
561 	}
562 
563 	if (reason & MCSR_LDG) {
564 		printk("Guarded Load Error Report\n");
565 		recoverable = 0;
566 	}
567 
568 	if (reason & MCSR_TLBSYNC)
569 		printk("Simultaneous tlbsync operations\n");
570 
571 	if (reason & MCSR_BSL2_ERR) {
572 		printk("Level 2 Cache Error\n");
573 		recoverable = 0;
574 	}
575 
576 	if (reason & MCSR_MAV) {
577 		u64 addr;
578 
579 		addr = mfspr(SPRN_MCAR);
580 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
581 
582 		printk("Machine Check %s Address: %#llx\n",
583 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
584 	}
585 
586 silent_out:
587 	mtspr(SPRN_MCSR, mcsr);
588 	return mfspr(SPRN_MCSR) == 0 && recoverable;
589 }
590 
591 int machine_check_e500(struct pt_regs *regs)
592 {
593 	unsigned long reason = get_mc_reason(regs);
594 
595 	if (reason & MCSR_BUS_RBERR) {
596 		if (fsl_rio_mcheck_exception(regs))
597 			return 1;
598 		if (fsl_pci_mcheck_exception(regs))
599 			return 1;
600 	}
601 
602 	printk("Machine check in kernel mode.\n");
603 	printk("Caused by (from MCSR=%lx): ", reason);
604 
605 	if (reason & MCSR_MCP)
606 		printk("Machine Check Signal\n");
607 	if (reason & MCSR_ICPERR)
608 		printk("Instruction Cache Parity Error\n");
609 	if (reason & MCSR_DCP_PERR)
610 		printk("Data Cache Push Parity Error\n");
611 	if (reason & MCSR_DCPERR)
612 		printk("Data Cache Parity Error\n");
613 	if (reason & MCSR_BUS_IAERR)
614 		printk("Bus - Instruction Address Error\n");
615 	if (reason & MCSR_BUS_RAERR)
616 		printk("Bus - Read Address Error\n");
617 	if (reason & MCSR_BUS_WAERR)
618 		printk("Bus - Write Address Error\n");
619 	if (reason & MCSR_BUS_IBERR)
620 		printk("Bus - Instruction Data Error\n");
621 	if (reason & MCSR_BUS_RBERR)
622 		printk("Bus - Read Data Bus Error\n");
623 	if (reason & MCSR_BUS_WBERR)
624 		printk("Bus - Write Data Bus Error\n");
625 	if (reason & MCSR_BUS_IPERR)
626 		printk("Bus - Instruction Parity Error\n");
627 	if (reason & MCSR_BUS_RPERR)
628 		printk("Bus - Read Parity Error\n");
629 
630 	return 0;
631 }
632 
633 int machine_check_generic(struct pt_regs *regs)
634 {
635 	return 0;
636 }
637 #elif defined(CONFIG_E200)
638 int machine_check_e200(struct pt_regs *regs)
639 {
640 	unsigned long reason = get_mc_reason(regs);
641 
642 	printk("Machine check in kernel mode.\n");
643 	printk("Caused by (from MCSR=%lx): ", reason);
644 
645 	if (reason & MCSR_MCP)
646 		printk("Machine Check Signal\n");
647 	if (reason & MCSR_CP_PERR)
648 		printk("Cache Push Parity Error\n");
649 	if (reason & MCSR_CPERR)
650 		printk("Cache Parity Error\n");
651 	if (reason & MCSR_EXCP_ERR)
652 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
653 	if (reason & MCSR_BUS_IRERR)
654 		printk("Bus - Read Bus Error on instruction fetch\n");
655 	if (reason & MCSR_BUS_DRERR)
656 		printk("Bus - Read Bus Error on data load\n");
657 	if (reason & MCSR_BUS_WRERR)
658 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
659 
660 	return 0;
661 }
662 #else
663 int machine_check_generic(struct pt_regs *regs)
664 {
665 	unsigned long reason = get_mc_reason(regs);
666 
667 	printk("Machine check in kernel mode.\n");
668 	printk("Caused by (from SRR1=%lx): ", reason);
669 	switch (reason & 0x601F0000) {
670 	case 0x80000:
671 		printk("Machine check signal\n");
672 		break;
673 	case 0:		/* for 601 */
674 	case 0x40000:
675 	case 0x140000:	/* 7450 MSS error and TEA */
676 		printk("Transfer error ack signal\n");
677 		break;
678 	case 0x20000:
679 		printk("Data parity error signal\n");
680 		break;
681 	case 0x10000:
682 		printk("Address parity error signal\n");
683 		break;
684 	case 0x20000000:
685 		printk("L1 Data Cache error\n");
686 		break;
687 	case 0x40000000:
688 		printk("L1 Instruction Cache error\n");
689 		break;
690 	case 0x00100000:
691 		printk("L2 data cache parity error\n");
692 		break;
693 	default:
694 		printk("Unknown values in msr\n");
695 	}
696 	return 0;
697 }
698 #endif /* everything else */
699 
700 void machine_check_exception(struct pt_regs *regs)
701 {
702 	enum ctx_state prev_state = exception_enter();
703 	int recover = 0;
704 
705 	__this_cpu_inc(irq_stat.mce_exceptions);
706 
707 	/* See if any machine dependent calls. In theory, we would want
708 	 * to call the CPU first, and call the ppc_md. one if the CPU
709 	 * one returns a positive number. However there is existing code
710 	 * that assumes the board gets a first chance, so let's keep it
711 	 * that way for now and fix things later. --BenH.
712 	 */
713 	if (ppc_md.machine_check_exception)
714 		recover = ppc_md.machine_check_exception(regs);
715 	else if (cur_cpu_spec->machine_check)
716 		recover = cur_cpu_spec->machine_check(regs);
717 
718 	if (recover > 0)
719 		goto bail;
720 
721 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
722 	/* the qspan pci read routines can cause machine checks -- Cort
723 	 *
724 	 * yuck !!! that totally needs to go away ! There are better ways
725 	 * to deal with that than having a wart in the mcheck handler.
726 	 * -- BenH
727 	 */
728 	bad_page_fault(regs, regs->dar, SIGBUS);
729 	goto bail;
730 #endif
731 
732 	if (debugger_fault_handler(regs))
733 		goto bail;
734 
735 	if (check_io_access(regs))
736 		goto bail;
737 
738 	die("Machine check", regs, SIGBUS);
739 
740 	/* Must die if the interrupt is not recoverable */
741 	if (!(regs->msr & MSR_RI))
742 		panic("Unrecoverable Machine check");
743 
744 bail:
745 	exception_exit(prev_state);
746 }
747 
748 void SMIException(struct pt_regs *regs)
749 {
750 	die("System Management Interrupt", regs, SIGABRT);
751 }
752 
753 void handle_hmi_exception(struct pt_regs *regs)
754 {
755 	struct pt_regs *old_regs;
756 
757 	old_regs = set_irq_regs(regs);
758 	irq_enter();
759 
760 	if (ppc_md.handle_hmi_exception)
761 		ppc_md.handle_hmi_exception(regs);
762 
763 	irq_exit();
764 	set_irq_regs(old_regs);
765 }
766 
767 void unknown_exception(struct pt_regs *regs)
768 {
769 	enum ctx_state prev_state = exception_enter();
770 
771 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
772 	       regs->nip, regs->msr, regs->trap);
773 
774 	_exception(SIGTRAP, regs, 0, 0);
775 
776 	exception_exit(prev_state);
777 }
778 
779 void instruction_breakpoint_exception(struct pt_regs *regs)
780 {
781 	enum ctx_state prev_state = exception_enter();
782 
783 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
784 					5, SIGTRAP) == NOTIFY_STOP)
785 		goto bail;
786 	if (debugger_iabr_match(regs))
787 		goto bail;
788 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
789 
790 bail:
791 	exception_exit(prev_state);
792 }
793 
794 void RunModeException(struct pt_regs *regs)
795 {
796 	_exception(SIGTRAP, regs, 0, 0);
797 }
798 
799 void __kprobes single_step_exception(struct pt_regs *regs)
800 {
801 	enum ctx_state prev_state = exception_enter();
802 
803 	clear_single_step(regs);
804 
805 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
806 					5, SIGTRAP) == NOTIFY_STOP)
807 		goto bail;
808 	if (debugger_sstep(regs))
809 		goto bail;
810 
811 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
812 
813 bail:
814 	exception_exit(prev_state);
815 }
816 
817 /*
818  * After we have successfully emulated an instruction, we have to
819  * check if the instruction was being single-stepped, and if so,
820  * pretend we got a single-step exception.  This was pointed out
821  * by Kumar Gala.  -- paulus
822  */
823 static void emulate_single_step(struct pt_regs *regs)
824 {
825 	if (single_stepping(regs))
826 		single_step_exception(regs);
827 }
828 
829 static inline int __parse_fpscr(unsigned long fpscr)
830 {
831 	int ret = 0;
832 
833 	/* Invalid operation */
834 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
835 		ret = FPE_FLTINV;
836 
837 	/* Overflow */
838 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
839 		ret = FPE_FLTOVF;
840 
841 	/* Underflow */
842 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
843 		ret = FPE_FLTUND;
844 
845 	/* Divide by zero */
846 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
847 		ret = FPE_FLTDIV;
848 
849 	/* Inexact result */
850 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
851 		ret = FPE_FLTRES;
852 
853 	return ret;
854 }
855 
856 static void parse_fpe(struct pt_regs *regs)
857 {
858 	int code = 0;
859 
860 	flush_fp_to_thread(current);
861 
862 	code = __parse_fpscr(current->thread.fp_state.fpscr);
863 
864 	_exception(SIGFPE, regs, code, regs->nip);
865 }
866 
867 /*
868  * Illegal instruction emulation support.  Originally written to
869  * provide the PVR to user applications using the mfspr rd, PVR.
870  * Return non-zero if we can't emulate, or -EFAULT if the associated
871  * memory access caused an access fault.  Return zero on success.
872  *
873  * There are a couple of ways to do this, either "decode" the instruction
874  * or directly match lots of bits.  In this case, matching lots of
875  * bits is faster and easier.
876  *
877  */
878 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
879 {
880 	u8 rT = (instword >> 21) & 0x1f;
881 	u8 rA = (instword >> 16) & 0x1f;
882 	u8 NB_RB = (instword >> 11) & 0x1f;
883 	u32 num_bytes;
884 	unsigned long EA;
885 	int pos = 0;
886 
887 	/* Early out if we are an invalid form of lswx */
888 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
889 		if ((rT == rA) || (rT == NB_RB))
890 			return -EINVAL;
891 
892 	EA = (rA == 0) ? 0 : regs->gpr[rA];
893 
894 	switch (instword & PPC_INST_STRING_MASK) {
895 		case PPC_INST_LSWX:
896 		case PPC_INST_STSWX:
897 			EA += NB_RB;
898 			num_bytes = regs->xer & 0x7f;
899 			break;
900 		case PPC_INST_LSWI:
901 		case PPC_INST_STSWI:
902 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
903 			break;
904 		default:
905 			return -EINVAL;
906 	}
907 
908 	while (num_bytes != 0)
909 	{
910 		u8 val;
911 		u32 shift = 8 * (3 - (pos & 0x3));
912 
913 		/* if process is 32-bit, clear upper 32 bits of EA */
914 		if ((regs->msr & MSR_64BIT) == 0)
915 			EA &= 0xFFFFFFFF;
916 
917 		switch ((instword & PPC_INST_STRING_MASK)) {
918 			case PPC_INST_LSWX:
919 			case PPC_INST_LSWI:
920 				if (get_user(val, (u8 __user *)EA))
921 					return -EFAULT;
922 				/* first time updating this reg,
923 				 * zero it out */
924 				if (pos == 0)
925 					regs->gpr[rT] = 0;
926 				regs->gpr[rT] |= val << shift;
927 				break;
928 			case PPC_INST_STSWI:
929 			case PPC_INST_STSWX:
930 				val = regs->gpr[rT] >> shift;
931 				if (put_user(val, (u8 __user *)EA))
932 					return -EFAULT;
933 				break;
934 		}
935 		/* move EA to next address */
936 		EA += 1;
937 		num_bytes--;
938 
939 		/* manage our position within the register */
940 		if (++pos == 4) {
941 			pos = 0;
942 			if (++rT == 32)
943 				rT = 0;
944 		}
945 	}
946 
947 	return 0;
948 }
949 
950 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
951 {
952 	u32 ra,rs;
953 	unsigned long tmp;
954 
955 	ra = (instword >> 16) & 0x1f;
956 	rs = (instword >> 21) & 0x1f;
957 
958 	tmp = regs->gpr[rs];
959 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
960 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
961 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
962 	regs->gpr[ra] = tmp;
963 
964 	return 0;
965 }
966 
967 static int emulate_isel(struct pt_regs *regs, u32 instword)
968 {
969 	u8 rT = (instword >> 21) & 0x1f;
970 	u8 rA = (instword >> 16) & 0x1f;
971 	u8 rB = (instword >> 11) & 0x1f;
972 	u8 BC = (instword >> 6) & 0x1f;
973 	u8 bit;
974 	unsigned long tmp;
975 
976 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
977 	bit = (regs->ccr >> (31 - BC)) & 0x1;
978 
979 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
980 
981 	return 0;
982 }
983 
984 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
985 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
986 {
987         /* If we're emulating a load/store in an active transaction, we cannot
988          * emulate it as the kernel operates in transaction suspended context.
989          * We need to abort the transaction.  This creates a persistent TM
990          * abort so tell the user what caused it with a new code.
991 	 */
992 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
993 		tm_enable();
994 		tm_abort(cause);
995 		return true;
996 	}
997 	return false;
998 }
999 #else
1000 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1001 {
1002 	return false;
1003 }
1004 #endif
1005 
1006 static int emulate_instruction(struct pt_regs *regs)
1007 {
1008 	u32 instword;
1009 	u32 rd;
1010 
1011 	if (!user_mode(regs))
1012 		return -EINVAL;
1013 	CHECK_FULL_REGS(regs);
1014 
1015 	if (get_user(instword, (u32 __user *)(regs->nip)))
1016 		return -EFAULT;
1017 
1018 	/* Emulate the mfspr rD, PVR. */
1019 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1020 		PPC_WARN_EMULATED(mfpvr, regs);
1021 		rd = (instword >> 21) & 0x1f;
1022 		regs->gpr[rd] = mfspr(SPRN_PVR);
1023 		return 0;
1024 	}
1025 
1026 	/* Emulating the dcba insn is just a no-op.  */
1027 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1028 		PPC_WARN_EMULATED(dcba, regs);
1029 		return 0;
1030 	}
1031 
1032 	/* Emulate the mcrxr insn.  */
1033 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1034 		int shift = (instword >> 21) & 0x1c;
1035 		unsigned long msk = 0xf0000000UL >> shift;
1036 
1037 		PPC_WARN_EMULATED(mcrxr, regs);
1038 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1039 		regs->xer &= ~0xf0000000UL;
1040 		return 0;
1041 	}
1042 
1043 	/* Emulate load/store string insn. */
1044 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1045 		if (tm_abort_check(regs,
1046 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1047 			return -EINVAL;
1048 		PPC_WARN_EMULATED(string, regs);
1049 		return emulate_string_inst(regs, instword);
1050 	}
1051 
1052 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1053 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1054 		PPC_WARN_EMULATED(popcntb, regs);
1055 		return emulate_popcntb_inst(regs, instword);
1056 	}
1057 
1058 	/* Emulate isel (Integer Select) instruction */
1059 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1060 		PPC_WARN_EMULATED(isel, regs);
1061 		return emulate_isel(regs, instword);
1062 	}
1063 
1064 	/* Emulate sync instruction variants */
1065 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1066 		PPC_WARN_EMULATED(sync, regs);
1067 		asm volatile("sync");
1068 		return 0;
1069 	}
1070 
1071 #ifdef CONFIG_PPC64
1072 	/* Emulate the mfspr rD, DSCR. */
1073 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1074 		PPC_INST_MFSPR_DSCR_USER) ||
1075 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1076 		PPC_INST_MFSPR_DSCR)) &&
1077 			cpu_has_feature(CPU_FTR_DSCR)) {
1078 		PPC_WARN_EMULATED(mfdscr, regs);
1079 		rd = (instword >> 21) & 0x1f;
1080 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1081 		return 0;
1082 	}
1083 	/* Emulate the mtspr DSCR, rD. */
1084 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1085 		PPC_INST_MTSPR_DSCR_USER) ||
1086 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1087 		PPC_INST_MTSPR_DSCR)) &&
1088 			cpu_has_feature(CPU_FTR_DSCR)) {
1089 		PPC_WARN_EMULATED(mtdscr, regs);
1090 		rd = (instword >> 21) & 0x1f;
1091 		current->thread.dscr = regs->gpr[rd];
1092 		current->thread.dscr_inherit = 1;
1093 		mtspr(SPRN_DSCR, current->thread.dscr);
1094 		return 0;
1095 	}
1096 #endif
1097 
1098 	return -EINVAL;
1099 }
1100 
1101 int is_valid_bugaddr(unsigned long addr)
1102 {
1103 	return is_kernel_addr(addr);
1104 }
1105 
1106 #ifdef CONFIG_MATH_EMULATION
1107 static int emulate_math(struct pt_regs *regs)
1108 {
1109 	int ret;
1110 	extern int do_mathemu(struct pt_regs *regs);
1111 
1112 	ret = do_mathemu(regs);
1113 	if (ret >= 0)
1114 		PPC_WARN_EMULATED(math, regs);
1115 
1116 	switch (ret) {
1117 	case 0:
1118 		emulate_single_step(regs);
1119 		return 0;
1120 	case 1: {
1121 			int code = 0;
1122 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1123 			_exception(SIGFPE, regs, code, regs->nip);
1124 			return 0;
1125 		}
1126 	case -EFAULT:
1127 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1128 		return 0;
1129 	}
1130 
1131 	return -1;
1132 }
1133 #else
1134 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1135 #endif
1136 
1137 void __kprobes program_check_exception(struct pt_regs *regs)
1138 {
1139 	enum ctx_state prev_state = exception_enter();
1140 	unsigned int reason = get_reason(regs);
1141 
1142 	/* We can now get here via a FP Unavailable exception if the core
1143 	 * has no FPU, in that case the reason flags will be 0 */
1144 
1145 	if (reason & REASON_FP) {
1146 		/* IEEE FP exception */
1147 		parse_fpe(regs);
1148 		goto bail;
1149 	}
1150 	if (reason & REASON_TRAP) {
1151 		unsigned long bugaddr;
1152 		/* Debugger is first in line to stop recursive faults in
1153 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1154 		if (debugger_bpt(regs))
1155 			goto bail;
1156 
1157 		/* trap exception */
1158 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1159 				== NOTIFY_STOP)
1160 			goto bail;
1161 
1162 		bugaddr = regs->nip;
1163 		/*
1164 		 * Fixup bugaddr for BUG_ON() in real mode
1165 		 */
1166 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1167 			bugaddr += PAGE_OFFSET;
1168 
1169 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1170 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1171 			regs->nip += 4;
1172 			goto bail;
1173 		}
1174 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1175 		goto bail;
1176 	}
1177 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1178 	if (reason & REASON_TM) {
1179 		/* This is a TM "Bad Thing Exception" program check.
1180 		 * This occurs when:
1181 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1182 		 *    transition in TM states.
1183 		 * -  A trechkpt is attempted when transactional.
1184 		 * -  A treclaim is attempted when non transactional.
1185 		 * -  A tend is illegally attempted.
1186 		 * -  writing a TM SPR when transactional.
1187 		 */
1188 		if (!user_mode(regs) &&
1189 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1190 			regs->nip += 4;
1191 			goto bail;
1192 		}
1193 		/* If usermode caused this, it's done something illegal and
1194 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1195 		 * operand to distinguish from the instruction just being bad
1196 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1197 		 * illegal /placement/ of a valid instruction.
1198 		 */
1199 		if (user_mode(regs)) {
1200 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1201 			goto bail;
1202 		} else {
1203 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1204 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1205 			die("Unrecoverable exception", regs, SIGABRT);
1206 		}
1207 	}
1208 #endif
1209 
1210 	/*
1211 	 * If we took the program check in the kernel skip down to sending a
1212 	 * SIGILL. The subsequent cases all relate to emulating instructions
1213 	 * which we should only do for userspace. We also do not want to enable
1214 	 * interrupts for kernel faults because that might lead to further
1215 	 * faults, and loose the context of the original exception.
1216 	 */
1217 	if (!user_mode(regs))
1218 		goto sigill;
1219 
1220 	/* We restore the interrupt state now */
1221 	if (!arch_irq_disabled_regs(regs))
1222 		local_irq_enable();
1223 
1224 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1225 	 * but there seems to be a hardware bug on the 405GP (RevD)
1226 	 * that means ESR is sometimes set incorrectly - either to
1227 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1228 	 * hardware people - not sure if it can happen on any illegal
1229 	 * instruction or only on FP instructions, whether there is a
1230 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1231 	 */
1232 	if (!emulate_math(regs))
1233 		goto bail;
1234 
1235 	/* Try to emulate it if we should. */
1236 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1237 		switch (emulate_instruction(regs)) {
1238 		case 0:
1239 			regs->nip += 4;
1240 			emulate_single_step(regs);
1241 			goto bail;
1242 		case -EFAULT:
1243 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1244 			goto bail;
1245 		}
1246 	}
1247 
1248 sigill:
1249 	if (reason & REASON_PRIVILEGED)
1250 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1251 	else
1252 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1253 
1254 bail:
1255 	exception_exit(prev_state);
1256 }
1257 
1258 /*
1259  * This occurs when running in hypervisor mode on POWER6 or later
1260  * and an illegal instruction is encountered.
1261  */
1262 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1263 {
1264 	regs->msr |= REASON_ILLEGAL;
1265 	program_check_exception(regs);
1266 }
1267 
1268 void alignment_exception(struct pt_regs *regs)
1269 {
1270 	enum ctx_state prev_state = exception_enter();
1271 	int sig, code, fixed = 0;
1272 
1273 	/* We restore the interrupt state now */
1274 	if (!arch_irq_disabled_regs(regs))
1275 		local_irq_enable();
1276 
1277 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1278 		goto bail;
1279 
1280 	/* we don't implement logging of alignment exceptions */
1281 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1282 		fixed = fix_alignment(regs);
1283 
1284 	if (fixed == 1) {
1285 		regs->nip += 4;	/* skip over emulated instruction */
1286 		emulate_single_step(regs);
1287 		goto bail;
1288 	}
1289 
1290 	/* Operand address was bad */
1291 	if (fixed == -EFAULT) {
1292 		sig = SIGSEGV;
1293 		code = SEGV_ACCERR;
1294 	} else {
1295 		sig = SIGBUS;
1296 		code = BUS_ADRALN;
1297 	}
1298 	if (user_mode(regs))
1299 		_exception(sig, regs, code, regs->dar);
1300 	else
1301 		bad_page_fault(regs, regs->dar, sig);
1302 
1303 bail:
1304 	exception_exit(prev_state);
1305 }
1306 
1307 void StackOverflow(struct pt_regs *regs)
1308 {
1309 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1310 	       current, regs->gpr[1]);
1311 	debugger(regs);
1312 	show_regs(regs);
1313 	panic("kernel stack overflow");
1314 }
1315 
1316 void nonrecoverable_exception(struct pt_regs *regs)
1317 {
1318 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1319 	       regs->nip, regs->msr);
1320 	debugger(regs);
1321 	die("nonrecoverable exception", regs, SIGKILL);
1322 }
1323 
1324 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1325 {
1326 	enum ctx_state prev_state = exception_enter();
1327 
1328 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1329 			  "%lx at %lx\n", regs->trap, regs->nip);
1330 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1331 
1332 	exception_exit(prev_state);
1333 }
1334 
1335 void altivec_unavailable_exception(struct pt_regs *regs)
1336 {
1337 	enum ctx_state prev_state = exception_enter();
1338 
1339 	if (user_mode(regs)) {
1340 		/* A user program has executed an altivec instruction,
1341 		   but this kernel doesn't support altivec. */
1342 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1343 		goto bail;
1344 	}
1345 
1346 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1347 			"%lx at %lx\n", regs->trap, regs->nip);
1348 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1349 
1350 bail:
1351 	exception_exit(prev_state);
1352 }
1353 
1354 void vsx_unavailable_exception(struct pt_regs *regs)
1355 {
1356 	if (user_mode(regs)) {
1357 		/* A user program has executed an vsx instruction,
1358 		   but this kernel doesn't support vsx. */
1359 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1360 		return;
1361 	}
1362 
1363 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1364 			"%lx at %lx\n", regs->trap, regs->nip);
1365 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1366 }
1367 
1368 #ifdef CONFIG_PPC64
1369 void facility_unavailable_exception(struct pt_regs *regs)
1370 {
1371 	static char *facility_strings[] = {
1372 		[FSCR_FP_LG] = "FPU",
1373 		[FSCR_VECVSX_LG] = "VMX/VSX",
1374 		[FSCR_DSCR_LG] = "DSCR",
1375 		[FSCR_PM_LG] = "PMU SPRs",
1376 		[FSCR_BHRB_LG] = "BHRB",
1377 		[FSCR_TM_LG] = "TM",
1378 		[FSCR_EBB_LG] = "EBB",
1379 		[FSCR_TAR_LG] = "TAR",
1380 		[FSCR_LM_LG] = "LM",
1381 	};
1382 	char *facility = "unknown";
1383 	u64 value;
1384 	u32 instword, rd;
1385 	u8 status;
1386 	bool hv;
1387 
1388 	hv = (regs->trap == 0xf80);
1389 	if (hv)
1390 		value = mfspr(SPRN_HFSCR);
1391 	else
1392 		value = mfspr(SPRN_FSCR);
1393 
1394 	status = value >> 56;
1395 	if (status == FSCR_DSCR_LG) {
1396 		/*
1397 		 * User is accessing the DSCR register using the problem
1398 		 * state only SPR number (0x03) either through a mfspr or
1399 		 * a mtspr instruction. If it is a write attempt through
1400 		 * a mtspr, then we set the inherit bit. This also allows
1401 		 * the user to write or read the register directly in the
1402 		 * future by setting via the FSCR DSCR bit. But in case it
1403 		 * is a read DSCR attempt through a mfspr instruction, we
1404 		 * just emulate the instruction instead. This code path will
1405 		 * always emulate all the mfspr instructions till the user
1406 		 * has attempted at least one mtspr instruction. This way it
1407 		 * preserves the same behaviour when the user is accessing
1408 		 * the DSCR through privilege level only SPR number (0x11)
1409 		 * which is emulated through illegal instruction exception.
1410 		 * We always leave HFSCR DSCR set.
1411 		 */
1412 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1413 			pr_err("Failed to fetch the user instruction\n");
1414 			return;
1415 		}
1416 
1417 		/* Write into DSCR (mtspr 0x03, RS) */
1418 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1419 				== PPC_INST_MTSPR_DSCR_USER) {
1420 			rd = (instword >> 21) & 0x1f;
1421 			current->thread.dscr = regs->gpr[rd];
1422 			current->thread.dscr_inherit = 1;
1423 			current->thread.fscr |= FSCR_DSCR;
1424 			mtspr(SPRN_FSCR, current->thread.fscr);
1425 		}
1426 
1427 		/* Read from DSCR (mfspr RT, 0x03) */
1428 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1429 				== PPC_INST_MFSPR_DSCR_USER) {
1430 			if (emulate_instruction(regs)) {
1431 				pr_err("DSCR based mfspr emulation failed\n");
1432 				return;
1433 			}
1434 			regs->nip += 4;
1435 			emulate_single_step(regs);
1436 		}
1437 		return;
1438 	} else if ((status == FSCR_LM_LG) && cpu_has_feature(CPU_FTR_ARCH_300)) {
1439 		/*
1440 		 * This process has touched LM, so turn it on forever
1441 		 * for this process
1442 		 */
1443 		current->thread.fscr |= FSCR_LM;
1444 		mtspr(SPRN_FSCR, current->thread.fscr);
1445 		return;
1446 	}
1447 
1448 	if ((status < ARRAY_SIZE(facility_strings)) &&
1449 	    facility_strings[status])
1450 		facility = facility_strings[status];
1451 
1452 	/* We restore the interrupt state now */
1453 	if (!arch_irq_disabled_regs(regs))
1454 		local_irq_enable();
1455 
1456 	pr_err_ratelimited(
1457 		"%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1458 		hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1459 
1460 	if (user_mode(regs)) {
1461 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1462 		return;
1463 	}
1464 
1465 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1466 }
1467 #endif
1468 
1469 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1470 
1471 void fp_unavailable_tm(struct pt_regs *regs)
1472 {
1473 	/* Note:  This does not handle any kind of FP laziness. */
1474 
1475 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1476 		 regs->nip, regs->msr);
1477 
1478         /* We can only have got here if the task started using FP after
1479          * beginning the transaction.  So, the transactional regs are just a
1480          * copy of the checkpointed ones.  But, we still need to recheckpoint
1481          * as we're enabling FP for the process; it will return, abort the
1482          * transaction, and probably retry but now with FP enabled.  So the
1483          * checkpointed FP registers need to be loaded.
1484 	 */
1485 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1486 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1487 
1488 	/* Enable FP for the task: */
1489 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1490 
1491 	/* This loads and recheckpoints the FP registers from
1492 	 * thread.fpr[].  They will remain in registers after the
1493 	 * checkpoint so we don't need to reload them after.
1494 	 * If VMX is in use, the VRs now hold checkpointed values,
1495 	 * so we don't want to load the VRs from the thread_struct.
1496 	 */
1497 	tm_recheckpoint(&current->thread, MSR_FP);
1498 
1499 	/* If VMX is in use, get the transactional values back */
1500 	if (regs->msr & MSR_VEC) {
1501 		do_load_up_transact_altivec(&current->thread);
1502 		/* At this point all the VSX state is loaded, so enable it */
1503 		regs->msr |= MSR_VSX;
1504 	}
1505 }
1506 
1507 void altivec_unavailable_tm(struct pt_regs *regs)
1508 {
1509 	/* See the comments in fp_unavailable_tm().  This function operates
1510 	 * the same way.
1511 	 */
1512 
1513 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1514 		 "MSR=%lx\n",
1515 		 regs->nip, regs->msr);
1516 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1517 	regs->msr |= MSR_VEC;
1518 	tm_recheckpoint(&current->thread, MSR_VEC);
1519 	current->thread.used_vr = 1;
1520 
1521 	if (regs->msr & MSR_FP) {
1522 		do_load_up_transact_fpu(&current->thread);
1523 		regs->msr |= MSR_VSX;
1524 	}
1525 }
1526 
1527 void vsx_unavailable_tm(struct pt_regs *regs)
1528 {
1529 	unsigned long orig_msr = regs->msr;
1530 
1531 	/* See the comments in fp_unavailable_tm().  This works similarly,
1532 	 * though we're loading both FP and VEC registers in here.
1533 	 *
1534 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1535 	 * regs.  Either way, set MSR_VSX.
1536 	 */
1537 
1538 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1539 		 "MSR=%lx\n",
1540 		 regs->nip, regs->msr);
1541 
1542 	current->thread.used_vsr = 1;
1543 
1544 	/* If FP and VMX are already loaded, we have all the state we need */
1545 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1546 		regs->msr |= MSR_VSX;
1547 		return;
1548 	}
1549 
1550 	/* This reclaims FP and/or VR regs if they're already enabled */
1551 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1552 
1553 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1554 		MSR_VSX;
1555 
1556 	/* This loads & recheckpoints FP and VRs; but we have
1557 	 * to be sure not to overwrite previously-valid state.
1558 	 */
1559 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1560 
1561 	if (orig_msr & MSR_FP)
1562 		do_load_up_transact_fpu(&current->thread);
1563 	if (orig_msr & MSR_VEC)
1564 		do_load_up_transact_altivec(&current->thread);
1565 }
1566 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1567 
1568 void performance_monitor_exception(struct pt_regs *regs)
1569 {
1570 	__this_cpu_inc(irq_stat.pmu_irqs);
1571 
1572 	perf_irq(regs);
1573 }
1574 
1575 #ifdef CONFIG_8xx
1576 void SoftwareEmulation(struct pt_regs *regs)
1577 {
1578 	CHECK_FULL_REGS(regs);
1579 
1580 	if (!user_mode(regs)) {
1581 		debugger(regs);
1582 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1583 			regs, SIGFPE);
1584 	}
1585 
1586 	if (!emulate_math(regs))
1587 		return;
1588 
1589 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1590 }
1591 #endif /* CONFIG_8xx */
1592 
1593 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1594 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1595 {
1596 	int changed = 0;
1597 	/*
1598 	 * Determine the cause of the debug event, clear the
1599 	 * event flags and send a trap to the handler. Torez
1600 	 */
1601 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1602 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1603 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1604 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1605 #endif
1606 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1607 			     5);
1608 		changed |= 0x01;
1609 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1610 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1611 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1612 			     6);
1613 		changed |= 0x01;
1614 	}  else if (debug_status & DBSR_IAC1) {
1615 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1616 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1617 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1618 			     1);
1619 		changed |= 0x01;
1620 	}  else if (debug_status & DBSR_IAC2) {
1621 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1622 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1623 			     2);
1624 		changed |= 0x01;
1625 	}  else if (debug_status & DBSR_IAC3) {
1626 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1627 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1628 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1629 			     3);
1630 		changed |= 0x01;
1631 	}  else if (debug_status & DBSR_IAC4) {
1632 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1633 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1634 			     4);
1635 		changed |= 0x01;
1636 	}
1637 	/*
1638 	 * At the point this routine was called, the MSR(DE) was turned off.
1639 	 * Check all other debug flags and see if that bit needs to be turned
1640 	 * back on or not.
1641 	 */
1642 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1643 			       current->thread.debug.dbcr1))
1644 		regs->msr |= MSR_DE;
1645 	else
1646 		/* Make sure the IDM flag is off */
1647 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1648 
1649 	if (changed & 0x01)
1650 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1651 }
1652 
1653 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1654 {
1655 	current->thread.debug.dbsr = debug_status;
1656 
1657 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1658 	 * on server, it stops on the target of the branch. In order to simulate
1659 	 * the server behaviour, we thus restart right away with a single step
1660 	 * instead of stopping here when hitting a BT
1661 	 */
1662 	if (debug_status & DBSR_BT) {
1663 		regs->msr &= ~MSR_DE;
1664 
1665 		/* Disable BT */
1666 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1667 		/* Clear the BT event */
1668 		mtspr(SPRN_DBSR, DBSR_BT);
1669 
1670 		/* Do the single step trick only when coming from userspace */
1671 		if (user_mode(regs)) {
1672 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1673 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1674 			regs->msr |= MSR_DE;
1675 			return;
1676 		}
1677 
1678 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1679 			       5, SIGTRAP) == NOTIFY_STOP) {
1680 			return;
1681 		}
1682 		if (debugger_sstep(regs))
1683 			return;
1684 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1685 		regs->msr &= ~MSR_DE;
1686 
1687 		/* Disable instruction completion */
1688 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1689 		/* Clear the instruction completion event */
1690 		mtspr(SPRN_DBSR, DBSR_IC);
1691 
1692 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1693 			       5, SIGTRAP) == NOTIFY_STOP) {
1694 			return;
1695 		}
1696 
1697 		if (debugger_sstep(regs))
1698 			return;
1699 
1700 		if (user_mode(regs)) {
1701 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1702 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1703 					       current->thread.debug.dbcr1))
1704 				regs->msr |= MSR_DE;
1705 			else
1706 				/* Make sure the IDM bit is off */
1707 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1708 		}
1709 
1710 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1711 	} else
1712 		handle_debug(regs, debug_status);
1713 }
1714 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1715 
1716 #if !defined(CONFIG_TAU_INT)
1717 void TAUException(struct pt_regs *regs)
1718 {
1719 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1720 	       regs->nip, regs->msr, regs->trap, print_tainted());
1721 }
1722 #endif /* CONFIG_INT_TAU */
1723 
1724 #ifdef CONFIG_ALTIVEC
1725 void altivec_assist_exception(struct pt_regs *regs)
1726 {
1727 	int err;
1728 
1729 	if (!user_mode(regs)) {
1730 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1731 		       " at %lx\n", regs->nip);
1732 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1733 	}
1734 
1735 	flush_altivec_to_thread(current);
1736 
1737 	PPC_WARN_EMULATED(altivec, regs);
1738 	err = emulate_altivec(regs);
1739 	if (err == 0) {
1740 		regs->nip += 4;		/* skip emulated instruction */
1741 		emulate_single_step(regs);
1742 		return;
1743 	}
1744 
1745 	if (err == -EFAULT) {
1746 		/* got an error reading the instruction */
1747 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1748 	} else {
1749 		/* didn't recognize the instruction */
1750 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1751 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1752 				   "in %s at %lx\n", current->comm, regs->nip);
1753 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1754 	}
1755 }
1756 #endif /* CONFIG_ALTIVEC */
1757 
1758 #ifdef CONFIG_FSL_BOOKE
1759 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1760 			   unsigned long error_code)
1761 {
1762 	/* We treat cache locking instructions from the user
1763 	 * as priv ops, in the future we could try to do
1764 	 * something smarter
1765 	 */
1766 	if (error_code & (ESR_DLK|ESR_ILK))
1767 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1768 	return;
1769 }
1770 #endif /* CONFIG_FSL_BOOKE */
1771 
1772 #ifdef CONFIG_SPE
1773 void SPEFloatingPointException(struct pt_regs *regs)
1774 {
1775 	extern int do_spe_mathemu(struct pt_regs *regs);
1776 	unsigned long spefscr;
1777 	int fpexc_mode;
1778 	int code = 0;
1779 	int err;
1780 
1781 	flush_spe_to_thread(current);
1782 
1783 	spefscr = current->thread.spefscr;
1784 	fpexc_mode = current->thread.fpexc_mode;
1785 
1786 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1787 		code = FPE_FLTOVF;
1788 	}
1789 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1790 		code = FPE_FLTUND;
1791 	}
1792 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1793 		code = FPE_FLTDIV;
1794 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1795 		code = FPE_FLTINV;
1796 	}
1797 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1798 		code = FPE_FLTRES;
1799 
1800 	err = do_spe_mathemu(regs);
1801 	if (err == 0) {
1802 		regs->nip += 4;		/* skip emulated instruction */
1803 		emulate_single_step(regs);
1804 		return;
1805 	}
1806 
1807 	if (err == -EFAULT) {
1808 		/* got an error reading the instruction */
1809 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1810 	} else if (err == -EINVAL) {
1811 		/* didn't recognize the instruction */
1812 		printk(KERN_ERR "unrecognized spe instruction "
1813 		       "in %s at %lx\n", current->comm, regs->nip);
1814 	} else {
1815 		_exception(SIGFPE, regs, code, regs->nip);
1816 	}
1817 
1818 	return;
1819 }
1820 
1821 void SPEFloatingPointRoundException(struct pt_regs *regs)
1822 {
1823 	extern int speround_handler(struct pt_regs *regs);
1824 	int err;
1825 
1826 	preempt_disable();
1827 	if (regs->msr & MSR_SPE)
1828 		giveup_spe(current);
1829 	preempt_enable();
1830 
1831 	regs->nip -= 4;
1832 	err = speround_handler(regs);
1833 	if (err == 0) {
1834 		regs->nip += 4;		/* skip emulated instruction */
1835 		emulate_single_step(regs);
1836 		return;
1837 	}
1838 
1839 	if (err == -EFAULT) {
1840 		/* got an error reading the instruction */
1841 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1842 	} else if (err == -EINVAL) {
1843 		/* didn't recognize the instruction */
1844 		printk(KERN_ERR "unrecognized spe instruction "
1845 		       "in %s at %lx\n", current->comm, regs->nip);
1846 	} else {
1847 		_exception(SIGFPE, regs, 0, regs->nip);
1848 		return;
1849 	}
1850 }
1851 #endif
1852 
1853 /*
1854  * We enter here if we get an unrecoverable exception, that is, one
1855  * that happened at a point where the RI (recoverable interrupt) bit
1856  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1857  * we therefore lost state by taking this exception.
1858  */
1859 void unrecoverable_exception(struct pt_regs *regs)
1860 {
1861 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1862 	       regs->trap, regs->nip);
1863 	die("Unrecoverable exception", regs, SIGABRT);
1864 }
1865 
1866 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1867 /*
1868  * Default handler for a Watchdog exception,
1869  * spins until a reboot occurs
1870  */
1871 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1872 {
1873 	/* Generic WatchdogHandler, implement your own */
1874 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1875 	return;
1876 }
1877 
1878 void WatchdogException(struct pt_regs *regs)
1879 {
1880 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1881 	WatchdogHandler(regs);
1882 }
1883 #endif
1884 
1885 /*
1886  * We enter here if we discover during exception entry that we are
1887  * running in supervisor mode with a userspace value in the stack pointer.
1888  */
1889 void kernel_bad_stack(struct pt_regs *regs)
1890 {
1891 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1892 	       regs->gpr[1], regs->nip);
1893 	die("Bad kernel stack pointer", regs, SIGABRT);
1894 }
1895 
1896 void __init trap_init(void)
1897 {
1898 }
1899 
1900 
1901 #ifdef CONFIG_PPC_EMULATED_STATS
1902 
1903 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1904 
1905 struct ppc_emulated ppc_emulated = {
1906 #ifdef CONFIG_ALTIVEC
1907 	WARN_EMULATED_SETUP(altivec),
1908 #endif
1909 	WARN_EMULATED_SETUP(dcba),
1910 	WARN_EMULATED_SETUP(dcbz),
1911 	WARN_EMULATED_SETUP(fp_pair),
1912 	WARN_EMULATED_SETUP(isel),
1913 	WARN_EMULATED_SETUP(mcrxr),
1914 	WARN_EMULATED_SETUP(mfpvr),
1915 	WARN_EMULATED_SETUP(multiple),
1916 	WARN_EMULATED_SETUP(popcntb),
1917 	WARN_EMULATED_SETUP(spe),
1918 	WARN_EMULATED_SETUP(string),
1919 	WARN_EMULATED_SETUP(sync),
1920 	WARN_EMULATED_SETUP(unaligned),
1921 #ifdef CONFIG_MATH_EMULATION
1922 	WARN_EMULATED_SETUP(math),
1923 #endif
1924 #ifdef CONFIG_VSX
1925 	WARN_EMULATED_SETUP(vsx),
1926 #endif
1927 #ifdef CONFIG_PPC64
1928 	WARN_EMULATED_SETUP(mfdscr),
1929 	WARN_EMULATED_SETUP(mtdscr),
1930 	WARN_EMULATED_SETUP(lq_stq),
1931 #endif
1932 };
1933 
1934 u32 ppc_warn_emulated;
1935 
1936 void ppc_warn_emulated_print(const char *type)
1937 {
1938 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1939 			    type);
1940 }
1941 
1942 static int __init ppc_warn_emulated_init(void)
1943 {
1944 	struct dentry *dir, *d;
1945 	unsigned int i;
1946 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1947 
1948 	if (!powerpc_debugfs_root)
1949 		return -ENODEV;
1950 
1951 	dir = debugfs_create_dir("emulated_instructions",
1952 				 powerpc_debugfs_root);
1953 	if (!dir)
1954 		return -ENOMEM;
1955 
1956 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1957 			       &ppc_warn_emulated);
1958 	if (!d)
1959 		goto fail;
1960 
1961 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1962 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1963 				       (u32 *)&entries[i].val.counter);
1964 		if (!d)
1965 			goto fail;
1966 	}
1967 
1968 	return 0;
1969 
1970 fail:
1971 	debugfs_remove_recursive(dir);
1972 	return -ENOMEM;
1973 }
1974 
1975 device_initcall(ppc_warn_emulated_init);
1976 
1977 #endif /* CONFIG_PPC_EMULATED_STATS */
1978