xref: /linux/arch/powerpc/kernel/traps.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64 
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82 
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89 
90 /*
91  * Trap & Exception support
92  */
93 
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 	mutex_lock(&pmac_backlight_mutex);
98 	if (pmac_backlight) {
99 		struct backlight_properties *props;
100 
101 		props = &pmac_backlight->props;
102 		props->brightness = props->max_brightness;
103 		props->power = FB_BLANK_UNBLANK;
104 		backlight_update_status(pmac_backlight);
105 	}
106 	mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111 
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116 
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 	int cpu;
120 	unsigned long flags;
121 
122 	if (debugger(regs))
123 		return 1;
124 
125 	oops_enter();
126 
127 	/* racy, but better than risking deadlock. */
128 	raw_local_irq_save(flags);
129 	cpu = smp_processor_id();
130 	if (!arch_spin_trylock(&die_lock)) {
131 		if (cpu == die_owner)
132 			/* nested oops. should stop eventually */;
133 		else
134 			arch_spin_lock(&die_lock);
135 	}
136 	die_nest_count++;
137 	die_owner = cpu;
138 	console_verbose();
139 	bust_spinlocks(1);
140 	if (machine_is(powermac))
141 		pmac_backlight_unblank();
142 	return flags;
143 }
144 
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 			       int signr)
147 {
148 	bust_spinlocks(0);
149 	die_owner = -1;
150 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 	die_nest_count--;
152 	oops_exit();
153 	printk("\n");
154 	if (!die_nest_count)
155 		/* Nest count reaches zero, release the lock. */
156 		arch_spin_unlock(&die_lock);
157 	raw_local_irq_restore(flags);
158 
159 	crash_fadump(regs, "die oops");
160 
161 	/*
162 	 * A system reset (0x100) is a request to dump, so we always send
163 	 * it through the crashdump code.
164 	 */
165 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 		crash_kexec(regs);
167 
168 		/*
169 		 * We aren't the primary crash CPU. We need to send it
170 		 * to a holding pattern to avoid it ending up in the panic
171 		 * code.
172 		 */
173 		crash_kexec_secondary(regs);
174 	}
175 
176 	if (!signr)
177 		return;
178 
179 	/*
180 	 * While our oops output is serialised by a spinlock, output
181 	 * from panic() called below can race and corrupt it. If we
182 	 * know we are going to panic, delay for 1 second so we have a
183 	 * chance to get clean backtraces from all CPUs that are oopsing.
184 	 */
185 	if (in_interrupt() || panic_on_oops || !current->pid ||
186 	    is_global_init(current)) {
187 		mdelay(MSEC_PER_SEC);
188 	}
189 
190 	if (in_interrupt())
191 		panic("Fatal exception in interrupt");
192 	if (panic_on_oops)
193 		panic("Fatal exception");
194 	do_exit(signr);
195 }
196 
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 	printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 	printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 	printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 	printk("NUMA ");
211 #endif
212 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 
214 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 		return 1;
216 
217 	print_modules();
218 	show_regs(regs);
219 
220 	return 0;
221 }
222 
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 	unsigned long flags = oops_begin(regs);
226 
227 	if (__die(str, regs, err))
228 		err = 0;
229 	oops_end(flags, regs, err);
230 }
231 
232 void user_single_step_siginfo(struct task_struct *tsk,
233 				struct pt_regs *regs, siginfo_t *info)
234 {
235 	memset(info, 0, sizeof(*info));
236 	info->si_signo = SIGTRAP;
237 	info->si_code = TRAP_TRACE;
238 	info->si_addr = (void __user *)regs->nip;
239 }
240 
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 	siginfo_t info;
244 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 			"at %08lx nip %08lx lr %08lx code %x\n";
246 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %016lx nip %016lx lr %016lx code %x\n";
248 
249 	if (!user_mode(regs)) {
250 		die("Exception in kernel mode", regs, signr);
251 		return;
252 	}
253 
254 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 				   current->comm, current->pid, signr,
257 				   addr, regs->nip, regs->link, code);
258 	}
259 
260 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 		local_irq_enable();
262 
263 	current->thread.trap_nr = code;
264 	memset(&info, 0, sizeof(info));
265 	info.si_signo = signr;
266 	info.si_code = code;
267 	info.si_addr = (void __user *) addr;
268 	force_sig_info(signr, &info, current);
269 }
270 
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 	/* See if any machine dependent calls */
275 	if (ppc_md.system_reset_exception) {
276 		if (ppc_md.system_reset_exception(regs))
277 			return;
278 	}
279 
280 	die("System Reset", regs, SIGABRT);
281 
282 	/* Must die if the interrupt is not recoverable */
283 	if (!(regs->msr & MSR_RI))
284 		panic("Unrecoverable System Reset");
285 
286 	/* What should we do here? We could issue a shutdown or hard reset. */
287 }
288 
289 /*
290  * This function is called in real mode. Strictly no printk's please.
291  *
292  * regs->nip and regs->msr contains srr0 and ssr1.
293  */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 	long handled = 0;
297 
298 	__this_cpu_inc(irq_stat.mce_exceptions);
299 
300 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
301 		handled = cur_cpu_spec->machine_check_early(regs);
302 	return handled;
303 }
304 
305 long hmi_exception_realmode(struct pt_regs *regs)
306 {
307 	__this_cpu_inc(irq_stat.hmi_exceptions);
308 
309 	if (ppc_md.hmi_exception_early)
310 		ppc_md.hmi_exception_early(regs);
311 
312 	return 0;
313 }
314 
315 #endif
316 
317 /*
318  * I/O accesses can cause machine checks on powermacs.
319  * Check if the NIP corresponds to the address of a sync
320  * instruction for which there is an entry in the exception
321  * table.
322  * Note that the 601 only takes a machine check on TEA
323  * (transfer error ack) signal assertion, and does not
324  * set any of the top 16 bits of SRR1.
325  *  -- paulus.
326  */
327 static inline int check_io_access(struct pt_regs *regs)
328 {
329 #ifdef CONFIG_PPC32
330 	unsigned long msr = regs->msr;
331 	const struct exception_table_entry *entry;
332 	unsigned int *nip = (unsigned int *)regs->nip;
333 
334 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
335 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
336 		/*
337 		 * Check that it's a sync instruction, or somewhere
338 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
339 		 * As the address is in the exception table
340 		 * we should be able to read the instr there.
341 		 * For the debug message, we look at the preceding
342 		 * load or store.
343 		 */
344 		if (*nip == 0x60000000)		/* nop */
345 			nip -= 2;
346 		else if (*nip == 0x4c00012c)	/* isync */
347 			--nip;
348 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
349 			/* sync or twi */
350 			unsigned int rb;
351 
352 			--nip;
353 			rb = (*nip >> 11) & 0x1f;
354 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
355 			       (*nip & 0x100)? "OUT to": "IN from",
356 			       regs->gpr[rb] - _IO_BASE, nip);
357 			regs->msr |= MSR_RI;
358 			regs->nip = entry->fixup;
359 			return 1;
360 		}
361 	}
362 #endif /* CONFIG_PPC32 */
363 	return 0;
364 }
365 
366 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
367 /* On 4xx, the reason for the machine check or program exception
368    is in the ESR. */
369 #define get_reason(regs)	((regs)->dsisr)
370 #ifndef CONFIG_FSL_BOOKE
371 #define get_mc_reason(regs)	((regs)->dsisr)
372 #else
373 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
374 #endif
375 #define REASON_FP		ESR_FP
376 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
377 #define REASON_PRIVILEGED	ESR_PPR
378 #define REASON_TRAP		ESR_PTR
379 
380 /* single-step stuff */
381 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
382 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
383 
384 #else
385 /* On non-4xx, the reason for the machine check or program
386    exception is in the MSR. */
387 #define get_reason(regs)	((regs)->msr)
388 #define get_mc_reason(regs)	((regs)->msr)
389 #define REASON_TM		0x200000
390 #define REASON_FP		0x100000
391 #define REASON_ILLEGAL		0x80000
392 #define REASON_PRIVILEGED	0x40000
393 #define REASON_TRAP		0x20000
394 
395 #define single_stepping(regs)	((regs)->msr & MSR_SE)
396 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
397 #endif
398 
399 #if defined(CONFIG_4xx)
400 int machine_check_4xx(struct pt_regs *regs)
401 {
402 	unsigned long reason = get_mc_reason(regs);
403 
404 	if (reason & ESR_IMCP) {
405 		printk("Instruction");
406 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
407 	} else
408 		printk("Data");
409 	printk(" machine check in kernel mode.\n");
410 
411 	return 0;
412 }
413 
414 int machine_check_440A(struct pt_regs *regs)
415 {
416 	unsigned long reason = get_mc_reason(regs);
417 
418 	printk("Machine check in kernel mode.\n");
419 	if (reason & ESR_IMCP){
420 		printk("Instruction Synchronous Machine Check exception\n");
421 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
422 	}
423 	else {
424 		u32 mcsr = mfspr(SPRN_MCSR);
425 		if (mcsr & MCSR_IB)
426 			printk("Instruction Read PLB Error\n");
427 		if (mcsr & MCSR_DRB)
428 			printk("Data Read PLB Error\n");
429 		if (mcsr & MCSR_DWB)
430 			printk("Data Write PLB Error\n");
431 		if (mcsr & MCSR_TLBP)
432 			printk("TLB Parity Error\n");
433 		if (mcsr & MCSR_ICP){
434 			flush_instruction_cache();
435 			printk("I-Cache Parity Error\n");
436 		}
437 		if (mcsr & MCSR_DCSP)
438 			printk("D-Cache Search Parity Error\n");
439 		if (mcsr & MCSR_DCFP)
440 			printk("D-Cache Flush Parity Error\n");
441 		if (mcsr & MCSR_IMPE)
442 			printk("Machine Check exception is imprecise\n");
443 
444 		/* Clear MCSR */
445 		mtspr(SPRN_MCSR, mcsr);
446 	}
447 	return 0;
448 }
449 
450 int machine_check_47x(struct pt_regs *regs)
451 {
452 	unsigned long reason = get_mc_reason(regs);
453 	u32 mcsr;
454 
455 	printk(KERN_ERR "Machine check in kernel mode.\n");
456 	if (reason & ESR_IMCP) {
457 		printk(KERN_ERR
458 		       "Instruction Synchronous Machine Check exception\n");
459 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
460 		return 0;
461 	}
462 	mcsr = mfspr(SPRN_MCSR);
463 	if (mcsr & MCSR_IB)
464 		printk(KERN_ERR "Instruction Read PLB Error\n");
465 	if (mcsr & MCSR_DRB)
466 		printk(KERN_ERR "Data Read PLB Error\n");
467 	if (mcsr & MCSR_DWB)
468 		printk(KERN_ERR "Data Write PLB Error\n");
469 	if (mcsr & MCSR_TLBP)
470 		printk(KERN_ERR "TLB Parity Error\n");
471 	if (mcsr & MCSR_ICP) {
472 		flush_instruction_cache();
473 		printk(KERN_ERR "I-Cache Parity Error\n");
474 	}
475 	if (mcsr & MCSR_DCSP)
476 		printk(KERN_ERR "D-Cache Search Parity Error\n");
477 	if (mcsr & PPC47x_MCSR_GPR)
478 		printk(KERN_ERR "GPR Parity Error\n");
479 	if (mcsr & PPC47x_MCSR_FPR)
480 		printk(KERN_ERR "FPR Parity Error\n");
481 	if (mcsr & PPC47x_MCSR_IPR)
482 		printk(KERN_ERR "Machine Check exception is imprecise\n");
483 
484 	/* Clear MCSR */
485 	mtspr(SPRN_MCSR, mcsr);
486 
487 	return 0;
488 }
489 #elif defined(CONFIG_E500)
490 int machine_check_e500mc(struct pt_regs *regs)
491 {
492 	unsigned long mcsr = mfspr(SPRN_MCSR);
493 	unsigned long reason = mcsr;
494 	int recoverable = 1;
495 
496 	if (reason & MCSR_LD) {
497 		recoverable = fsl_rio_mcheck_exception(regs);
498 		if (recoverable == 1)
499 			goto silent_out;
500 	}
501 
502 	printk("Machine check in kernel mode.\n");
503 	printk("Caused by (from MCSR=%lx): ", reason);
504 
505 	if (reason & MCSR_MCP)
506 		printk("Machine Check Signal\n");
507 
508 	if (reason & MCSR_ICPERR) {
509 		printk("Instruction Cache Parity Error\n");
510 
511 		/*
512 		 * This is recoverable by invalidating the i-cache.
513 		 */
514 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
515 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
516 			;
517 
518 		/*
519 		 * This will generally be accompanied by an instruction
520 		 * fetch error report -- only treat MCSR_IF as fatal
521 		 * if it wasn't due to an L1 parity error.
522 		 */
523 		reason &= ~MCSR_IF;
524 	}
525 
526 	if (reason & MCSR_DCPERR_MC) {
527 		printk("Data Cache Parity Error\n");
528 
529 		/*
530 		 * In write shadow mode we auto-recover from the error, but it
531 		 * may still get logged and cause a machine check.  We should
532 		 * only treat the non-write shadow case as non-recoverable.
533 		 */
534 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
535 			recoverable = 0;
536 	}
537 
538 	if (reason & MCSR_L2MMU_MHIT) {
539 		printk("Hit on multiple TLB entries\n");
540 		recoverable = 0;
541 	}
542 
543 	if (reason & MCSR_NMI)
544 		printk("Non-maskable interrupt\n");
545 
546 	if (reason & MCSR_IF) {
547 		printk("Instruction Fetch Error Report\n");
548 		recoverable = 0;
549 	}
550 
551 	if (reason & MCSR_LD) {
552 		printk("Load Error Report\n");
553 		recoverable = 0;
554 	}
555 
556 	if (reason & MCSR_ST) {
557 		printk("Store Error Report\n");
558 		recoverable = 0;
559 	}
560 
561 	if (reason & MCSR_LDG) {
562 		printk("Guarded Load Error Report\n");
563 		recoverable = 0;
564 	}
565 
566 	if (reason & MCSR_TLBSYNC)
567 		printk("Simultaneous tlbsync operations\n");
568 
569 	if (reason & MCSR_BSL2_ERR) {
570 		printk("Level 2 Cache Error\n");
571 		recoverable = 0;
572 	}
573 
574 	if (reason & MCSR_MAV) {
575 		u64 addr;
576 
577 		addr = mfspr(SPRN_MCAR);
578 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
579 
580 		printk("Machine Check %s Address: %#llx\n",
581 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
582 	}
583 
584 silent_out:
585 	mtspr(SPRN_MCSR, mcsr);
586 	return mfspr(SPRN_MCSR) == 0 && recoverable;
587 }
588 
589 int machine_check_e500(struct pt_regs *regs)
590 {
591 	unsigned long reason = get_mc_reason(regs);
592 
593 	if (reason & MCSR_BUS_RBERR) {
594 		if (fsl_rio_mcheck_exception(regs))
595 			return 1;
596 		if (fsl_pci_mcheck_exception(regs))
597 			return 1;
598 	}
599 
600 	printk("Machine check in kernel mode.\n");
601 	printk("Caused by (from MCSR=%lx): ", reason);
602 
603 	if (reason & MCSR_MCP)
604 		printk("Machine Check Signal\n");
605 	if (reason & MCSR_ICPERR)
606 		printk("Instruction Cache Parity Error\n");
607 	if (reason & MCSR_DCP_PERR)
608 		printk("Data Cache Push Parity Error\n");
609 	if (reason & MCSR_DCPERR)
610 		printk("Data Cache Parity Error\n");
611 	if (reason & MCSR_BUS_IAERR)
612 		printk("Bus - Instruction Address Error\n");
613 	if (reason & MCSR_BUS_RAERR)
614 		printk("Bus - Read Address Error\n");
615 	if (reason & MCSR_BUS_WAERR)
616 		printk("Bus - Write Address Error\n");
617 	if (reason & MCSR_BUS_IBERR)
618 		printk("Bus - Instruction Data Error\n");
619 	if (reason & MCSR_BUS_RBERR)
620 		printk("Bus - Read Data Bus Error\n");
621 	if (reason & MCSR_BUS_WBERR)
622 		printk("Bus - Write Data Bus Error\n");
623 	if (reason & MCSR_BUS_IPERR)
624 		printk("Bus - Instruction Parity Error\n");
625 	if (reason & MCSR_BUS_RPERR)
626 		printk("Bus - Read Parity Error\n");
627 
628 	return 0;
629 }
630 
631 int machine_check_generic(struct pt_regs *regs)
632 {
633 	return 0;
634 }
635 #elif defined(CONFIG_E200)
636 int machine_check_e200(struct pt_regs *regs)
637 {
638 	unsigned long reason = get_mc_reason(regs);
639 
640 	printk("Machine check in kernel mode.\n");
641 	printk("Caused by (from MCSR=%lx): ", reason);
642 
643 	if (reason & MCSR_MCP)
644 		printk("Machine Check Signal\n");
645 	if (reason & MCSR_CP_PERR)
646 		printk("Cache Push Parity Error\n");
647 	if (reason & MCSR_CPERR)
648 		printk("Cache Parity Error\n");
649 	if (reason & MCSR_EXCP_ERR)
650 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
651 	if (reason & MCSR_BUS_IRERR)
652 		printk("Bus - Read Bus Error on instruction fetch\n");
653 	if (reason & MCSR_BUS_DRERR)
654 		printk("Bus - Read Bus Error on data load\n");
655 	if (reason & MCSR_BUS_WRERR)
656 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
657 
658 	return 0;
659 }
660 #else
661 int machine_check_generic(struct pt_regs *regs)
662 {
663 	unsigned long reason = get_mc_reason(regs);
664 
665 	printk("Machine check in kernel mode.\n");
666 	printk("Caused by (from SRR1=%lx): ", reason);
667 	switch (reason & 0x601F0000) {
668 	case 0x80000:
669 		printk("Machine check signal\n");
670 		break;
671 	case 0:		/* for 601 */
672 	case 0x40000:
673 	case 0x140000:	/* 7450 MSS error and TEA */
674 		printk("Transfer error ack signal\n");
675 		break;
676 	case 0x20000:
677 		printk("Data parity error signal\n");
678 		break;
679 	case 0x10000:
680 		printk("Address parity error signal\n");
681 		break;
682 	case 0x20000000:
683 		printk("L1 Data Cache error\n");
684 		break;
685 	case 0x40000000:
686 		printk("L1 Instruction Cache error\n");
687 		break;
688 	case 0x00100000:
689 		printk("L2 data cache parity error\n");
690 		break;
691 	default:
692 		printk("Unknown values in msr\n");
693 	}
694 	return 0;
695 }
696 #endif /* everything else */
697 
698 void machine_check_exception(struct pt_regs *regs)
699 {
700 	enum ctx_state prev_state = exception_enter();
701 	int recover = 0;
702 
703 	__this_cpu_inc(irq_stat.mce_exceptions);
704 
705 	/* See if any machine dependent calls. In theory, we would want
706 	 * to call the CPU first, and call the ppc_md. one if the CPU
707 	 * one returns a positive number. However there is existing code
708 	 * that assumes the board gets a first chance, so let's keep it
709 	 * that way for now and fix things later. --BenH.
710 	 */
711 	if (ppc_md.machine_check_exception)
712 		recover = ppc_md.machine_check_exception(regs);
713 	else if (cur_cpu_spec->machine_check)
714 		recover = cur_cpu_spec->machine_check(regs);
715 
716 	if (recover > 0)
717 		goto bail;
718 
719 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
720 	/* the qspan pci read routines can cause machine checks -- Cort
721 	 *
722 	 * yuck !!! that totally needs to go away ! There are better ways
723 	 * to deal with that than having a wart in the mcheck handler.
724 	 * -- BenH
725 	 */
726 	bad_page_fault(regs, regs->dar, SIGBUS);
727 	goto bail;
728 #endif
729 
730 	if (debugger_fault_handler(regs))
731 		goto bail;
732 
733 	if (check_io_access(regs))
734 		goto bail;
735 
736 	die("Machine check", regs, SIGBUS);
737 
738 	/* Must die if the interrupt is not recoverable */
739 	if (!(regs->msr & MSR_RI))
740 		panic("Unrecoverable Machine check");
741 
742 bail:
743 	exception_exit(prev_state);
744 }
745 
746 void SMIException(struct pt_regs *regs)
747 {
748 	die("System Management Interrupt", regs, SIGABRT);
749 }
750 
751 void handle_hmi_exception(struct pt_regs *regs)
752 {
753 	struct pt_regs *old_regs;
754 
755 	old_regs = set_irq_regs(regs);
756 	irq_enter();
757 
758 	if (ppc_md.handle_hmi_exception)
759 		ppc_md.handle_hmi_exception(regs);
760 
761 	irq_exit();
762 	set_irq_regs(old_regs);
763 }
764 
765 void unknown_exception(struct pt_regs *regs)
766 {
767 	enum ctx_state prev_state = exception_enter();
768 
769 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
770 	       regs->nip, regs->msr, regs->trap);
771 
772 	_exception(SIGTRAP, regs, 0, 0);
773 
774 	exception_exit(prev_state);
775 }
776 
777 void instruction_breakpoint_exception(struct pt_regs *regs)
778 {
779 	enum ctx_state prev_state = exception_enter();
780 
781 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
782 					5, SIGTRAP) == NOTIFY_STOP)
783 		goto bail;
784 	if (debugger_iabr_match(regs))
785 		goto bail;
786 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
787 
788 bail:
789 	exception_exit(prev_state);
790 }
791 
792 void RunModeException(struct pt_regs *regs)
793 {
794 	_exception(SIGTRAP, regs, 0, 0);
795 }
796 
797 void __kprobes single_step_exception(struct pt_regs *regs)
798 {
799 	enum ctx_state prev_state = exception_enter();
800 
801 	clear_single_step(regs);
802 
803 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
804 					5, SIGTRAP) == NOTIFY_STOP)
805 		goto bail;
806 	if (debugger_sstep(regs))
807 		goto bail;
808 
809 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
810 
811 bail:
812 	exception_exit(prev_state);
813 }
814 
815 /*
816  * After we have successfully emulated an instruction, we have to
817  * check if the instruction was being single-stepped, and if so,
818  * pretend we got a single-step exception.  This was pointed out
819  * by Kumar Gala.  -- paulus
820  */
821 static void emulate_single_step(struct pt_regs *regs)
822 {
823 	if (single_stepping(regs))
824 		single_step_exception(regs);
825 }
826 
827 static inline int __parse_fpscr(unsigned long fpscr)
828 {
829 	int ret = 0;
830 
831 	/* Invalid operation */
832 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
833 		ret = FPE_FLTINV;
834 
835 	/* Overflow */
836 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
837 		ret = FPE_FLTOVF;
838 
839 	/* Underflow */
840 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
841 		ret = FPE_FLTUND;
842 
843 	/* Divide by zero */
844 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
845 		ret = FPE_FLTDIV;
846 
847 	/* Inexact result */
848 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
849 		ret = FPE_FLTRES;
850 
851 	return ret;
852 }
853 
854 static void parse_fpe(struct pt_regs *regs)
855 {
856 	int code = 0;
857 
858 	flush_fp_to_thread(current);
859 
860 	code = __parse_fpscr(current->thread.fp_state.fpscr);
861 
862 	_exception(SIGFPE, regs, code, regs->nip);
863 }
864 
865 /*
866  * Illegal instruction emulation support.  Originally written to
867  * provide the PVR to user applications using the mfspr rd, PVR.
868  * Return non-zero if we can't emulate, or -EFAULT if the associated
869  * memory access caused an access fault.  Return zero on success.
870  *
871  * There are a couple of ways to do this, either "decode" the instruction
872  * or directly match lots of bits.  In this case, matching lots of
873  * bits is faster and easier.
874  *
875  */
876 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
877 {
878 	u8 rT = (instword >> 21) & 0x1f;
879 	u8 rA = (instword >> 16) & 0x1f;
880 	u8 NB_RB = (instword >> 11) & 0x1f;
881 	u32 num_bytes;
882 	unsigned long EA;
883 	int pos = 0;
884 
885 	/* Early out if we are an invalid form of lswx */
886 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
887 		if ((rT == rA) || (rT == NB_RB))
888 			return -EINVAL;
889 
890 	EA = (rA == 0) ? 0 : regs->gpr[rA];
891 
892 	switch (instword & PPC_INST_STRING_MASK) {
893 		case PPC_INST_LSWX:
894 		case PPC_INST_STSWX:
895 			EA += NB_RB;
896 			num_bytes = regs->xer & 0x7f;
897 			break;
898 		case PPC_INST_LSWI:
899 		case PPC_INST_STSWI:
900 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
901 			break;
902 		default:
903 			return -EINVAL;
904 	}
905 
906 	while (num_bytes != 0)
907 	{
908 		u8 val;
909 		u32 shift = 8 * (3 - (pos & 0x3));
910 
911 		/* if process is 32-bit, clear upper 32 bits of EA */
912 		if ((regs->msr & MSR_64BIT) == 0)
913 			EA &= 0xFFFFFFFF;
914 
915 		switch ((instword & PPC_INST_STRING_MASK)) {
916 			case PPC_INST_LSWX:
917 			case PPC_INST_LSWI:
918 				if (get_user(val, (u8 __user *)EA))
919 					return -EFAULT;
920 				/* first time updating this reg,
921 				 * zero it out */
922 				if (pos == 0)
923 					regs->gpr[rT] = 0;
924 				regs->gpr[rT] |= val << shift;
925 				break;
926 			case PPC_INST_STSWI:
927 			case PPC_INST_STSWX:
928 				val = regs->gpr[rT] >> shift;
929 				if (put_user(val, (u8 __user *)EA))
930 					return -EFAULT;
931 				break;
932 		}
933 		/* move EA to next address */
934 		EA += 1;
935 		num_bytes--;
936 
937 		/* manage our position within the register */
938 		if (++pos == 4) {
939 			pos = 0;
940 			if (++rT == 32)
941 				rT = 0;
942 		}
943 	}
944 
945 	return 0;
946 }
947 
948 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
949 {
950 	u32 ra,rs;
951 	unsigned long tmp;
952 
953 	ra = (instword >> 16) & 0x1f;
954 	rs = (instword >> 21) & 0x1f;
955 
956 	tmp = regs->gpr[rs];
957 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
958 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
959 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
960 	regs->gpr[ra] = tmp;
961 
962 	return 0;
963 }
964 
965 static int emulate_isel(struct pt_regs *regs, u32 instword)
966 {
967 	u8 rT = (instword >> 21) & 0x1f;
968 	u8 rA = (instword >> 16) & 0x1f;
969 	u8 rB = (instword >> 11) & 0x1f;
970 	u8 BC = (instword >> 6) & 0x1f;
971 	u8 bit;
972 	unsigned long tmp;
973 
974 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
975 	bit = (regs->ccr >> (31 - BC)) & 0x1;
976 
977 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
978 
979 	return 0;
980 }
981 
982 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
983 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
984 {
985         /* If we're emulating a load/store in an active transaction, we cannot
986          * emulate it as the kernel operates in transaction suspended context.
987          * We need to abort the transaction.  This creates a persistent TM
988          * abort so tell the user what caused it with a new code.
989 	 */
990 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
991 		tm_enable();
992 		tm_abort(cause);
993 		return true;
994 	}
995 	return false;
996 }
997 #else
998 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
999 {
1000 	return false;
1001 }
1002 #endif
1003 
1004 static int emulate_instruction(struct pt_regs *regs)
1005 {
1006 	u32 instword;
1007 	u32 rd;
1008 
1009 	if (!user_mode(regs))
1010 		return -EINVAL;
1011 	CHECK_FULL_REGS(regs);
1012 
1013 	if (get_user(instword, (u32 __user *)(regs->nip)))
1014 		return -EFAULT;
1015 
1016 	/* Emulate the mfspr rD, PVR. */
1017 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1018 		PPC_WARN_EMULATED(mfpvr, regs);
1019 		rd = (instword >> 21) & 0x1f;
1020 		regs->gpr[rd] = mfspr(SPRN_PVR);
1021 		return 0;
1022 	}
1023 
1024 	/* Emulating the dcba insn is just a no-op.  */
1025 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1026 		PPC_WARN_EMULATED(dcba, regs);
1027 		return 0;
1028 	}
1029 
1030 	/* Emulate the mcrxr insn.  */
1031 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1032 		int shift = (instword >> 21) & 0x1c;
1033 		unsigned long msk = 0xf0000000UL >> shift;
1034 
1035 		PPC_WARN_EMULATED(mcrxr, regs);
1036 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1037 		regs->xer &= ~0xf0000000UL;
1038 		return 0;
1039 	}
1040 
1041 	/* Emulate load/store string insn. */
1042 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1043 		if (tm_abort_check(regs,
1044 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1045 			return -EINVAL;
1046 		PPC_WARN_EMULATED(string, regs);
1047 		return emulate_string_inst(regs, instword);
1048 	}
1049 
1050 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1051 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1052 		PPC_WARN_EMULATED(popcntb, regs);
1053 		return emulate_popcntb_inst(regs, instword);
1054 	}
1055 
1056 	/* Emulate isel (Integer Select) instruction */
1057 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1058 		PPC_WARN_EMULATED(isel, regs);
1059 		return emulate_isel(regs, instword);
1060 	}
1061 
1062 	/* Emulate sync instruction variants */
1063 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1064 		PPC_WARN_EMULATED(sync, regs);
1065 		asm volatile("sync");
1066 		return 0;
1067 	}
1068 
1069 #ifdef CONFIG_PPC64
1070 	/* Emulate the mfspr rD, DSCR. */
1071 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1072 		PPC_INST_MFSPR_DSCR_USER) ||
1073 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1074 		PPC_INST_MFSPR_DSCR)) &&
1075 			cpu_has_feature(CPU_FTR_DSCR)) {
1076 		PPC_WARN_EMULATED(mfdscr, regs);
1077 		rd = (instword >> 21) & 0x1f;
1078 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1079 		return 0;
1080 	}
1081 	/* Emulate the mtspr DSCR, rD. */
1082 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1083 		PPC_INST_MTSPR_DSCR_USER) ||
1084 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1085 		PPC_INST_MTSPR_DSCR)) &&
1086 			cpu_has_feature(CPU_FTR_DSCR)) {
1087 		PPC_WARN_EMULATED(mtdscr, regs);
1088 		rd = (instword >> 21) & 0x1f;
1089 		current->thread.dscr = regs->gpr[rd];
1090 		current->thread.dscr_inherit = 1;
1091 		mtspr(SPRN_DSCR, current->thread.dscr);
1092 		return 0;
1093 	}
1094 #endif
1095 
1096 	return -EINVAL;
1097 }
1098 
1099 int is_valid_bugaddr(unsigned long addr)
1100 {
1101 	return is_kernel_addr(addr);
1102 }
1103 
1104 #ifdef CONFIG_MATH_EMULATION
1105 static int emulate_math(struct pt_regs *regs)
1106 {
1107 	int ret;
1108 	extern int do_mathemu(struct pt_regs *regs);
1109 
1110 	ret = do_mathemu(regs);
1111 	if (ret >= 0)
1112 		PPC_WARN_EMULATED(math, regs);
1113 
1114 	switch (ret) {
1115 	case 0:
1116 		emulate_single_step(regs);
1117 		return 0;
1118 	case 1: {
1119 			int code = 0;
1120 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1121 			_exception(SIGFPE, regs, code, regs->nip);
1122 			return 0;
1123 		}
1124 	case -EFAULT:
1125 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1126 		return 0;
1127 	}
1128 
1129 	return -1;
1130 }
1131 #else
1132 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1133 #endif
1134 
1135 void __kprobes program_check_exception(struct pt_regs *regs)
1136 {
1137 	enum ctx_state prev_state = exception_enter();
1138 	unsigned int reason = get_reason(regs);
1139 
1140 	/* We can now get here via a FP Unavailable exception if the core
1141 	 * has no FPU, in that case the reason flags will be 0 */
1142 
1143 	if (reason & REASON_FP) {
1144 		/* IEEE FP exception */
1145 		parse_fpe(regs);
1146 		goto bail;
1147 	}
1148 	if (reason & REASON_TRAP) {
1149 		/* Debugger is first in line to stop recursive faults in
1150 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1151 		if (debugger_bpt(regs))
1152 			goto bail;
1153 
1154 		/* trap exception */
1155 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1156 				== NOTIFY_STOP)
1157 			goto bail;
1158 
1159 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1160 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1161 			regs->nip += 4;
1162 			goto bail;
1163 		}
1164 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1165 		goto bail;
1166 	}
1167 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1168 	if (reason & REASON_TM) {
1169 		/* This is a TM "Bad Thing Exception" program check.
1170 		 * This occurs when:
1171 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1172 		 *    transition in TM states.
1173 		 * -  A trechkpt is attempted when transactional.
1174 		 * -  A treclaim is attempted when non transactional.
1175 		 * -  A tend is illegally attempted.
1176 		 * -  writing a TM SPR when transactional.
1177 		 */
1178 		if (!user_mode(regs) &&
1179 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1180 			regs->nip += 4;
1181 			goto bail;
1182 		}
1183 		/* If usermode caused this, it's done something illegal and
1184 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1185 		 * operand to distinguish from the instruction just being bad
1186 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1187 		 * illegal /placement/ of a valid instruction.
1188 		 */
1189 		if (user_mode(regs)) {
1190 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1191 			goto bail;
1192 		} else {
1193 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1194 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1195 			die("Unrecoverable exception", regs, SIGABRT);
1196 		}
1197 	}
1198 #endif
1199 
1200 	/*
1201 	 * If we took the program check in the kernel skip down to sending a
1202 	 * SIGILL. The subsequent cases all relate to emulating instructions
1203 	 * which we should only do for userspace. We also do not want to enable
1204 	 * interrupts for kernel faults because that might lead to further
1205 	 * faults, and loose the context of the original exception.
1206 	 */
1207 	if (!user_mode(regs))
1208 		goto sigill;
1209 
1210 	/* We restore the interrupt state now */
1211 	if (!arch_irq_disabled_regs(regs))
1212 		local_irq_enable();
1213 
1214 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1215 	 * but there seems to be a hardware bug on the 405GP (RevD)
1216 	 * that means ESR is sometimes set incorrectly - either to
1217 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1218 	 * hardware people - not sure if it can happen on any illegal
1219 	 * instruction or only on FP instructions, whether there is a
1220 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1221 	 */
1222 	if (!emulate_math(regs))
1223 		goto bail;
1224 
1225 	/* Try to emulate it if we should. */
1226 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1227 		switch (emulate_instruction(regs)) {
1228 		case 0:
1229 			regs->nip += 4;
1230 			emulate_single_step(regs);
1231 			goto bail;
1232 		case -EFAULT:
1233 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1234 			goto bail;
1235 		}
1236 	}
1237 
1238 sigill:
1239 	if (reason & REASON_PRIVILEGED)
1240 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1241 	else
1242 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1243 
1244 bail:
1245 	exception_exit(prev_state);
1246 }
1247 
1248 /*
1249  * This occurs when running in hypervisor mode on POWER6 or later
1250  * and an illegal instruction is encountered.
1251  */
1252 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1253 {
1254 	regs->msr |= REASON_ILLEGAL;
1255 	program_check_exception(regs);
1256 }
1257 
1258 void alignment_exception(struct pt_regs *regs)
1259 {
1260 	enum ctx_state prev_state = exception_enter();
1261 	int sig, code, fixed = 0;
1262 
1263 	/* We restore the interrupt state now */
1264 	if (!arch_irq_disabled_regs(regs))
1265 		local_irq_enable();
1266 
1267 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1268 		goto bail;
1269 
1270 	/* we don't implement logging of alignment exceptions */
1271 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1272 		fixed = fix_alignment(regs);
1273 
1274 	if (fixed == 1) {
1275 		regs->nip += 4;	/* skip over emulated instruction */
1276 		emulate_single_step(regs);
1277 		goto bail;
1278 	}
1279 
1280 	/* Operand address was bad */
1281 	if (fixed == -EFAULT) {
1282 		sig = SIGSEGV;
1283 		code = SEGV_ACCERR;
1284 	} else {
1285 		sig = SIGBUS;
1286 		code = BUS_ADRALN;
1287 	}
1288 	if (user_mode(regs))
1289 		_exception(sig, regs, code, regs->dar);
1290 	else
1291 		bad_page_fault(regs, regs->dar, sig);
1292 
1293 bail:
1294 	exception_exit(prev_state);
1295 }
1296 
1297 void StackOverflow(struct pt_regs *regs)
1298 {
1299 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1300 	       current, regs->gpr[1]);
1301 	debugger(regs);
1302 	show_regs(regs);
1303 	panic("kernel stack overflow");
1304 }
1305 
1306 void nonrecoverable_exception(struct pt_regs *regs)
1307 {
1308 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1309 	       regs->nip, regs->msr);
1310 	debugger(regs);
1311 	die("nonrecoverable exception", regs, SIGKILL);
1312 }
1313 
1314 void trace_syscall(struct pt_regs *regs)
1315 {
1316 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1317 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1318 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1319 }
1320 
1321 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1322 {
1323 	enum ctx_state prev_state = exception_enter();
1324 
1325 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1326 			  "%lx at %lx\n", regs->trap, regs->nip);
1327 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1328 
1329 	exception_exit(prev_state);
1330 }
1331 
1332 void altivec_unavailable_exception(struct pt_regs *regs)
1333 {
1334 	enum ctx_state prev_state = exception_enter();
1335 
1336 	if (user_mode(regs)) {
1337 		/* A user program has executed an altivec instruction,
1338 		   but this kernel doesn't support altivec. */
1339 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1340 		goto bail;
1341 	}
1342 
1343 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1344 			"%lx at %lx\n", regs->trap, regs->nip);
1345 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1346 
1347 bail:
1348 	exception_exit(prev_state);
1349 }
1350 
1351 void vsx_unavailable_exception(struct pt_regs *regs)
1352 {
1353 	if (user_mode(regs)) {
1354 		/* A user program has executed an vsx instruction,
1355 		   but this kernel doesn't support vsx. */
1356 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1357 		return;
1358 	}
1359 
1360 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1361 			"%lx at %lx\n", regs->trap, regs->nip);
1362 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1363 }
1364 
1365 #ifdef CONFIG_PPC64
1366 void facility_unavailable_exception(struct pt_regs *regs)
1367 {
1368 	static char *facility_strings[] = {
1369 		[FSCR_FP_LG] = "FPU",
1370 		[FSCR_VECVSX_LG] = "VMX/VSX",
1371 		[FSCR_DSCR_LG] = "DSCR",
1372 		[FSCR_PM_LG] = "PMU SPRs",
1373 		[FSCR_BHRB_LG] = "BHRB",
1374 		[FSCR_TM_LG] = "TM",
1375 		[FSCR_EBB_LG] = "EBB",
1376 		[FSCR_TAR_LG] = "TAR",
1377 	};
1378 	char *facility = "unknown";
1379 	u64 value;
1380 	u32 instword, rd;
1381 	u8 status;
1382 	bool hv;
1383 
1384 	hv = (regs->trap == 0xf80);
1385 	if (hv)
1386 		value = mfspr(SPRN_HFSCR);
1387 	else
1388 		value = mfspr(SPRN_FSCR);
1389 
1390 	status = value >> 56;
1391 	if (status == FSCR_DSCR_LG) {
1392 		/*
1393 		 * User is accessing the DSCR register using the problem
1394 		 * state only SPR number (0x03) either through a mfspr or
1395 		 * a mtspr instruction. If it is a write attempt through
1396 		 * a mtspr, then we set the inherit bit. This also allows
1397 		 * the user to write or read the register directly in the
1398 		 * future by setting via the FSCR DSCR bit. But in case it
1399 		 * is a read DSCR attempt through a mfspr instruction, we
1400 		 * just emulate the instruction instead. This code path will
1401 		 * always emulate all the mfspr instructions till the user
1402 		 * has attempted atleast one mtspr instruction. This way it
1403 		 * preserves the same behaviour when the user is accessing
1404 		 * the DSCR through privilege level only SPR number (0x11)
1405 		 * which is emulated through illegal instruction exception.
1406 		 * We always leave HFSCR DSCR set.
1407 		 */
1408 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1409 			pr_err("Failed to fetch the user instruction\n");
1410 			return;
1411 		}
1412 
1413 		/* Write into DSCR (mtspr 0x03, RS) */
1414 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1415 				== PPC_INST_MTSPR_DSCR_USER) {
1416 			rd = (instword >> 21) & 0x1f;
1417 			current->thread.dscr = regs->gpr[rd];
1418 			current->thread.dscr_inherit = 1;
1419 			mtspr(SPRN_FSCR, value | FSCR_DSCR);
1420 		}
1421 
1422 		/* Read from DSCR (mfspr RT, 0x03) */
1423 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1424 				== PPC_INST_MFSPR_DSCR_USER) {
1425 			if (emulate_instruction(regs)) {
1426 				pr_err("DSCR based mfspr emulation failed\n");
1427 				return;
1428 			}
1429 			regs->nip += 4;
1430 			emulate_single_step(regs);
1431 		}
1432 		return;
1433 	}
1434 
1435 	if ((status < ARRAY_SIZE(facility_strings)) &&
1436 	    facility_strings[status])
1437 		facility = facility_strings[status];
1438 
1439 	/* We restore the interrupt state now */
1440 	if (!arch_irq_disabled_regs(regs))
1441 		local_irq_enable();
1442 
1443 	pr_err_ratelimited(
1444 		"%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1445 		hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1446 
1447 	if (user_mode(regs)) {
1448 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1449 		return;
1450 	}
1451 
1452 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1453 }
1454 #endif
1455 
1456 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1457 
1458 void fp_unavailable_tm(struct pt_regs *regs)
1459 {
1460 	/* Note:  This does not handle any kind of FP laziness. */
1461 
1462 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1463 		 regs->nip, regs->msr);
1464 
1465         /* We can only have got here if the task started using FP after
1466          * beginning the transaction.  So, the transactional regs are just a
1467          * copy of the checkpointed ones.  But, we still need to recheckpoint
1468          * as we're enabling FP for the process; it will return, abort the
1469          * transaction, and probably retry but now with FP enabled.  So the
1470          * checkpointed FP registers need to be loaded.
1471 	 */
1472 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1473 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1474 
1475 	/* Enable FP for the task: */
1476 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1477 
1478 	/* This loads and recheckpoints the FP registers from
1479 	 * thread.fpr[].  They will remain in registers after the
1480 	 * checkpoint so we don't need to reload them after.
1481 	 * If VMX is in use, the VRs now hold checkpointed values,
1482 	 * so we don't want to load the VRs from the thread_struct.
1483 	 */
1484 	tm_recheckpoint(&current->thread, MSR_FP);
1485 
1486 	/* If VMX is in use, get the transactional values back */
1487 	if (regs->msr & MSR_VEC) {
1488 		do_load_up_transact_altivec(&current->thread);
1489 		/* At this point all the VSX state is loaded, so enable it */
1490 		regs->msr |= MSR_VSX;
1491 	}
1492 }
1493 
1494 void altivec_unavailable_tm(struct pt_regs *regs)
1495 {
1496 	/* See the comments in fp_unavailable_tm().  This function operates
1497 	 * the same way.
1498 	 */
1499 
1500 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1501 		 "MSR=%lx\n",
1502 		 regs->nip, regs->msr);
1503 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1504 	regs->msr |= MSR_VEC;
1505 	tm_recheckpoint(&current->thread, MSR_VEC);
1506 	current->thread.used_vr = 1;
1507 
1508 	if (regs->msr & MSR_FP) {
1509 		do_load_up_transact_fpu(&current->thread);
1510 		regs->msr |= MSR_VSX;
1511 	}
1512 }
1513 
1514 void vsx_unavailable_tm(struct pt_regs *regs)
1515 {
1516 	unsigned long orig_msr = regs->msr;
1517 
1518 	/* See the comments in fp_unavailable_tm().  This works similarly,
1519 	 * though we're loading both FP and VEC registers in here.
1520 	 *
1521 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1522 	 * regs.  Either way, set MSR_VSX.
1523 	 */
1524 
1525 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1526 		 "MSR=%lx\n",
1527 		 regs->nip, regs->msr);
1528 
1529 	current->thread.used_vsr = 1;
1530 
1531 	/* If FP and VMX are already loaded, we have all the state we need */
1532 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1533 		regs->msr |= MSR_VSX;
1534 		return;
1535 	}
1536 
1537 	/* This reclaims FP and/or VR regs if they're already enabled */
1538 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1539 
1540 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1541 		MSR_VSX;
1542 
1543 	/* This loads & recheckpoints FP and VRs; but we have
1544 	 * to be sure not to overwrite previously-valid state.
1545 	 */
1546 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1547 
1548 	if (orig_msr & MSR_FP)
1549 		do_load_up_transact_fpu(&current->thread);
1550 	if (orig_msr & MSR_VEC)
1551 		do_load_up_transact_altivec(&current->thread);
1552 }
1553 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1554 
1555 void performance_monitor_exception(struct pt_regs *regs)
1556 {
1557 	__this_cpu_inc(irq_stat.pmu_irqs);
1558 
1559 	perf_irq(regs);
1560 }
1561 
1562 #ifdef CONFIG_8xx
1563 void SoftwareEmulation(struct pt_regs *regs)
1564 {
1565 	CHECK_FULL_REGS(regs);
1566 
1567 	if (!user_mode(regs)) {
1568 		debugger(regs);
1569 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1570 			regs, SIGFPE);
1571 	}
1572 
1573 	if (!emulate_math(regs))
1574 		return;
1575 
1576 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1577 }
1578 #endif /* CONFIG_8xx */
1579 
1580 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1581 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1582 {
1583 	int changed = 0;
1584 	/*
1585 	 * Determine the cause of the debug event, clear the
1586 	 * event flags and send a trap to the handler. Torez
1587 	 */
1588 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1589 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1590 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1591 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1592 #endif
1593 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1594 			     5);
1595 		changed |= 0x01;
1596 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1597 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1598 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1599 			     6);
1600 		changed |= 0x01;
1601 	}  else if (debug_status & DBSR_IAC1) {
1602 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1603 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1604 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1605 			     1);
1606 		changed |= 0x01;
1607 	}  else if (debug_status & DBSR_IAC2) {
1608 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1609 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1610 			     2);
1611 		changed |= 0x01;
1612 	}  else if (debug_status & DBSR_IAC3) {
1613 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1614 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1615 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1616 			     3);
1617 		changed |= 0x01;
1618 	}  else if (debug_status & DBSR_IAC4) {
1619 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1620 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1621 			     4);
1622 		changed |= 0x01;
1623 	}
1624 	/*
1625 	 * At the point this routine was called, the MSR(DE) was turned off.
1626 	 * Check all other debug flags and see if that bit needs to be turned
1627 	 * back on or not.
1628 	 */
1629 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1630 			       current->thread.debug.dbcr1))
1631 		regs->msr |= MSR_DE;
1632 	else
1633 		/* Make sure the IDM flag is off */
1634 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1635 
1636 	if (changed & 0x01)
1637 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1638 }
1639 
1640 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1641 {
1642 	current->thread.debug.dbsr = debug_status;
1643 
1644 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1645 	 * on server, it stops on the target of the branch. In order to simulate
1646 	 * the server behaviour, we thus restart right away with a single step
1647 	 * instead of stopping here when hitting a BT
1648 	 */
1649 	if (debug_status & DBSR_BT) {
1650 		regs->msr &= ~MSR_DE;
1651 
1652 		/* Disable BT */
1653 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1654 		/* Clear the BT event */
1655 		mtspr(SPRN_DBSR, DBSR_BT);
1656 
1657 		/* Do the single step trick only when coming from userspace */
1658 		if (user_mode(regs)) {
1659 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1660 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1661 			regs->msr |= MSR_DE;
1662 			return;
1663 		}
1664 
1665 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1666 			       5, SIGTRAP) == NOTIFY_STOP) {
1667 			return;
1668 		}
1669 		if (debugger_sstep(regs))
1670 			return;
1671 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1672 		regs->msr &= ~MSR_DE;
1673 
1674 		/* Disable instruction completion */
1675 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1676 		/* Clear the instruction completion event */
1677 		mtspr(SPRN_DBSR, DBSR_IC);
1678 
1679 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1680 			       5, SIGTRAP) == NOTIFY_STOP) {
1681 			return;
1682 		}
1683 
1684 		if (debugger_sstep(regs))
1685 			return;
1686 
1687 		if (user_mode(regs)) {
1688 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1689 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1690 					       current->thread.debug.dbcr1))
1691 				regs->msr |= MSR_DE;
1692 			else
1693 				/* Make sure the IDM bit is off */
1694 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1695 		}
1696 
1697 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1698 	} else
1699 		handle_debug(regs, debug_status);
1700 }
1701 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1702 
1703 #if !defined(CONFIG_TAU_INT)
1704 void TAUException(struct pt_regs *regs)
1705 {
1706 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1707 	       regs->nip, regs->msr, regs->trap, print_tainted());
1708 }
1709 #endif /* CONFIG_INT_TAU */
1710 
1711 #ifdef CONFIG_ALTIVEC
1712 void altivec_assist_exception(struct pt_regs *regs)
1713 {
1714 	int err;
1715 
1716 	if (!user_mode(regs)) {
1717 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1718 		       " at %lx\n", regs->nip);
1719 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1720 	}
1721 
1722 	flush_altivec_to_thread(current);
1723 
1724 	PPC_WARN_EMULATED(altivec, regs);
1725 	err = emulate_altivec(regs);
1726 	if (err == 0) {
1727 		regs->nip += 4;		/* skip emulated instruction */
1728 		emulate_single_step(regs);
1729 		return;
1730 	}
1731 
1732 	if (err == -EFAULT) {
1733 		/* got an error reading the instruction */
1734 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1735 	} else {
1736 		/* didn't recognize the instruction */
1737 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1738 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1739 				   "in %s at %lx\n", current->comm, regs->nip);
1740 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1741 	}
1742 }
1743 #endif /* CONFIG_ALTIVEC */
1744 
1745 #ifdef CONFIG_FSL_BOOKE
1746 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1747 			   unsigned long error_code)
1748 {
1749 	/* We treat cache locking instructions from the user
1750 	 * as priv ops, in the future we could try to do
1751 	 * something smarter
1752 	 */
1753 	if (error_code & (ESR_DLK|ESR_ILK))
1754 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1755 	return;
1756 }
1757 #endif /* CONFIG_FSL_BOOKE */
1758 
1759 #ifdef CONFIG_SPE
1760 void SPEFloatingPointException(struct pt_regs *regs)
1761 {
1762 	extern int do_spe_mathemu(struct pt_regs *regs);
1763 	unsigned long spefscr;
1764 	int fpexc_mode;
1765 	int code = 0;
1766 	int err;
1767 
1768 	flush_spe_to_thread(current);
1769 
1770 	spefscr = current->thread.spefscr;
1771 	fpexc_mode = current->thread.fpexc_mode;
1772 
1773 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1774 		code = FPE_FLTOVF;
1775 	}
1776 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1777 		code = FPE_FLTUND;
1778 	}
1779 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1780 		code = FPE_FLTDIV;
1781 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1782 		code = FPE_FLTINV;
1783 	}
1784 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1785 		code = FPE_FLTRES;
1786 
1787 	err = do_spe_mathemu(regs);
1788 	if (err == 0) {
1789 		regs->nip += 4;		/* skip emulated instruction */
1790 		emulate_single_step(regs);
1791 		return;
1792 	}
1793 
1794 	if (err == -EFAULT) {
1795 		/* got an error reading the instruction */
1796 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1797 	} else if (err == -EINVAL) {
1798 		/* didn't recognize the instruction */
1799 		printk(KERN_ERR "unrecognized spe instruction "
1800 		       "in %s at %lx\n", current->comm, regs->nip);
1801 	} else {
1802 		_exception(SIGFPE, regs, code, regs->nip);
1803 	}
1804 
1805 	return;
1806 }
1807 
1808 void SPEFloatingPointRoundException(struct pt_regs *regs)
1809 {
1810 	extern int speround_handler(struct pt_regs *regs);
1811 	int err;
1812 
1813 	preempt_disable();
1814 	if (regs->msr & MSR_SPE)
1815 		giveup_spe(current);
1816 	preempt_enable();
1817 
1818 	regs->nip -= 4;
1819 	err = speround_handler(regs);
1820 	if (err == 0) {
1821 		regs->nip += 4;		/* skip emulated instruction */
1822 		emulate_single_step(regs);
1823 		return;
1824 	}
1825 
1826 	if (err == -EFAULT) {
1827 		/* got an error reading the instruction */
1828 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1829 	} else if (err == -EINVAL) {
1830 		/* didn't recognize the instruction */
1831 		printk(KERN_ERR "unrecognized spe instruction "
1832 		       "in %s at %lx\n", current->comm, regs->nip);
1833 	} else {
1834 		_exception(SIGFPE, regs, 0, regs->nip);
1835 		return;
1836 	}
1837 }
1838 #endif
1839 
1840 /*
1841  * We enter here if we get an unrecoverable exception, that is, one
1842  * that happened at a point where the RI (recoverable interrupt) bit
1843  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1844  * we therefore lost state by taking this exception.
1845  */
1846 void unrecoverable_exception(struct pt_regs *regs)
1847 {
1848 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1849 	       regs->trap, regs->nip);
1850 	die("Unrecoverable exception", regs, SIGABRT);
1851 }
1852 
1853 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1854 /*
1855  * Default handler for a Watchdog exception,
1856  * spins until a reboot occurs
1857  */
1858 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1859 {
1860 	/* Generic WatchdogHandler, implement your own */
1861 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1862 	return;
1863 }
1864 
1865 void WatchdogException(struct pt_regs *regs)
1866 {
1867 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1868 	WatchdogHandler(regs);
1869 }
1870 #endif
1871 
1872 /*
1873  * We enter here if we discover during exception entry that we are
1874  * running in supervisor mode with a userspace value in the stack pointer.
1875  */
1876 void kernel_bad_stack(struct pt_regs *regs)
1877 {
1878 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1879 	       regs->gpr[1], regs->nip);
1880 	die("Bad kernel stack pointer", regs, SIGABRT);
1881 }
1882 
1883 void __init trap_init(void)
1884 {
1885 }
1886 
1887 
1888 #ifdef CONFIG_PPC_EMULATED_STATS
1889 
1890 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1891 
1892 struct ppc_emulated ppc_emulated = {
1893 #ifdef CONFIG_ALTIVEC
1894 	WARN_EMULATED_SETUP(altivec),
1895 #endif
1896 	WARN_EMULATED_SETUP(dcba),
1897 	WARN_EMULATED_SETUP(dcbz),
1898 	WARN_EMULATED_SETUP(fp_pair),
1899 	WARN_EMULATED_SETUP(isel),
1900 	WARN_EMULATED_SETUP(mcrxr),
1901 	WARN_EMULATED_SETUP(mfpvr),
1902 	WARN_EMULATED_SETUP(multiple),
1903 	WARN_EMULATED_SETUP(popcntb),
1904 	WARN_EMULATED_SETUP(spe),
1905 	WARN_EMULATED_SETUP(string),
1906 	WARN_EMULATED_SETUP(sync),
1907 	WARN_EMULATED_SETUP(unaligned),
1908 #ifdef CONFIG_MATH_EMULATION
1909 	WARN_EMULATED_SETUP(math),
1910 #endif
1911 #ifdef CONFIG_VSX
1912 	WARN_EMULATED_SETUP(vsx),
1913 #endif
1914 #ifdef CONFIG_PPC64
1915 	WARN_EMULATED_SETUP(mfdscr),
1916 	WARN_EMULATED_SETUP(mtdscr),
1917 	WARN_EMULATED_SETUP(lq_stq),
1918 #endif
1919 };
1920 
1921 u32 ppc_warn_emulated;
1922 
1923 void ppc_warn_emulated_print(const char *type)
1924 {
1925 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1926 			    type);
1927 }
1928 
1929 static int __init ppc_warn_emulated_init(void)
1930 {
1931 	struct dentry *dir, *d;
1932 	unsigned int i;
1933 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1934 
1935 	if (!powerpc_debugfs_root)
1936 		return -ENODEV;
1937 
1938 	dir = debugfs_create_dir("emulated_instructions",
1939 				 powerpc_debugfs_root);
1940 	if (!dir)
1941 		return -ENOMEM;
1942 
1943 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1944 			       &ppc_warn_emulated);
1945 	if (!d)
1946 		goto fail;
1947 
1948 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1949 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1950 				       (u32 *)&entries[i].val.counter);
1951 		if (!d)
1952 			goto fail;
1953 	}
1954 
1955 	return 0;
1956 
1957 fail:
1958 	debugfs_remove_recursive(dir);
1959 	return -ENOMEM;
1960 }
1961 
1962 device_initcall(ppc_warn_emulated_init);
1963 
1964 #endif /* CONFIG_PPC_EMULATED_STATS */
1965