1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/config.h> 36 #include <linux/errno.h> 37 #include <linux/module.h> 38 #include <linux/sched.h> 39 #include <linux/kernel.h> 40 #include <linux/param.h> 41 #include <linux/string.h> 42 #include <linux/mm.h> 43 #include <linux/interrupt.h> 44 #include <linux/timex.h> 45 #include <linux/kernel_stat.h> 46 #include <linux/time.h> 47 #include <linux/init.h> 48 #include <linux/profile.h> 49 #include <linux/cpu.h> 50 #include <linux/security.h> 51 #include <linux/percpu.h> 52 #include <linux/rtc.h> 53 #include <linux/jiffies.h> 54 #include <linux/posix-timers.h> 55 56 #include <asm/io.h> 57 #include <asm/processor.h> 58 #include <asm/nvram.h> 59 #include <asm/cache.h> 60 #include <asm/machdep.h> 61 #include <asm/uaccess.h> 62 #include <asm/time.h> 63 #include <asm/prom.h> 64 #include <asm/irq.h> 65 #include <asm/div64.h> 66 #include <asm/smp.h> 67 #include <asm/vdso_datapage.h> 68 #ifdef CONFIG_PPC64 69 #include <asm/firmware.h> 70 #endif 71 #ifdef CONFIG_PPC_ISERIES 72 #include <asm/iseries/it_lp_queue.h> 73 #include <asm/iseries/hv_call_xm.h> 74 #endif 75 #include <asm/smp.h> 76 77 /* keep track of when we need to update the rtc */ 78 time_t last_rtc_update; 79 extern int piranha_simulator; 80 #ifdef CONFIG_PPC_ISERIES 81 unsigned long iSeries_recal_titan = 0; 82 unsigned long iSeries_recal_tb = 0; 83 static unsigned long first_settimeofday = 1; 84 #endif 85 86 /* The decrementer counts down by 128 every 128ns on a 601. */ 87 #define DECREMENTER_COUNT_601 (1000000000 / HZ) 88 89 #define XSEC_PER_SEC (1024*1024) 90 91 #ifdef CONFIG_PPC64 92 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 93 #else 94 /* compute ((xsec << 12) * max) >> 32 */ 95 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 96 #endif 97 98 unsigned long tb_ticks_per_jiffy; 99 unsigned long tb_ticks_per_usec = 100; /* sane default */ 100 EXPORT_SYMBOL(tb_ticks_per_usec); 101 unsigned long tb_ticks_per_sec; 102 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 103 u64 tb_to_xs; 104 unsigned tb_to_us; 105 106 #define TICKLEN_SCALE (SHIFT_SCALE - 10) 107 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 108 u64 ticklen_to_xs; /* 0.64 fraction */ 109 110 /* If last_tick_len corresponds to about 1/HZ seconds, then 111 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 112 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 113 114 DEFINE_SPINLOCK(rtc_lock); 115 EXPORT_SYMBOL_GPL(rtc_lock); 116 117 u64 tb_to_ns_scale; 118 unsigned tb_to_ns_shift; 119 120 struct gettimeofday_struct do_gtod; 121 122 extern unsigned long wall_jiffies; 123 124 extern struct timezone sys_tz; 125 static long timezone_offset; 126 127 unsigned long ppc_proc_freq; 128 unsigned long ppc_tb_freq; 129 130 u64 tb_last_jiffy __cacheline_aligned_in_smp; 131 unsigned long tb_last_stamp; 132 133 /* 134 * Note that on ppc32 this only stores the bottom 32 bits of 135 * the timebase value, but that's enough to tell when a jiffy 136 * has passed. 137 */ 138 DEFINE_PER_CPU(unsigned long, last_jiffy); 139 140 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 141 /* 142 * Factors for converting from cputime_t (timebase ticks) to 143 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 144 * These are all stored as 0.64 fixed-point binary fractions. 145 */ 146 u64 __cputime_jiffies_factor; 147 EXPORT_SYMBOL(__cputime_jiffies_factor); 148 u64 __cputime_msec_factor; 149 EXPORT_SYMBOL(__cputime_msec_factor); 150 u64 __cputime_sec_factor; 151 EXPORT_SYMBOL(__cputime_sec_factor); 152 u64 __cputime_clockt_factor; 153 EXPORT_SYMBOL(__cputime_clockt_factor); 154 155 static void calc_cputime_factors(void) 156 { 157 struct div_result res; 158 159 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 160 __cputime_jiffies_factor = res.result_low; 161 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 162 __cputime_msec_factor = res.result_low; 163 div128_by_32(1, 0, tb_ticks_per_sec, &res); 164 __cputime_sec_factor = res.result_low; 165 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 166 __cputime_clockt_factor = res.result_low; 167 } 168 169 /* 170 * Read the PURR on systems that have it, otherwise the timebase. 171 */ 172 static u64 read_purr(void) 173 { 174 if (cpu_has_feature(CPU_FTR_PURR)) 175 return mfspr(SPRN_PURR); 176 return mftb(); 177 } 178 179 /* 180 * Account time for a transition between system, hard irq 181 * or soft irq state. 182 */ 183 void account_system_vtime(struct task_struct *tsk) 184 { 185 u64 now, delta; 186 unsigned long flags; 187 188 local_irq_save(flags); 189 now = read_purr(); 190 delta = now - get_paca()->startpurr; 191 get_paca()->startpurr = now; 192 if (!in_interrupt()) { 193 delta += get_paca()->system_time; 194 get_paca()->system_time = 0; 195 } 196 account_system_time(tsk, 0, delta); 197 local_irq_restore(flags); 198 } 199 200 /* 201 * Transfer the user and system times accumulated in the paca 202 * by the exception entry and exit code to the generic process 203 * user and system time records. 204 * Must be called with interrupts disabled. 205 */ 206 void account_process_vtime(struct task_struct *tsk) 207 { 208 cputime_t utime; 209 210 utime = get_paca()->user_time; 211 get_paca()->user_time = 0; 212 account_user_time(tsk, utime); 213 } 214 215 static void account_process_time(struct pt_regs *regs) 216 { 217 int cpu = smp_processor_id(); 218 219 account_process_vtime(current); 220 run_local_timers(); 221 if (rcu_pending(cpu)) 222 rcu_check_callbacks(cpu, user_mode(regs)); 223 scheduler_tick(); 224 run_posix_cpu_timers(current); 225 } 226 227 #ifdef CONFIG_PPC_SPLPAR 228 /* 229 * Stuff for accounting stolen time. 230 */ 231 struct cpu_purr_data { 232 int initialized; /* thread is running */ 233 u64 tb0; /* timebase at origin time */ 234 u64 purr0; /* PURR at origin time */ 235 u64 tb; /* last TB value read */ 236 u64 purr; /* last PURR value read */ 237 u64 stolen; /* stolen time so far */ 238 spinlock_t lock; 239 }; 240 241 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 242 243 static void snapshot_tb_and_purr(void *data) 244 { 245 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 246 247 p->tb0 = mftb(); 248 p->purr0 = mfspr(SPRN_PURR); 249 p->tb = p->tb0; 250 p->purr = 0; 251 wmb(); 252 p->initialized = 1; 253 } 254 255 /* 256 * Called during boot when all cpus have come up. 257 */ 258 void snapshot_timebases(void) 259 { 260 int cpu; 261 262 if (!cpu_has_feature(CPU_FTR_PURR)) 263 return; 264 for_each_possible_cpu(cpu) 265 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock); 266 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1); 267 } 268 269 void calculate_steal_time(void) 270 { 271 u64 tb, purr, t0; 272 s64 stolen; 273 struct cpu_purr_data *p0, *pme, *phim; 274 int cpu; 275 276 if (!cpu_has_feature(CPU_FTR_PURR)) 277 return; 278 cpu = smp_processor_id(); 279 pme = &per_cpu(cpu_purr_data, cpu); 280 if (!pme->initialized) 281 return; /* this can happen in early boot */ 282 p0 = &per_cpu(cpu_purr_data, cpu & ~1); 283 phim = &per_cpu(cpu_purr_data, cpu ^ 1); 284 spin_lock(&p0->lock); 285 tb = mftb(); 286 purr = mfspr(SPRN_PURR) - pme->purr0; 287 if (!phim->initialized || !cpu_online(cpu ^ 1)) { 288 stolen = (tb - pme->tb) - (purr - pme->purr); 289 } else { 290 t0 = pme->tb0; 291 if (phim->tb0 < t0) 292 t0 = phim->tb0; 293 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen; 294 } 295 if (stolen > 0) { 296 account_steal_time(current, stolen); 297 p0->stolen += stolen; 298 } 299 pme->tb = tb; 300 pme->purr = purr; 301 spin_unlock(&p0->lock); 302 } 303 304 /* 305 * Must be called before the cpu is added to the online map when 306 * a cpu is being brought up at runtime. 307 */ 308 static void snapshot_purr(void) 309 { 310 int cpu; 311 u64 purr; 312 struct cpu_purr_data *p0, *pme, *phim; 313 unsigned long flags; 314 315 if (!cpu_has_feature(CPU_FTR_PURR)) 316 return; 317 cpu = smp_processor_id(); 318 pme = &per_cpu(cpu_purr_data, cpu); 319 p0 = &per_cpu(cpu_purr_data, cpu & ~1); 320 phim = &per_cpu(cpu_purr_data, cpu ^ 1); 321 spin_lock_irqsave(&p0->lock, flags); 322 pme->tb = pme->tb0 = mftb(); 323 purr = mfspr(SPRN_PURR); 324 if (!phim->initialized) { 325 pme->purr = 0; 326 pme->purr0 = purr; 327 } else { 328 /* set p->purr and p->purr0 for no change in p0->stolen */ 329 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen; 330 pme->purr0 = purr - pme->purr; 331 } 332 pme->initialized = 1; 333 spin_unlock_irqrestore(&p0->lock, flags); 334 } 335 336 #endif /* CONFIG_PPC_SPLPAR */ 337 338 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 339 #define calc_cputime_factors() 340 #define account_process_time(regs) update_process_times(user_mode(regs)) 341 #define calculate_steal_time() do { } while (0) 342 #endif 343 344 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 345 #define snapshot_purr() do { } while (0) 346 #endif 347 348 /* 349 * Called when a cpu comes up after the system has finished booting, 350 * i.e. as a result of a hotplug cpu action. 351 */ 352 void snapshot_timebase(void) 353 { 354 __get_cpu_var(last_jiffy) = get_tb(); 355 snapshot_purr(); 356 } 357 358 void __delay(unsigned long loops) 359 { 360 unsigned long start; 361 int diff; 362 363 if (__USE_RTC()) { 364 start = get_rtcl(); 365 do { 366 /* the RTCL register wraps at 1000000000 */ 367 diff = get_rtcl() - start; 368 if (diff < 0) 369 diff += 1000000000; 370 } while (diff < loops); 371 } else { 372 start = get_tbl(); 373 while (get_tbl() - start < loops) 374 HMT_low(); 375 HMT_medium(); 376 } 377 } 378 EXPORT_SYMBOL(__delay); 379 380 void udelay(unsigned long usecs) 381 { 382 __delay(tb_ticks_per_usec * usecs); 383 } 384 EXPORT_SYMBOL(udelay); 385 386 static __inline__ void timer_check_rtc(void) 387 { 388 /* 389 * update the rtc when needed, this should be performed on the 390 * right fraction of a second. Half or full second ? 391 * Full second works on mk48t59 clocks, others need testing. 392 * Note that this update is basically only used through 393 * the adjtimex system calls. Setting the HW clock in 394 * any other way is a /dev/rtc and userland business. 395 * This is still wrong by -0.5/+1.5 jiffies because of the 396 * timer interrupt resolution and possible delay, but here we 397 * hit a quantization limit which can only be solved by higher 398 * resolution timers and decoupling time management from timer 399 * interrupts. This is also wrong on the clocks 400 * which require being written at the half second boundary. 401 * We should have an rtc call that only sets the minutes and 402 * seconds like on Intel to avoid problems with non UTC clocks. 403 */ 404 if (ppc_md.set_rtc_time && ntp_synced() && 405 xtime.tv_sec - last_rtc_update >= 659 && 406 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) { 407 struct rtc_time tm; 408 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); 409 tm.tm_year -= 1900; 410 tm.tm_mon -= 1; 411 if (ppc_md.set_rtc_time(&tm) == 0) 412 last_rtc_update = xtime.tv_sec + 1; 413 else 414 /* Try again one minute later */ 415 last_rtc_update += 60; 416 } 417 } 418 419 /* 420 * This version of gettimeofday has microsecond resolution. 421 */ 422 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) 423 { 424 unsigned long sec, usec; 425 u64 tb_ticks, xsec; 426 struct gettimeofday_vars *temp_varp; 427 u64 temp_tb_to_xs, temp_stamp_xsec; 428 429 /* 430 * These calculations are faster (gets rid of divides) 431 * if done in units of 1/2^20 rather than microseconds. 432 * The conversion to microseconds at the end is done 433 * without a divide (and in fact, without a multiply) 434 */ 435 temp_varp = do_gtod.varp; 436 tb_ticks = tb_val - temp_varp->tb_orig_stamp; 437 temp_tb_to_xs = temp_varp->tb_to_xs; 438 temp_stamp_xsec = temp_varp->stamp_xsec; 439 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); 440 sec = xsec / XSEC_PER_SEC; 441 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); 442 usec = SCALE_XSEC(usec, 1000000); 443 444 tv->tv_sec = sec; 445 tv->tv_usec = usec; 446 } 447 448 void do_gettimeofday(struct timeval *tv) 449 { 450 if (__USE_RTC()) { 451 /* do this the old way */ 452 unsigned long flags, seq; 453 unsigned int sec, nsec, usec; 454 455 do { 456 seq = read_seqbegin_irqsave(&xtime_lock, flags); 457 sec = xtime.tv_sec; 458 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp); 459 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 460 usec = nsec / 1000; 461 while (usec >= 1000000) { 462 usec -= 1000000; 463 ++sec; 464 } 465 tv->tv_sec = sec; 466 tv->tv_usec = usec; 467 return; 468 } 469 __do_gettimeofday(tv, get_tb()); 470 } 471 472 EXPORT_SYMBOL(do_gettimeofday); 473 474 /* 475 * There are two copies of tb_to_xs and stamp_xsec so that no 476 * lock is needed to access and use these values in 477 * do_gettimeofday. We alternate the copies and as long as a 478 * reasonable time elapses between changes, there will never 479 * be inconsistent values. ntpd has a minimum of one minute 480 * between updates. 481 */ 482 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 483 u64 new_tb_to_xs) 484 { 485 unsigned temp_idx; 486 struct gettimeofday_vars *temp_varp; 487 488 temp_idx = (do_gtod.var_idx == 0); 489 temp_varp = &do_gtod.vars[temp_idx]; 490 491 temp_varp->tb_to_xs = new_tb_to_xs; 492 temp_varp->tb_orig_stamp = new_tb_stamp; 493 temp_varp->stamp_xsec = new_stamp_xsec; 494 smp_mb(); 495 do_gtod.varp = temp_varp; 496 do_gtod.var_idx = temp_idx; 497 498 /* 499 * tb_update_count is used to allow the userspace gettimeofday code 500 * to assure itself that it sees a consistent view of the tb_to_xs and 501 * stamp_xsec variables. It reads the tb_update_count, then reads 502 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 503 * the two values of tb_update_count match and are even then the 504 * tb_to_xs and stamp_xsec values are consistent. If not, then it 505 * loops back and reads them again until this criteria is met. 506 * We expect the caller to have done the first increment of 507 * vdso_data->tb_update_count already. 508 */ 509 vdso_data->tb_orig_stamp = new_tb_stamp; 510 vdso_data->stamp_xsec = new_stamp_xsec; 511 vdso_data->tb_to_xs = new_tb_to_xs; 512 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 513 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 514 smp_wmb(); 515 ++(vdso_data->tb_update_count); 516 } 517 518 /* 519 * When the timebase - tb_orig_stamp gets too big, we do a manipulation 520 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 521 * difference tb - tb_orig_stamp small enough to always fit inside a 522 * 32 bits number. This is a requirement of our fast 32 bits userland 523 * implementation in the vdso. If we "miss" a call to this function 524 * (interrupt latency, CPU locked in a spinlock, ...) and we end up 525 * with a too big difference, then the vdso will fallback to calling 526 * the syscall 527 */ 528 static __inline__ void timer_recalc_offset(u64 cur_tb) 529 { 530 unsigned long offset; 531 u64 new_stamp_xsec; 532 u64 tlen, t2x; 533 u64 tb, xsec_old, xsec_new; 534 struct gettimeofday_vars *varp; 535 536 if (__USE_RTC()) 537 return; 538 tlen = current_tick_length(); 539 offset = cur_tb - do_gtod.varp->tb_orig_stamp; 540 if (tlen == last_tick_len && offset < 0x80000000u) 541 return; 542 if (tlen != last_tick_len) { 543 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs); 544 last_tick_len = tlen; 545 } else 546 t2x = do_gtod.varp->tb_to_xs; 547 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 548 do_div(new_stamp_xsec, 1000000000); 549 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 550 551 ++vdso_data->tb_update_count; 552 smp_mb(); 553 554 /* 555 * Make sure time doesn't go backwards for userspace gettimeofday. 556 */ 557 tb = get_tb(); 558 varp = do_gtod.varp; 559 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs) 560 + varp->stamp_xsec; 561 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec; 562 if (xsec_new < xsec_old) 563 new_stamp_xsec += xsec_old - xsec_new; 564 565 update_gtod(cur_tb, new_stamp_xsec, t2x); 566 } 567 568 #ifdef CONFIG_SMP 569 unsigned long profile_pc(struct pt_regs *regs) 570 { 571 unsigned long pc = instruction_pointer(regs); 572 573 if (in_lock_functions(pc)) 574 return regs->link; 575 576 return pc; 577 } 578 EXPORT_SYMBOL(profile_pc); 579 #endif 580 581 #ifdef CONFIG_PPC_ISERIES 582 583 /* 584 * This function recalibrates the timebase based on the 49-bit time-of-day 585 * value in the Titan chip. The Titan is much more accurate than the value 586 * returned by the service processor for the timebase frequency. 587 */ 588 589 static void iSeries_tb_recal(void) 590 { 591 struct div_result divres; 592 unsigned long titan, tb; 593 tb = get_tb(); 594 titan = HvCallXm_loadTod(); 595 if ( iSeries_recal_titan ) { 596 unsigned long tb_ticks = tb - iSeries_recal_tb; 597 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 598 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 599 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 600 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 601 char sign = '+'; 602 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 603 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 604 605 if ( tick_diff < 0 ) { 606 tick_diff = -tick_diff; 607 sign = '-'; 608 } 609 if ( tick_diff ) { 610 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 611 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 612 new_tb_ticks_per_jiffy, sign, tick_diff ); 613 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 614 tb_ticks_per_sec = new_tb_ticks_per_sec; 615 calc_cputime_factors(); 616 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 617 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 618 tb_to_xs = divres.result_low; 619 do_gtod.varp->tb_to_xs = tb_to_xs; 620 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 621 vdso_data->tb_to_xs = tb_to_xs; 622 } 623 else { 624 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 625 " new tb_ticks_per_jiffy = %lu\n" 626 " old tb_ticks_per_jiffy = %lu\n", 627 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 628 } 629 } 630 } 631 iSeries_recal_titan = titan; 632 iSeries_recal_tb = tb; 633 } 634 #endif 635 636 /* 637 * For iSeries shared processors, we have to let the hypervisor 638 * set the hardware decrementer. We set a virtual decrementer 639 * in the lppaca and call the hypervisor if the virtual 640 * decrementer is less than the current value in the hardware 641 * decrementer. (almost always the new decrementer value will 642 * be greater than the current hardware decementer so the hypervisor 643 * call will not be needed) 644 */ 645 646 /* 647 * timer_interrupt - gets called when the decrementer overflows, 648 * with interrupts disabled. 649 */ 650 void timer_interrupt(struct pt_regs * regs) 651 { 652 int next_dec; 653 int cpu = smp_processor_id(); 654 unsigned long ticks; 655 656 #ifdef CONFIG_PPC32 657 if (atomic_read(&ppc_n_lost_interrupts) != 0) 658 do_IRQ(regs); 659 #endif 660 661 irq_enter(); 662 663 profile_tick(CPU_PROFILING, regs); 664 calculate_steal_time(); 665 666 #ifdef CONFIG_PPC_ISERIES 667 get_lppaca()->int_dword.fields.decr_int = 0; 668 #endif 669 670 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) 671 >= tb_ticks_per_jiffy) { 672 /* Update last_jiffy */ 673 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; 674 /* Handle RTCL overflow on 601 */ 675 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) 676 per_cpu(last_jiffy, cpu) -= 1000000000; 677 678 /* 679 * We cannot disable the decrementer, so in the period 680 * between this cpu's being marked offline in cpu_online_map 681 * and calling stop-self, it is taking timer interrupts. 682 * Avoid calling into the scheduler rebalancing code if this 683 * is the case. 684 */ 685 if (!cpu_is_offline(cpu)) 686 account_process_time(regs); 687 688 /* 689 * No need to check whether cpu is offline here; boot_cpuid 690 * should have been fixed up by now. 691 */ 692 if (cpu != boot_cpuid) 693 continue; 694 695 write_seqlock(&xtime_lock); 696 tb_last_jiffy += tb_ticks_per_jiffy; 697 tb_last_stamp = per_cpu(last_jiffy, cpu); 698 do_timer(regs); 699 timer_recalc_offset(tb_last_jiffy); 700 timer_check_rtc(); 701 write_sequnlock(&xtime_lock); 702 } 703 704 next_dec = tb_ticks_per_jiffy - ticks; 705 set_dec(next_dec); 706 707 #ifdef CONFIG_PPC_ISERIES 708 if (hvlpevent_is_pending()) 709 process_hvlpevents(regs); 710 #endif 711 712 #ifdef CONFIG_PPC64 713 /* collect purr register values often, for accurate calculations */ 714 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 715 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 716 cu->current_tb = mfspr(SPRN_PURR); 717 } 718 #endif 719 720 irq_exit(); 721 } 722 723 void wakeup_decrementer(void) 724 { 725 unsigned long ticks; 726 727 /* 728 * The timebase gets saved on sleep and restored on wakeup, 729 * so all we need to do is to reset the decrementer. 730 */ 731 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 732 if (ticks < tb_ticks_per_jiffy) 733 ticks = tb_ticks_per_jiffy - ticks; 734 else 735 ticks = 1; 736 set_dec(ticks); 737 } 738 739 #ifdef CONFIG_SMP 740 void __init smp_space_timers(unsigned int max_cpus) 741 { 742 int i; 743 unsigned long half = tb_ticks_per_jiffy / 2; 744 unsigned long offset = tb_ticks_per_jiffy / max_cpus; 745 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); 746 747 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 748 previous_tb -= tb_ticks_per_jiffy; 749 /* 750 * The stolen time calculation for POWER5 shared-processor LPAR 751 * systems works better if the two threads' timebase interrupts 752 * are staggered by half a jiffy with respect to each other. 753 */ 754 for_each_possible_cpu(i) { 755 if (i == boot_cpuid) 756 continue; 757 if (i == (boot_cpuid ^ 1)) 758 per_cpu(last_jiffy, i) = 759 per_cpu(last_jiffy, boot_cpuid) - half; 760 else if (i & 1) 761 per_cpu(last_jiffy, i) = 762 per_cpu(last_jiffy, i ^ 1) + half; 763 else { 764 previous_tb += offset; 765 per_cpu(last_jiffy, i) = previous_tb; 766 } 767 } 768 } 769 #endif 770 771 /* 772 * Scheduler clock - returns current time in nanosec units. 773 * 774 * Note: mulhdu(a, b) (multiply high double unsigned) returns 775 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 776 * are 64-bit unsigned numbers. 777 */ 778 unsigned long long sched_clock(void) 779 { 780 if (__USE_RTC()) 781 return get_rtc(); 782 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 783 } 784 785 int do_settimeofday(struct timespec *tv) 786 { 787 time_t wtm_sec, new_sec = tv->tv_sec; 788 long wtm_nsec, new_nsec = tv->tv_nsec; 789 unsigned long flags; 790 u64 new_xsec; 791 unsigned long tb_delta; 792 793 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 794 return -EINVAL; 795 796 write_seqlock_irqsave(&xtime_lock, flags); 797 798 /* 799 * Updating the RTC is not the job of this code. If the time is 800 * stepped under NTP, the RTC will be updated after STA_UNSYNC 801 * is cleared. Tools like clock/hwclock either copy the RTC 802 * to the system time, in which case there is no point in writing 803 * to the RTC again, or write to the RTC but then they don't call 804 * settimeofday to perform this operation. 805 */ 806 #ifdef CONFIG_PPC_ISERIES 807 if (first_settimeofday) { 808 iSeries_tb_recal(); 809 first_settimeofday = 0; 810 } 811 #endif 812 813 /* Make userspace gettimeofday spin until we're done. */ 814 ++vdso_data->tb_update_count; 815 smp_mb(); 816 817 /* 818 * Subtract off the number of nanoseconds since the 819 * beginning of the last tick. 820 * Note that since we don't increment jiffies_64 anywhere other 821 * than in do_timer (since we don't have a lost tick problem), 822 * wall_jiffies will always be the same as jiffies, 823 * and therefore the (jiffies - wall_jiffies) computation 824 * has been removed. 825 */ 826 tb_delta = tb_ticks_since(tb_last_stamp); 827 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */ 828 new_nsec -= SCALE_XSEC(tb_delta, 1000000000); 829 830 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 831 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 832 833 set_normalized_timespec(&xtime, new_sec, new_nsec); 834 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 835 836 /* In case of a large backwards jump in time with NTP, we want the 837 * clock to be updated as soon as the PLL is again in lock. 838 */ 839 last_rtc_update = new_sec - 658; 840 841 ntp_clear(); 842 843 new_xsec = xtime.tv_nsec; 844 if (new_xsec != 0) { 845 new_xsec *= XSEC_PER_SEC; 846 do_div(new_xsec, NSEC_PER_SEC); 847 } 848 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC; 849 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); 850 851 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 852 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 853 854 write_sequnlock_irqrestore(&xtime_lock, flags); 855 clock_was_set(); 856 return 0; 857 } 858 859 EXPORT_SYMBOL(do_settimeofday); 860 861 void __init generic_calibrate_decr(void) 862 { 863 struct device_node *cpu; 864 unsigned int *fp; 865 int node_found; 866 867 /* 868 * The cpu node should have a timebase-frequency property 869 * to tell us the rate at which the decrementer counts. 870 */ 871 cpu = of_find_node_by_type(NULL, "cpu"); 872 873 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 874 node_found = 0; 875 if (cpu) { 876 fp = (unsigned int *)get_property(cpu, "timebase-frequency", 877 NULL); 878 if (fp) { 879 node_found = 1; 880 ppc_tb_freq = *fp; 881 } 882 } 883 if (!node_found) 884 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 885 "(not found)\n"); 886 887 ppc_proc_freq = DEFAULT_PROC_FREQ; 888 node_found = 0; 889 if (cpu) { 890 fp = (unsigned int *)get_property(cpu, "clock-frequency", 891 NULL); 892 if (fp) { 893 node_found = 1; 894 ppc_proc_freq = *fp; 895 } 896 } 897 #ifdef CONFIG_BOOKE 898 /* Set the time base to zero */ 899 mtspr(SPRN_TBWL, 0); 900 mtspr(SPRN_TBWU, 0); 901 902 /* Clear any pending timer interrupts */ 903 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 904 905 /* Enable decrementer interrupt */ 906 mtspr(SPRN_TCR, TCR_DIE); 907 #endif 908 if (!node_found) 909 printk(KERN_ERR "WARNING: Estimating processor frequency " 910 "(not found)\n"); 911 912 of_node_put(cpu); 913 } 914 915 unsigned long get_boot_time(void) 916 { 917 struct rtc_time tm; 918 919 if (ppc_md.get_boot_time) 920 return ppc_md.get_boot_time(); 921 if (!ppc_md.get_rtc_time) 922 return 0; 923 ppc_md.get_rtc_time(&tm); 924 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 925 tm.tm_hour, tm.tm_min, tm.tm_sec); 926 } 927 928 /* This function is only called on the boot processor */ 929 void __init time_init(void) 930 { 931 unsigned long flags; 932 unsigned long tm = 0; 933 struct div_result res; 934 u64 scale, x; 935 unsigned shift; 936 937 if (ppc_md.time_init != NULL) 938 timezone_offset = ppc_md.time_init(); 939 940 if (__USE_RTC()) { 941 /* 601 processor: dec counts down by 128 every 128ns */ 942 ppc_tb_freq = 1000000000; 943 tb_last_stamp = get_rtcl(); 944 tb_last_jiffy = tb_last_stamp; 945 } else { 946 /* Normal PowerPC with timebase register */ 947 ppc_md.calibrate_decr(); 948 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", 949 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 950 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n", 951 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 952 tb_last_stamp = tb_last_jiffy = get_tb(); 953 } 954 955 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 956 tb_ticks_per_sec = ppc_tb_freq; 957 tb_ticks_per_usec = ppc_tb_freq / 1000000; 958 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 959 calc_cputime_factors(); 960 961 /* 962 * Calculate the length of each tick in ns. It will not be 963 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 964 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 965 * rounded up. 966 */ 967 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 968 do_div(x, ppc_tb_freq); 969 tick_nsec = x; 970 last_tick_len = x << TICKLEN_SCALE; 971 972 /* 973 * Compute ticklen_to_xs, which is a factor which gets multiplied 974 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 975 * It is computed as: 976 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 977 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 978 * which turns out to be N = 51 - SHIFT_HZ. 979 * This gives the result as a 0.64 fixed-point fraction. 980 * That value is reduced by an offset amounting to 1 xsec per 981 * 2^31 timebase ticks to avoid problems with time going backwards 982 * by 1 xsec when we do timer_recalc_offset due to losing the 983 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 984 * since there are 2^20 xsec in a second. 985 */ 986 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 987 tb_ticks_per_jiffy << SHIFT_HZ, &res); 988 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 989 ticklen_to_xs = res.result_low; 990 991 /* Compute tb_to_xs from tick_nsec */ 992 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 993 994 /* 995 * Compute scale factor for sched_clock. 996 * The calibrate_decr() function has set tb_ticks_per_sec, 997 * which is the timebase frequency. 998 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 999 * the 128-bit result as a 64.64 fixed-point number. 1000 * We then shift that number right until it is less than 1.0, 1001 * giving us the scale factor and shift count to use in 1002 * sched_clock(). 1003 */ 1004 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1005 scale = res.result_low; 1006 for (shift = 0; res.result_high != 0; ++shift) { 1007 scale = (scale >> 1) | (res.result_high << 63); 1008 res.result_high >>= 1; 1009 } 1010 tb_to_ns_scale = scale; 1011 tb_to_ns_shift = shift; 1012 1013 #ifdef CONFIG_PPC_ISERIES 1014 if (!piranha_simulator) 1015 #endif 1016 tm = get_boot_time(); 1017 1018 write_seqlock_irqsave(&xtime_lock, flags); 1019 1020 /* If platform provided a timezone (pmac), we correct the time */ 1021 if (timezone_offset) { 1022 sys_tz.tz_minuteswest = -timezone_offset / 60; 1023 sys_tz.tz_dsttime = 0; 1024 tm -= timezone_offset; 1025 } 1026 1027 xtime.tv_sec = tm; 1028 xtime.tv_nsec = 0; 1029 do_gtod.varp = &do_gtod.vars[0]; 1030 do_gtod.var_idx = 0; 1031 do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 1032 __get_cpu_var(last_jiffy) = tb_last_stamp; 1033 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1034 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 1035 do_gtod.varp->tb_to_xs = tb_to_xs; 1036 do_gtod.tb_to_us = tb_to_us; 1037 1038 vdso_data->tb_orig_stamp = tb_last_jiffy; 1039 vdso_data->tb_update_count = 0; 1040 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1041 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1042 vdso_data->tb_to_xs = tb_to_xs; 1043 1044 time_freq = 0; 1045 1046 last_rtc_update = xtime.tv_sec; 1047 set_normalized_timespec(&wall_to_monotonic, 1048 -xtime.tv_sec, -xtime.tv_nsec); 1049 write_sequnlock_irqrestore(&xtime_lock, flags); 1050 1051 /* Not exact, but the timer interrupt takes care of this */ 1052 set_dec(tb_ticks_per_jiffy); 1053 } 1054 1055 1056 #define FEBRUARY 2 1057 #define STARTOFTIME 1970 1058 #define SECDAY 86400L 1059 #define SECYR (SECDAY * 365) 1060 #define leapyear(year) ((year) % 4 == 0 && \ 1061 ((year) % 100 != 0 || (year) % 400 == 0)) 1062 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1063 #define days_in_month(a) (month_days[(a) - 1]) 1064 1065 static int month_days[12] = { 1066 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1067 }; 1068 1069 /* 1070 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1071 */ 1072 void GregorianDay(struct rtc_time * tm) 1073 { 1074 int leapsToDate; 1075 int lastYear; 1076 int day; 1077 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1078 1079 lastYear = tm->tm_year - 1; 1080 1081 /* 1082 * Number of leap corrections to apply up to end of last year 1083 */ 1084 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1085 1086 /* 1087 * This year is a leap year if it is divisible by 4 except when it is 1088 * divisible by 100 unless it is divisible by 400 1089 * 1090 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1091 */ 1092 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1093 1094 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1095 tm->tm_mday; 1096 1097 tm->tm_wday = day % 7; 1098 } 1099 1100 void to_tm(int tim, struct rtc_time * tm) 1101 { 1102 register int i; 1103 register long hms, day; 1104 1105 day = tim / SECDAY; 1106 hms = tim % SECDAY; 1107 1108 /* Hours, minutes, seconds are easy */ 1109 tm->tm_hour = hms / 3600; 1110 tm->tm_min = (hms % 3600) / 60; 1111 tm->tm_sec = (hms % 3600) % 60; 1112 1113 /* Number of years in days */ 1114 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1115 day -= days_in_year(i); 1116 tm->tm_year = i; 1117 1118 /* Number of months in days left */ 1119 if (leapyear(tm->tm_year)) 1120 days_in_month(FEBRUARY) = 29; 1121 for (i = 1; day >= days_in_month(i); i++) 1122 day -= days_in_month(i); 1123 days_in_month(FEBRUARY) = 28; 1124 tm->tm_mon = i; 1125 1126 /* Days are what is left over (+1) from all that. */ 1127 tm->tm_mday = day + 1; 1128 1129 /* 1130 * Determine the day of week 1131 */ 1132 GregorianDay(tm); 1133 } 1134 1135 /* Auxiliary function to compute scaling factors */ 1136 /* Actually the choice of a timebase running at 1/4 the of the bus 1137 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1138 * It makes this computation very precise (27-28 bits typically) which 1139 * is optimistic considering the stability of most processor clock 1140 * oscillators and the precision with which the timebase frequency 1141 * is measured but does not harm. 1142 */ 1143 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1144 { 1145 unsigned mlt=0, tmp, err; 1146 /* No concern for performance, it's done once: use a stupid 1147 * but safe and compact method to find the multiplier. 1148 */ 1149 1150 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1151 if (mulhwu(inscale, mlt|tmp) < outscale) 1152 mlt |= tmp; 1153 } 1154 1155 /* We might still be off by 1 for the best approximation. 1156 * A side effect of this is that if outscale is too large 1157 * the returned value will be zero. 1158 * Many corner cases have been checked and seem to work, 1159 * some might have been forgotten in the test however. 1160 */ 1161 1162 err = inscale * (mlt+1); 1163 if (err <= inscale/2) 1164 mlt++; 1165 return mlt; 1166 } 1167 1168 /* 1169 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1170 * result. 1171 */ 1172 void div128_by_32(u64 dividend_high, u64 dividend_low, 1173 unsigned divisor, struct div_result *dr) 1174 { 1175 unsigned long a, b, c, d; 1176 unsigned long w, x, y, z; 1177 u64 ra, rb, rc; 1178 1179 a = dividend_high >> 32; 1180 b = dividend_high & 0xffffffff; 1181 c = dividend_low >> 32; 1182 d = dividend_low & 0xffffffff; 1183 1184 w = a / divisor; 1185 ra = ((u64)(a - (w * divisor)) << 32) + b; 1186 1187 rb = ((u64) do_div(ra, divisor) << 32) + c; 1188 x = ra; 1189 1190 rc = ((u64) do_div(rb, divisor) << 32) + d; 1191 y = rb; 1192 1193 do_div(rc, divisor); 1194 z = rc; 1195 1196 dr->result_high = ((u64)w << 32) + x; 1197 dr->result_low = ((u64)y << 32) + z; 1198 1199 } 1200