xref: /linux/arch/powerpc/kernel/time.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53 #include <linux/jiffies.h>
54 #include <linux/posix-timers.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #ifdef CONFIG_PPC64
69 #include <asm/firmware.h>
70 #endif
71 #ifdef CONFIG_PPC_ISERIES
72 #include <asm/iseries/it_lp_queue.h>
73 #include <asm/iseries/hv_call_xm.h>
74 #endif
75 #include <asm/smp.h>
76 
77 /* keep track of when we need to update the rtc */
78 time_t last_rtc_update;
79 extern int piranha_simulator;
80 #ifdef CONFIG_PPC_ISERIES
81 unsigned long iSeries_recal_titan = 0;
82 unsigned long iSeries_recal_tb = 0;
83 static unsigned long first_settimeofday = 1;
84 #endif
85 
86 /* The decrementer counts down by 128 every 128ns on a 601. */
87 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
88 
89 #define XSEC_PER_SEC (1024*1024)
90 
91 #ifdef CONFIG_PPC64
92 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
93 #else
94 /* compute ((xsec << 12) * max) >> 32 */
95 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
96 #endif
97 
98 unsigned long tb_ticks_per_jiffy;
99 unsigned long tb_ticks_per_usec = 100; /* sane default */
100 EXPORT_SYMBOL(tb_ticks_per_usec);
101 unsigned long tb_ticks_per_sec;
102 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
103 u64 tb_to_xs;
104 unsigned tb_to_us;
105 
106 #define TICKLEN_SCALE	(SHIFT_SCALE - 10)
107 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
108 u64 ticklen_to_xs;	/* 0.64 fraction */
109 
110 /* If last_tick_len corresponds to about 1/HZ seconds, then
111    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
112 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
113 
114 DEFINE_SPINLOCK(rtc_lock);
115 EXPORT_SYMBOL_GPL(rtc_lock);
116 
117 u64 tb_to_ns_scale;
118 unsigned tb_to_ns_shift;
119 
120 struct gettimeofday_struct do_gtod;
121 
122 extern unsigned long wall_jiffies;
123 
124 extern struct timezone sys_tz;
125 static long timezone_offset;
126 
127 unsigned long ppc_proc_freq;
128 unsigned long ppc_tb_freq;
129 
130 u64 tb_last_jiffy __cacheline_aligned_in_smp;
131 unsigned long tb_last_stamp;
132 
133 /*
134  * Note that on ppc32 this only stores the bottom 32 bits of
135  * the timebase value, but that's enough to tell when a jiffy
136  * has passed.
137  */
138 DEFINE_PER_CPU(unsigned long, last_jiffy);
139 
140 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
141 /*
142  * Factors for converting from cputime_t (timebase ticks) to
143  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
144  * These are all stored as 0.64 fixed-point binary fractions.
145  */
146 u64 __cputime_jiffies_factor;
147 EXPORT_SYMBOL(__cputime_jiffies_factor);
148 u64 __cputime_msec_factor;
149 EXPORT_SYMBOL(__cputime_msec_factor);
150 u64 __cputime_sec_factor;
151 EXPORT_SYMBOL(__cputime_sec_factor);
152 u64 __cputime_clockt_factor;
153 EXPORT_SYMBOL(__cputime_clockt_factor);
154 
155 static void calc_cputime_factors(void)
156 {
157 	struct div_result res;
158 
159 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
160 	__cputime_jiffies_factor = res.result_low;
161 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
162 	__cputime_msec_factor = res.result_low;
163 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
164 	__cputime_sec_factor = res.result_low;
165 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
166 	__cputime_clockt_factor = res.result_low;
167 }
168 
169 /*
170  * Read the PURR on systems that have it, otherwise the timebase.
171  */
172 static u64 read_purr(void)
173 {
174 	if (cpu_has_feature(CPU_FTR_PURR))
175 		return mfspr(SPRN_PURR);
176 	return mftb();
177 }
178 
179 /*
180  * Account time for a transition between system, hard irq
181  * or soft irq state.
182  */
183 void account_system_vtime(struct task_struct *tsk)
184 {
185 	u64 now, delta;
186 	unsigned long flags;
187 
188 	local_irq_save(flags);
189 	now = read_purr();
190 	delta = now - get_paca()->startpurr;
191 	get_paca()->startpurr = now;
192 	if (!in_interrupt()) {
193 		delta += get_paca()->system_time;
194 		get_paca()->system_time = 0;
195 	}
196 	account_system_time(tsk, 0, delta);
197 	local_irq_restore(flags);
198 }
199 
200 /*
201  * Transfer the user and system times accumulated in the paca
202  * by the exception entry and exit code to the generic process
203  * user and system time records.
204  * Must be called with interrupts disabled.
205  */
206 void account_process_vtime(struct task_struct *tsk)
207 {
208 	cputime_t utime;
209 
210 	utime = get_paca()->user_time;
211 	get_paca()->user_time = 0;
212 	account_user_time(tsk, utime);
213 }
214 
215 static void account_process_time(struct pt_regs *regs)
216 {
217 	int cpu = smp_processor_id();
218 
219 	account_process_vtime(current);
220 	run_local_timers();
221 	if (rcu_pending(cpu))
222 		rcu_check_callbacks(cpu, user_mode(regs));
223 	scheduler_tick();
224  	run_posix_cpu_timers(current);
225 }
226 
227 #ifdef CONFIG_PPC_SPLPAR
228 /*
229  * Stuff for accounting stolen time.
230  */
231 struct cpu_purr_data {
232 	int	initialized;			/* thread is running */
233 	u64	tb0;			/* timebase at origin time */
234 	u64	purr0;			/* PURR at origin time */
235 	u64	tb;			/* last TB value read */
236 	u64	purr;			/* last PURR value read */
237 	u64	stolen;			/* stolen time so far */
238 	spinlock_t lock;
239 };
240 
241 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
242 
243 static void snapshot_tb_and_purr(void *data)
244 {
245 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
246 
247 	p->tb0 = mftb();
248 	p->purr0 = mfspr(SPRN_PURR);
249 	p->tb = p->tb0;
250 	p->purr = 0;
251 	wmb();
252 	p->initialized = 1;
253 }
254 
255 /*
256  * Called during boot when all cpus have come up.
257  */
258 void snapshot_timebases(void)
259 {
260 	int cpu;
261 
262 	if (!cpu_has_feature(CPU_FTR_PURR))
263 		return;
264 	for_each_possible_cpu(cpu)
265 		spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
266 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
267 }
268 
269 void calculate_steal_time(void)
270 {
271 	u64 tb, purr, t0;
272 	s64 stolen;
273 	struct cpu_purr_data *p0, *pme, *phim;
274 	int cpu;
275 
276 	if (!cpu_has_feature(CPU_FTR_PURR))
277 		return;
278 	cpu = smp_processor_id();
279 	pme = &per_cpu(cpu_purr_data, cpu);
280 	if (!pme->initialized)
281 		return;		/* this can happen in early boot */
282 	p0 = &per_cpu(cpu_purr_data, cpu & ~1);
283 	phim = &per_cpu(cpu_purr_data, cpu ^ 1);
284 	spin_lock(&p0->lock);
285 	tb = mftb();
286 	purr = mfspr(SPRN_PURR) - pme->purr0;
287 	if (!phim->initialized || !cpu_online(cpu ^ 1)) {
288 		stolen = (tb - pme->tb) - (purr - pme->purr);
289 	} else {
290 		t0 = pme->tb0;
291 		if (phim->tb0 < t0)
292 			t0 = phim->tb0;
293 		stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
294 	}
295 	if (stolen > 0) {
296 		account_steal_time(current, stolen);
297 		p0->stolen += stolen;
298 	}
299 	pme->tb = tb;
300 	pme->purr = purr;
301 	spin_unlock(&p0->lock);
302 }
303 
304 /*
305  * Must be called before the cpu is added to the online map when
306  * a cpu is being brought up at runtime.
307  */
308 static void snapshot_purr(void)
309 {
310 	int cpu;
311 	u64 purr;
312 	struct cpu_purr_data *p0, *pme, *phim;
313 	unsigned long flags;
314 
315 	if (!cpu_has_feature(CPU_FTR_PURR))
316 		return;
317 	cpu = smp_processor_id();
318 	pme = &per_cpu(cpu_purr_data, cpu);
319 	p0 = &per_cpu(cpu_purr_data, cpu & ~1);
320 	phim = &per_cpu(cpu_purr_data, cpu ^ 1);
321 	spin_lock_irqsave(&p0->lock, flags);
322 	pme->tb = pme->tb0 = mftb();
323 	purr = mfspr(SPRN_PURR);
324 	if (!phim->initialized) {
325 		pme->purr = 0;
326 		pme->purr0 = purr;
327 	} else {
328 		/* set p->purr and p->purr0 for no change in p0->stolen */
329 		pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
330 		pme->purr0 = purr - pme->purr;
331 	}
332 	pme->initialized = 1;
333 	spin_unlock_irqrestore(&p0->lock, flags);
334 }
335 
336 #endif /* CONFIG_PPC_SPLPAR */
337 
338 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
339 #define calc_cputime_factors()
340 #define account_process_time(regs)	update_process_times(user_mode(regs))
341 #define calculate_steal_time()		do { } while (0)
342 #endif
343 
344 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
345 #define snapshot_purr()			do { } while (0)
346 #endif
347 
348 /*
349  * Called when a cpu comes up after the system has finished booting,
350  * i.e. as a result of a hotplug cpu action.
351  */
352 void snapshot_timebase(void)
353 {
354 	__get_cpu_var(last_jiffy) = get_tb();
355 	snapshot_purr();
356 }
357 
358 void __delay(unsigned long loops)
359 {
360 	unsigned long start;
361 	int diff;
362 
363 	if (__USE_RTC()) {
364 		start = get_rtcl();
365 		do {
366 			/* the RTCL register wraps at 1000000000 */
367 			diff = get_rtcl() - start;
368 			if (diff < 0)
369 				diff += 1000000000;
370 		} while (diff < loops);
371 	} else {
372 		start = get_tbl();
373 		while (get_tbl() - start < loops)
374 			HMT_low();
375 		HMT_medium();
376 	}
377 }
378 EXPORT_SYMBOL(__delay);
379 
380 void udelay(unsigned long usecs)
381 {
382 	__delay(tb_ticks_per_usec * usecs);
383 }
384 EXPORT_SYMBOL(udelay);
385 
386 static __inline__ void timer_check_rtc(void)
387 {
388         /*
389          * update the rtc when needed, this should be performed on the
390          * right fraction of a second. Half or full second ?
391          * Full second works on mk48t59 clocks, others need testing.
392          * Note that this update is basically only used through
393          * the adjtimex system calls. Setting the HW clock in
394          * any other way is a /dev/rtc and userland business.
395          * This is still wrong by -0.5/+1.5 jiffies because of the
396          * timer interrupt resolution and possible delay, but here we
397          * hit a quantization limit which can only be solved by higher
398          * resolution timers and decoupling time management from timer
399          * interrupts. This is also wrong on the clocks
400          * which require being written at the half second boundary.
401          * We should have an rtc call that only sets the minutes and
402          * seconds like on Intel to avoid problems with non UTC clocks.
403          */
404         if (ppc_md.set_rtc_time && ntp_synced() &&
405 	    xtime.tv_sec - last_rtc_update >= 659 &&
406 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
407 		struct rtc_time tm;
408 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
409 		tm.tm_year -= 1900;
410 		tm.tm_mon -= 1;
411 		if (ppc_md.set_rtc_time(&tm) == 0)
412 			last_rtc_update = xtime.tv_sec + 1;
413 		else
414 			/* Try again one minute later */
415 			last_rtc_update += 60;
416         }
417 }
418 
419 /*
420  * This version of gettimeofday has microsecond resolution.
421  */
422 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
423 {
424 	unsigned long sec, usec;
425 	u64 tb_ticks, xsec;
426 	struct gettimeofday_vars *temp_varp;
427 	u64 temp_tb_to_xs, temp_stamp_xsec;
428 
429 	/*
430 	 * These calculations are faster (gets rid of divides)
431 	 * if done in units of 1/2^20 rather than microseconds.
432 	 * The conversion to microseconds at the end is done
433 	 * without a divide (and in fact, without a multiply)
434 	 */
435 	temp_varp = do_gtod.varp;
436 	tb_ticks = tb_val - temp_varp->tb_orig_stamp;
437 	temp_tb_to_xs = temp_varp->tb_to_xs;
438 	temp_stamp_xsec = temp_varp->stamp_xsec;
439 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
440 	sec = xsec / XSEC_PER_SEC;
441 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
442 	usec = SCALE_XSEC(usec, 1000000);
443 
444 	tv->tv_sec = sec;
445 	tv->tv_usec = usec;
446 }
447 
448 void do_gettimeofday(struct timeval *tv)
449 {
450 	if (__USE_RTC()) {
451 		/* do this the old way */
452 		unsigned long flags, seq;
453 		unsigned int sec, nsec, usec;
454 
455 		do {
456 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
457 			sec = xtime.tv_sec;
458 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
459 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
460 		usec = nsec / 1000;
461 		while (usec >= 1000000) {
462 			usec -= 1000000;
463 			++sec;
464 		}
465 		tv->tv_sec = sec;
466 		tv->tv_usec = usec;
467 		return;
468 	}
469 	__do_gettimeofday(tv, get_tb());
470 }
471 
472 EXPORT_SYMBOL(do_gettimeofday);
473 
474 /*
475  * There are two copies of tb_to_xs and stamp_xsec so that no
476  * lock is needed to access and use these values in
477  * do_gettimeofday.  We alternate the copies and as long as a
478  * reasonable time elapses between changes, there will never
479  * be inconsistent values.  ntpd has a minimum of one minute
480  * between updates.
481  */
482 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
483 			       u64 new_tb_to_xs)
484 {
485 	unsigned temp_idx;
486 	struct gettimeofday_vars *temp_varp;
487 
488 	temp_idx = (do_gtod.var_idx == 0);
489 	temp_varp = &do_gtod.vars[temp_idx];
490 
491 	temp_varp->tb_to_xs = new_tb_to_xs;
492 	temp_varp->tb_orig_stamp = new_tb_stamp;
493 	temp_varp->stamp_xsec = new_stamp_xsec;
494 	smp_mb();
495 	do_gtod.varp = temp_varp;
496 	do_gtod.var_idx = temp_idx;
497 
498 	/*
499 	 * tb_update_count is used to allow the userspace gettimeofday code
500 	 * to assure itself that it sees a consistent view of the tb_to_xs and
501 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
502 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
503 	 * the two values of tb_update_count match and are even then the
504 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
505 	 * loops back and reads them again until this criteria is met.
506 	 * We expect the caller to have done the first increment of
507 	 * vdso_data->tb_update_count already.
508 	 */
509 	vdso_data->tb_orig_stamp = new_tb_stamp;
510 	vdso_data->stamp_xsec = new_stamp_xsec;
511 	vdso_data->tb_to_xs = new_tb_to_xs;
512 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
513 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
514 	smp_wmb();
515 	++(vdso_data->tb_update_count);
516 }
517 
518 /*
519  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
520  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
521  * difference tb - tb_orig_stamp small enough to always fit inside a
522  * 32 bits number. This is a requirement of our fast 32 bits userland
523  * implementation in the vdso. If we "miss" a call to this function
524  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
525  * with a too big difference, then the vdso will fallback to calling
526  * the syscall
527  */
528 static __inline__ void timer_recalc_offset(u64 cur_tb)
529 {
530 	unsigned long offset;
531 	u64 new_stamp_xsec;
532 	u64 tlen, t2x;
533 	u64 tb, xsec_old, xsec_new;
534 	struct gettimeofday_vars *varp;
535 
536 	if (__USE_RTC())
537 		return;
538 	tlen = current_tick_length();
539 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
540 	if (tlen == last_tick_len && offset < 0x80000000u)
541 		return;
542 	if (tlen != last_tick_len) {
543 		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
544 		last_tick_len = tlen;
545 	} else
546 		t2x = do_gtod.varp->tb_to_xs;
547 	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
548 	do_div(new_stamp_xsec, 1000000000);
549 	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
550 
551 	++vdso_data->tb_update_count;
552 	smp_mb();
553 
554 	/*
555 	 * Make sure time doesn't go backwards for userspace gettimeofday.
556 	 */
557 	tb = get_tb();
558 	varp = do_gtod.varp;
559 	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
560 		+ varp->stamp_xsec;
561 	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
562 	if (xsec_new < xsec_old)
563 		new_stamp_xsec += xsec_old - xsec_new;
564 
565 	update_gtod(cur_tb, new_stamp_xsec, t2x);
566 }
567 
568 #ifdef CONFIG_SMP
569 unsigned long profile_pc(struct pt_regs *regs)
570 {
571 	unsigned long pc = instruction_pointer(regs);
572 
573 	if (in_lock_functions(pc))
574 		return regs->link;
575 
576 	return pc;
577 }
578 EXPORT_SYMBOL(profile_pc);
579 #endif
580 
581 #ifdef CONFIG_PPC_ISERIES
582 
583 /*
584  * This function recalibrates the timebase based on the 49-bit time-of-day
585  * value in the Titan chip.  The Titan is much more accurate than the value
586  * returned by the service processor for the timebase frequency.
587  */
588 
589 static void iSeries_tb_recal(void)
590 {
591 	struct div_result divres;
592 	unsigned long titan, tb;
593 	tb = get_tb();
594 	titan = HvCallXm_loadTod();
595 	if ( iSeries_recal_titan ) {
596 		unsigned long tb_ticks = tb - iSeries_recal_tb;
597 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
598 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
599 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
600 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
601 		char sign = '+';
602 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
603 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
604 
605 		if ( tick_diff < 0 ) {
606 			tick_diff = -tick_diff;
607 			sign = '-';
608 		}
609 		if ( tick_diff ) {
610 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
611 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
612 						new_tb_ticks_per_jiffy, sign, tick_diff );
613 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
614 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
615 				calc_cputime_factors();
616 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
617 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
618 				tb_to_xs = divres.result_low;
619 				do_gtod.varp->tb_to_xs = tb_to_xs;
620 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
621 				vdso_data->tb_to_xs = tb_to_xs;
622 			}
623 			else {
624 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
625 					"                   new tb_ticks_per_jiffy = %lu\n"
626 					"                   old tb_ticks_per_jiffy = %lu\n",
627 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
628 			}
629 		}
630 	}
631 	iSeries_recal_titan = titan;
632 	iSeries_recal_tb = tb;
633 }
634 #endif
635 
636 /*
637  * For iSeries shared processors, we have to let the hypervisor
638  * set the hardware decrementer.  We set a virtual decrementer
639  * in the lppaca and call the hypervisor if the virtual
640  * decrementer is less than the current value in the hardware
641  * decrementer. (almost always the new decrementer value will
642  * be greater than the current hardware decementer so the hypervisor
643  * call will not be needed)
644  */
645 
646 /*
647  * timer_interrupt - gets called when the decrementer overflows,
648  * with interrupts disabled.
649  */
650 void timer_interrupt(struct pt_regs * regs)
651 {
652 	int next_dec;
653 	int cpu = smp_processor_id();
654 	unsigned long ticks;
655 
656 #ifdef CONFIG_PPC32
657 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
658 		do_IRQ(regs);
659 #endif
660 
661 	irq_enter();
662 
663 	profile_tick(CPU_PROFILING, regs);
664 	calculate_steal_time();
665 
666 #ifdef CONFIG_PPC_ISERIES
667 	get_lppaca()->int_dword.fields.decr_int = 0;
668 #endif
669 
670 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
671 	       >= tb_ticks_per_jiffy) {
672 		/* Update last_jiffy */
673 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
674 		/* Handle RTCL overflow on 601 */
675 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
676 			per_cpu(last_jiffy, cpu) -= 1000000000;
677 
678 		/*
679 		 * We cannot disable the decrementer, so in the period
680 		 * between this cpu's being marked offline in cpu_online_map
681 		 * and calling stop-self, it is taking timer interrupts.
682 		 * Avoid calling into the scheduler rebalancing code if this
683 		 * is the case.
684 		 */
685 		if (!cpu_is_offline(cpu))
686 			account_process_time(regs);
687 
688 		/*
689 		 * No need to check whether cpu is offline here; boot_cpuid
690 		 * should have been fixed up by now.
691 		 */
692 		if (cpu != boot_cpuid)
693 			continue;
694 
695 		write_seqlock(&xtime_lock);
696 		tb_last_jiffy += tb_ticks_per_jiffy;
697 		tb_last_stamp = per_cpu(last_jiffy, cpu);
698 		do_timer(regs);
699 		timer_recalc_offset(tb_last_jiffy);
700 		timer_check_rtc();
701 		write_sequnlock(&xtime_lock);
702 	}
703 
704 	next_dec = tb_ticks_per_jiffy - ticks;
705 	set_dec(next_dec);
706 
707 #ifdef CONFIG_PPC_ISERIES
708 	if (hvlpevent_is_pending())
709 		process_hvlpevents(regs);
710 #endif
711 
712 #ifdef CONFIG_PPC64
713 	/* collect purr register values often, for accurate calculations */
714 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
715 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
716 		cu->current_tb = mfspr(SPRN_PURR);
717 	}
718 #endif
719 
720 	irq_exit();
721 }
722 
723 void wakeup_decrementer(void)
724 {
725 	unsigned long ticks;
726 
727 	/*
728 	 * The timebase gets saved on sleep and restored on wakeup,
729 	 * so all we need to do is to reset the decrementer.
730 	 */
731 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
732 	if (ticks < tb_ticks_per_jiffy)
733 		ticks = tb_ticks_per_jiffy - ticks;
734 	else
735 		ticks = 1;
736 	set_dec(ticks);
737 }
738 
739 #ifdef CONFIG_SMP
740 void __init smp_space_timers(unsigned int max_cpus)
741 {
742 	int i;
743 	unsigned long half = tb_ticks_per_jiffy / 2;
744 	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
745 	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
746 
747 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
748 	previous_tb -= tb_ticks_per_jiffy;
749 	/*
750 	 * The stolen time calculation for POWER5 shared-processor LPAR
751 	 * systems works better if the two threads' timebase interrupts
752 	 * are staggered by half a jiffy with respect to each other.
753 	 */
754 	for_each_possible_cpu(i) {
755 		if (i == boot_cpuid)
756 			continue;
757 		if (i == (boot_cpuid ^ 1))
758 			per_cpu(last_jiffy, i) =
759 				per_cpu(last_jiffy, boot_cpuid) - half;
760 		else if (i & 1)
761 			per_cpu(last_jiffy, i) =
762 				per_cpu(last_jiffy, i ^ 1) + half;
763 		else {
764 			previous_tb += offset;
765 			per_cpu(last_jiffy, i) = previous_tb;
766 		}
767 	}
768 }
769 #endif
770 
771 /*
772  * Scheduler clock - returns current time in nanosec units.
773  *
774  * Note: mulhdu(a, b) (multiply high double unsigned) returns
775  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
776  * are 64-bit unsigned numbers.
777  */
778 unsigned long long sched_clock(void)
779 {
780 	if (__USE_RTC())
781 		return get_rtc();
782 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
783 }
784 
785 int do_settimeofday(struct timespec *tv)
786 {
787 	time_t wtm_sec, new_sec = tv->tv_sec;
788 	long wtm_nsec, new_nsec = tv->tv_nsec;
789 	unsigned long flags;
790 	u64 new_xsec;
791 	unsigned long tb_delta;
792 
793 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
794 		return -EINVAL;
795 
796 	write_seqlock_irqsave(&xtime_lock, flags);
797 
798 	/*
799 	 * Updating the RTC is not the job of this code. If the time is
800 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
801 	 * is cleared.  Tools like clock/hwclock either copy the RTC
802 	 * to the system time, in which case there is no point in writing
803 	 * to the RTC again, or write to the RTC but then they don't call
804 	 * settimeofday to perform this operation.
805 	 */
806 #ifdef CONFIG_PPC_ISERIES
807 	if (first_settimeofday) {
808 		iSeries_tb_recal();
809 		first_settimeofday = 0;
810 	}
811 #endif
812 
813 	/* Make userspace gettimeofday spin until we're done. */
814 	++vdso_data->tb_update_count;
815 	smp_mb();
816 
817 	/*
818 	 * Subtract off the number of nanoseconds since the
819 	 * beginning of the last tick.
820 	 * Note that since we don't increment jiffies_64 anywhere other
821 	 * than in do_timer (since we don't have a lost tick problem),
822 	 * wall_jiffies will always be the same as jiffies,
823 	 * and therefore the (jiffies - wall_jiffies) computation
824 	 * has been removed.
825 	 */
826 	tb_delta = tb_ticks_since(tb_last_stamp);
827 	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
828 	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
829 
830 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
831 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
832 
833  	set_normalized_timespec(&xtime, new_sec, new_nsec);
834 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
835 
836 	/* In case of a large backwards jump in time with NTP, we want the
837 	 * clock to be updated as soon as the PLL is again in lock.
838 	 */
839 	last_rtc_update = new_sec - 658;
840 
841 	ntp_clear();
842 
843 	new_xsec = xtime.tv_nsec;
844 	if (new_xsec != 0) {
845 		new_xsec *= XSEC_PER_SEC;
846 		do_div(new_xsec, NSEC_PER_SEC);
847 	}
848 	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
849 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
850 
851 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
852 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
853 
854 	write_sequnlock_irqrestore(&xtime_lock, flags);
855 	clock_was_set();
856 	return 0;
857 }
858 
859 EXPORT_SYMBOL(do_settimeofday);
860 
861 void __init generic_calibrate_decr(void)
862 {
863 	struct device_node *cpu;
864 	unsigned int *fp;
865 	int node_found;
866 
867 	/*
868 	 * The cpu node should have a timebase-frequency property
869 	 * to tell us the rate at which the decrementer counts.
870 	 */
871 	cpu = of_find_node_by_type(NULL, "cpu");
872 
873 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
874 	node_found = 0;
875 	if (cpu) {
876 		fp = (unsigned int *)get_property(cpu, "timebase-frequency",
877 						  NULL);
878 		if (fp) {
879 			node_found = 1;
880 			ppc_tb_freq = *fp;
881 		}
882 	}
883 	if (!node_found)
884 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
885 				"(not found)\n");
886 
887 	ppc_proc_freq = DEFAULT_PROC_FREQ;
888 	node_found = 0;
889 	if (cpu) {
890 		fp = (unsigned int *)get_property(cpu, "clock-frequency",
891 						  NULL);
892 		if (fp) {
893 			node_found = 1;
894 			ppc_proc_freq = *fp;
895 		}
896 	}
897 #ifdef CONFIG_BOOKE
898 	/* Set the time base to zero */
899 	mtspr(SPRN_TBWL, 0);
900 	mtspr(SPRN_TBWU, 0);
901 
902 	/* Clear any pending timer interrupts */
903 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
904 
905 	/* Enable decrementer interrupt */
906 	mtspr(SPRN_TCR, TCR_DIE);
907 #endif
908 	if (!node_found)
909 		printk(KERN_ERR "WARNING: Estimating processor frequency "
910 				"(not found)\n");
911 
912 	of_node_put(cpu);
913 }
914 
915 unsigned long get_boot_time(void)
916 {
917 	struct rtc_time tm;
918 
919 	if (ppc_md.get_boot_time)
920 		return ppc_md.get_boot_time();
921 	if (!ppc_md.get_rtc_time)
922 		return 0;
923 	ppc_md.get_rtc_time(&tm);
924 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
925 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
926 }
927 
928 /* This function is only called on the boot processor */
929 void __init time_init(void)
930 {
931 	unsigned long flags;
932 	unsigned long tm = 0;
933 	struct div_result res;
934 	u64 scale, x;
935 	unsigned shift;
936 
937         if (ppc_md.time_init != NULL)
938                 timezone_offset = ppc_md.time_init();
939 
940 	if (__USE_RTC()) {
941 		/* 601 processor: dec counts down by 128 every 128ns */
942 		ppc_tb_freq = 1000000000;
943 		tb_last_stamp = get_rtcl();
944 		tb_last_jiffy = tb_last_stamp;
945 	} else {
946 		/* Normal PowerPC with timebase register */
947 		ppc_md.calibrate_decr();
948 		printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
949 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
950 		printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
951 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
952 		tb_last_stamp = tb_last_jiffy = get_tb();
953 	}
954 
955 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
956 	tb_ticks_per_sec = ppc_tb_freq;
957 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
958 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
959 	calc_cputime_factors();
960 
961 	/*
962 	 * Calculate the length of each tick in ns.  It will not be
963 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
964 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
965 	 * rounded up.
966 	 */
967 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
968 	do_div(x, ppc_tb_freq);
969 	tick_nsec = x;
970 	last_tick_len = x << TICKLEN_SCALE;
971 
972 	/*
973 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
974 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
975 	 * It is computed as:
976 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
977 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
978 	 * which turns out to be N = 51 - SHIFT_HZ.
979 	 * This gives the result as a 0.64 fixed-point fraction.
980 	 * That value is reduced by an offset amounting to 1 xsec per
981 	 * 2^31 timebase ticks to avoid problems with time going backwards
982 	 * by 1 xsec when we do timer_recalc_offset due to losing the
983 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
984 	 * since there are 2^20 xsec in a second.
985 	 */
986 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
987 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
988 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
989 	ticklen_to_xs = res.result_low;
990 
991 	/* Compute tb_to_xs from tick_nsec */
992 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
993 
994 	/*
995 	 * Compute scale factor for sched_clock.
996 	 * The calibrate_decr() function has set tb_ticks_per_sec,
997 	 * which is the timebase frequency.
998 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
999 	 * the 128-bit result as a 64.64 fixed-point number.
1000 	 * We then shift that number right until it is less than 1.0,
1001 	 * giving us the scale factor and shift count to use in
1002 	 * sched_clock().
1003 	 */
1004 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1005 	scale = res.result_low;
1006 	for (shift = 0; res.result_high != 0; ++shift) {
1007 		scale = (scale >> 1) | (res.result_high << 63);
1008 		res.result_high >>= 1;
1009 	}
1010 	tb_to_ns_scale = scale;
1011 	tb_to_ns_shift = shift;
1012 
1013 #ifdef CONFIG_PPC_ISERIES
1014 	if (!piranha_simulator)
1015 #endif
1016 		tm = get_boot_time();
1017 
1018 	write_seqlock_irqsave(&xtime_lock, flags);
1019 
1020 	/* If platform provided a timezone (pmac), we correct the time */
1021         if (timezone_offset) {
1022 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1023 		sys_tz.tz_dsttime = 0;
1024 		tm -= timezone_offset;
1025         }
1026 
1027 	xtime.tv_sec = tm;
1028 	xtime.tv_nsec = 0;
1029 	do_gtod.varp = &do_gtod.vars[0];
1030 	do_gtod.var_idx = 0;
1031 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
1032 	__get_cpu_var(last_jiffy) = tb_last_stamp;
1033 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1034 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1035 	do_gtod.varp->tb_to_xs = tb_to_xs;
1036 	do_gtod.tb_to_us = tb_to_us;
1037 
1038 	vdso_data->tb_orig_stamp = tb_last_jiffy;
1039 	vdso_data->tb_update_count = 0;
1040 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1041 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1042 	vdso_data->tb_to_xs = tb_to_xs;
1043 
1044 	time_freq = 0;
1045 
1046 	last_rtc_update = xtime.tv_sec;
1047 	set_normalized_timespec(&wall_to_monotonic,
1048 	                        -xtime.tv_sec, -xtime.tv_nsec);
1049 	write_sequnlock_irqrestore(&xtime_lock, flags);
1050 
1051 	/* Not exact, but the timer interrupt takes care of this */
1052 	set_dec(tb_ticks_per_jiffy);
1053 }
1054 
1055 
1056 #define FEBRUARY	2
1057 #define	STARTOFTIME	1970
1058 #define SECDAY		86400L
1059 #define SECYR		(SECDAY * 365)
1060 #define	leapyear(year)		((year) % 4 == 0 && \
1061 				 ((year) % 100 != 0 || (year) % 400 == 0))
1062 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1063 #define	days_in_month(a) 	(month_days[(a) - 1])
1064 
1065 static int month_days[12] = {
1066 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1067 };
1068 
1069 /*
1070  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1071  */
1072 void GregorianDay(struct rtc_time * tm)
1073 {
1074 	int leapsToDate;
1075 	int lastYear;
1076 	int day;
1077 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1078 
1079 	lastYear = tm->tm_year - 1;
1080 
1081 	/*
1082 	 * Number of leap corrections to apply up to end of last year
1083 	 */
1084 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1085 
1086 	/*
1087 	 * This year is a leap year if it is divisible by 4 except when it is
1088 	 * divisible by 100 unless it is divisible by 400
1089 	 *
1090 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1091 	 */
1092 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1093 
1094 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1095 		   tm->tm_mday;
1096 
1097 	tm->tm_wday = day % 7;
1098 }
1099 
1100 void to_tm(int tim, struct rtc_time * tm)
1101 {
1102 	register int    i;
1103 	register long   hms, day;
1104 
1105 	day = tim / SECDAY;
1106 	hms = tim % SECDAY;
1107 
1108 	/* Hours, minutes, seconds are easy */
1109 	tm->tm_hour = hms / 3600;
1110 	tm->tm_min = (hms % 3600) / 60;
1111 	tm->tm_sec = (hms % 3600) % 60;
1112 
1113 	/* Number of years in days */
1114 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1115 		day -= days_in_year(i);
1116 	tm->tm_year = i;
1117 
1118 	/* Number of months in days left */
1119 	if (leapyear(tm->tm_year))
1120 		days_in_month(FEBRUARY) = 29;
1121 	for (i = 1; day >= days_in_month(i); i++)
1122 		day -= days_in_month(i);
1123 	days_in_month(FEBRUARY) = 28;
1124 	tm->tm_mon = i;
1125 
1126 	/* Days are what is left over (+1) from all that. */
1127 	tm->tm_mday = day + 1;
1128 
1129 	/*
1130 	 * Determine the day of week
1131 	 */
1132 	GregorianDay(tm);
1133 }
1134 
1135 /* Auxiliary function to compute scaling factors */
1136 /* Actually the choice of a timebase running at 1/4 the of the bus
1137  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1138  * It makes this computation very precise (27-28 bits typically) which
1139  * is optimistic considering the stability of most processor clock
1140  * oscillators and the precision with which the timebase frequency
1141  * is measured but does not harm.
1142  */
1143 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1144 {
1145         unsigned mlt=0, tmp, err;
1146         /* No concern for performance, it's done once: use a stupid
1147          * but safe and compact method to find the multiplier.
1148          */
1149 
1150         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1151                 if (mulhwu(inscale, mlt|tmp) < outscale)
1152 			mlt |= tmp;
1153         }
1154 
1155         /* We might still be off by 1 for the best approximation.
1156          * A side effect of this is that if outscale is too large
1157          * the returned value will be zero.
1158          * Many corner cases have been checked and seem to work,
1159          * some might have been forgotten in the test however.
1160          */
1161 
1162         err = inscale * (mlt+1);
1163         if (err <= inscale/2)
1164 		mlt++;
1165         return mlt;
1166 }
1167 
1168 /*
1169  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1170  * result.
1171  */
1172 void div128_by_32(u64 dividend_high, u64 dividend_low,
1173 		  unsigned divisor, struct div_result *dr)
1174 {
1175 	unsigned long a, b, c, d;
1176 	unsigned long w, x, y, z;
1177 	u64 ra, rb, rc;
1178 
1179 	a = dividend_high >> 32;
1180 	b = dividend_high & 0xffffffff;
1181 	c = dividend_low >> 32;
1182 	d = dividend_low & 0xffffffff;
1183 
1184 	w = a / divisor;
1185 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1186 
1187 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1188 	x = ra;
1189 
1190 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1191 	y = rb;
1192 
1193 	do_div(rc, divisor);
1194 	z = rc;
1195 
1196 	dr->result_high = ((u64)w << 32) + x;
1197 	dr->result_low  = ((u64)y << 32) + z;
1198 
1199 }
1200