xref: /linux/arch/powerpc/kernel/time.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 
55 #include <asm/io.h>
56 #include <asm/processor.h>
57 #include <asm/nvram.h>
58 #include <asm/cache.h>
59 #include <asm/machdep.h>
60 #include <asm/uaccess.h>
61 #include <asm/time.h>
62 #include <asm/prom.h>
63 #include <asm/irq.h>
64 #include <asm/div64.h>
65 #include <asm/smp.h>
66 #include <asm/vdso_datapage.h>
67 #ifdef CONFIG_PPC64
68 #include <asm/firmware.h>
69 #endif
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
73 #endif
74 #include <asm/smp.h>
75 
76 /* keep track of when we need to update the rtc */
77 time_t last_rtc_update;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan = 0;
80 unsigned long iSeries_recal_tb = 0;
81 static unsigned long first_settimeofday = 1;
82 #endif
83 
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
86 
87 #define XSEC_PER_SEC (1024*1024)
88 
89 #ifdef CONFIG_PPC64
90 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
91 #else
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
94 #endif
95 
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
100 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
101 u64 tb_to_xs;
102 unsigned tb_to_us;
103 
104 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
105 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
106 u64 ticklen_to_xs;	/* 0.64 fraction */
107 
108 /* If last_tick_len corresponds to about 1/HZ seconds, then
109    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
111 
112 DEFINE_SPINLOCK(rtc_lock);
113 EXPORT_SYMBOL_GPL(rtc_lock);
114 
115 u64 tb_to_ns_scale;
116 unsigned tb_to_ns_shift;
117 
118 struct gettimeofday_struct do_gtod;
119 
120 extern unsigned long wall_jiffies;
121 
122 extern struct timezone sys_tz;
123 static long timezone_offset;
124 
125 unsigned long ppc_proc_freq;
126 unsigned long ppc_tb_freq;
127 
128 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
129 static DEFINE_PER_CPU(u64, last_jiffy);
130 
131 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
132 /*
133  * Factors for converting from cputime_t (timebase ticks) to
134  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
135  * These are all stored as 0.64 fixed-point binary fractions.
136  */
137 u64 __cputime_jiffies_factor;
138 EXPORT_SYMBOL(__cputime_jiffies_factor);
139 u64 __cputime_msec_factor;
140 EXPORT_SYMBOL(__cputime_msec_factor);
141 u64 __cputime_sec_factor;
142 EXPORT_SYMBOL(__cputime_sec_factor);
143 u64 __cputime_clockt_factor;
144 EXPORT_SYMBOL(__cputime_clockt_factor);
145 
146 static void calc_cputime_factors(void)
147 {
148 	struct div_result res;
149 
150 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
151 	__cputime_jiffies_factor = res.result_low;
152 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
153 	__cputime_msec_factor = res.result_low;
154 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
155 	__cputime_sec_factor = res.result_low;
156 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
157 	__cputime_clockt_factor = res.result_low;
158 }
159 
160 /*
161  * Read the PURR on systems that have it, otherwise the timebase.
162  */
163 static u64 read_purr(void)
164 {
165 	if (cpu_has_feature(CPU_FTR_PURR))
166 		return mfspr(SPRN_PURR);
167 	return mftb();
168 }
169 
170 /*
171  * Account time for a transition between system, hard irq
172  * or soft irq state.
173  */
174 void account_system_vtime(struct task_struct *tsk)
175 {
176 	u64 now, delta;
177 	unsigned long flags;
178 
179 	local_irq_save(flags);
180 	now = read_purr();
181 	delta = now - get_paca()->startpurr;
182 	get_paca()->startpurr = now;
183 	if (!in_interrupt()) {
184 		delta += get_paca()->system_time;
185 		get_paca()->system_time = 0;
186 	}
187 	account_system_time(tsk, 0, delta);
188 	local_irq_restore(flags);
189 }
190 
191 /*
192  * Transfer the user and system times accumulated in the paca
193  * by the exception entry and exit code to the generic process
194  * user and system time records.
195  * Must be called with interrupts disabled.
196  */
197 void account_process_vtime(struct task_struct *tsk)
198 {
199 	cputime_t utime;
200 
201 	utime = get_paca()->user_time;
202 	get_paca()->user_time = 0;
203 	account_user_time(tsk, utime);
204 }
205 
206 static void account_process_time(struct pt_regs *regs)
207 {
208 	int cpu = smp_processor_id();
209 
210 	account_process_vtime(current);
211 	run_local_timers();
212 	if (rcu_pending(cpu))
213 		rcu_check_callbacks(cpu, user_mode(regs));
214 	scheduler_tick();
215  	run_posix_cpu_timers(current);
216 }
217 
218 #ifdef CONFIG_PPC_SPLPAR
219 /*
220  * Stuff for accounting stolen time.
221  */
222 struct cpu_purr_data {
223 	int	initialized;			/* thread is running */
224 	u64	tb0;			/* timebase at origin time */
225 	u64	purr0;			/* PURR at origin time */
226 	u64	tb;			/* last TB value read */
227 	u64	purr;			/* last PURR value read */
228 	u64	stolen;			/* stolen time so far */
229 	spinlock_t lock;
230 };
231 
232 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
233 
234 static void snapshot_tb_and_purr(void *data)
235 {
236 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
237 
238 	p->tb0 = mftb();
239 	p->purr0 = mfspr(SPRN_PURR);
240 	p->tb = p->tb0;
241 	p->purr = 0;
242 	wmb();
243 	p->initialized = 1;
244 }
245 
246 /*
247  * Called during boot when all cpus have come up.
248  */
249 void snapshot_timebases(void)
250 {
251 	int cpu;
252 
253 	if (!cpu_has_feature(CPU_FTR_PURR))
254 		return;
255 	for_each_possible_cpu(cpu)
256 		spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
257 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
258 }
259 
260 void calculate_steal_time(void)
261 {
262 	u64 tb, purr, t0;
263 	s64 stolen;
264 	struct cpu_purr_data *p0, *pme, *phim;
265 	int cpu;
266 
267 	if (!cpu_has_feature(CPU_FTR_PURR))
268 		return;
269 	cpu = smp_processor_id();
270 	pme = &per_cpu(cpu_purr_data, cpu);
271 	if (!pme->initialized)
272 		return;		/* this can happen in early boot */
273 	p0 = &per_cpu(cpu_purr_data, cpu & ~1);
274 	phim = &per_cpu(cpu_purr_data, cpu ^ 1);
275 	spin_lock(&p0->lock);
276 	tb = mftb();
277 	purr = mfspr(SPRN_PURR) - pme->purr0;
278 	if (!phim->initialized || !cpu_online(cpu ^ 1)) {
279 		stolen = (tb - pme->tb) - (purr - pme->purr);
280 	} else {
281 		t0 = pme->tb0;
282 		if (phim->tb0 < t0)
283 			t0 = phim->tb0;
284 		stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
285 	}
286 	if (stolen > 0) {
287 		account_steal_time(current, stolen);
288 		p0->stolen += stolen;
289 	}
290 	pme->tb = tb;
291 	pme->purr = purr;
292 	spin_unlock(&p0->lock);
293 }
294 
295 /*
296  * Must be called before the cpu is added to the online map when
297  * a cpu is being brought up at runtime.
298  */
299 static void snapshot_purr(void)
300 {
301 	int cpu;
302 	u64 purr;
303 	struct cpu_purr_data *p0, *pme, *phim;
304 	unsigned long flags;
305 
306 	if (!cpu_has_feature(CPU_FTR_PURR))
307 		return;
308 	cpu = smp_processor_id();
309 	pme = &per_cpu(cpu_purr_data, cpu);
310 	p0 = &per_cpu(cpu_purr_data, cpu & ~1);
311 	phim = &per_cpu(cpu_purr_data, cpu ^ 1);
312 	spin_lock_irqsave(&p0->lock, flags);
313 	pme->tb = pme->tb0 = mftb();
314 	purr = mfspr(SPRN_PURR);
315 	if (!phim->initialized) {
316 		pme->purr = 0;
317 		pme->purr0 = purr;
318 	} else {
319 		/* set p->purr and p->purr0 for no change in p0->stolen */
320 		pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
321 		pme->purr0 = purr - pme->purr;
322 	}
323 	pme->initialized = 1;
324 	spin_unlock_irqrestore(&p0->lock, flags);
325 }
326 
327 #endif /* CONFIG_PPC_SPLPAR */
328 
329 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
330 #define calc_cputime_factors()
331 #define account_process_time(regs)	update_process_times(user_mode(regs))
332 #define calculate_steal_time()		do { } while (0)
333 #endif
334 
335 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
336 #define snapshot_purr()			do { } while (0)
337 #endif
338 
339 /*
340  * Called when a cpu comes up after the system has finished booting,
341  * i.e. as a result of a hotplug cpu action.
342  */
343 void snapshot_timebase(void)
344 {
345 	__get_cpu_var(last_jiffy) = get_tb();
346 	snapshot_purr();
347 }
348 
349 void __delay(unsigned long loops)
350 {
351 	unsigned long start;
352 	int diff;
353 
354 	if (__USE_RTC()) {
355 		start = get_rtcl();
356 		do {
357 			/* the RTCL register wraps at 1000000000 */
358 			diff = get_rtcl() - start;
359 			if (diff < 0)
360 				diff += 1000000000;
361 		} while (diff < loops);
362 	} else {
363 		start = get_tbl();
364 		while (get_tbl() - start < loops)
365 			HMT_low();
366 		HMT_medium();
367 	}
368 }
369 EXPORT_SYMBOL(__delay);
370 
371 void udelay(unsigned long usecs)
372 {
373 	__delay(tb_ticks_per_usec * usecs);
374 }
375 EXPORT_SYMBOL(udelay);
376 
377 static __inline__ void timer_check_rtc(void)
378 {
379         /*
380          * update the rtc when needed, this should be performed on the
381          * right fraction of a second. Half or full second ?
382          * Full second works on mk48t59 clocks, others need testing.
383          * Note that this update is basically only used through
384          * the adjtimex system calls. Setting the HW clock in
385          * any other way is a /dev/rtc and userland business.
386          * This is still wrong by -0.5/+1.5 jiffies because of the
387          * timer interrupt resolution and possible delay, but here we
388          * hit a quantization limit which can only be solved by higher
389          * resolution timers and decoupling time management from timer
390          * interrupts. This is also wrong on the clocks
391          * which require being written at the half second boundary.
392          * We should have an rtc call that only sets the minutes and
393          * seconds like on Intel to avoid problems with non UTC clocks.
394          */
395         if (ppc_md.set_rtc_time && ntp_synced() &&
396 	    xtime.tv_sec - last_rtc_update >= 659 &&
397 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
398 		struct rtc_time tm;
399 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
400 		tm.tm_year -= 1900;
401 		tm.tm_mon -= 1;
402 		if (ppc_md.set_rtc_time(&tm) == 0)
403 			last_rtc_update = xtime.tv_sec + 1;
404 		else
405 			/* Try again one minute later */
406 			last_rtc_update += 60;
407         }
408 }
409 
410 /*
411  * This version of gettimeofday has microsecond resolution.
412  */
413 static inline void __do_gettimeofday(struct timeval *tv)
414 {
415 	unsigned long sec, usec;
416 	u64 tb_ticks, xsec;
417 	struct gettimeofday_vars *temp_varp;
418 	u64 temp_tb_to_xs, temp_stamp_xsec;
419 
420 	/*
421 	 * These calculations are faster (gets rid of divides)
422 	 * if done in units of 1/2^20 rather than microseconds.
423 	 * The conversion to microseconds at the end is done
424 	 * without a divide (and in fact, without a multiply)
425 	 */
426 	temp_varp = do_gtod.varp;
427 
428 	/* Sampling the time base must be done after loading
429 	 * do_gtod.varp in order to avoid racing with update_gtod.
430 	 */
431 	data_barrier(temp_varp);
432 	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
433 	temp_tb_to_xs = temp_varp->tb_to_xs;
434 	temp_stamp_xsec = temp_varp->stamp_xsec;
435 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
436 	sec = xsec / XSEC_PER_SEC;
437 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
438 	usec = SCALE_XSEC(usec, 1000000);
439 
440 	tv->tv_sec = sec;
441 	tv->tv_usec = usec;
442 }
443 
444 void do_gettimeofday(struct timeval *tv)
445 {
446 	if (__USE_RTC()) {
447 		/* do this the old way */
448 		unsigned long flags, seq;
449 		unsigned int sec, nsec, usec;
450 
451 		do {
452 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
453 			sec = xtime.tv_sec;
454 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
455 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
456 		usec = nsec / 1000;
457 		while (usec >= 1000000) {
458 			usec -= 1000000;
459 			++sec;
460 		}
461 		tv->tv_sec = sec;
462 		tv->tv_usec = usec;
463 		return;
464 	}
465 	__do_gettimeofday(tv);
466 }
467 
468 EXPORT_SYMBOL(do_gettimeofday);
469 
470 /*
471  * There are two copies of tb_to_xs and stamp_xsec so that no
472  * lock is needed to access and use these values in
473  * do_gettimeofday.  We alternate the copies and as long as a
474  * reasonable time elapses between changes, there will never
475  * be inconsistent values.  ntpd has a minimum of one minute
476  * between updates.
477  */
478 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
479 			       u64 new_tb_to_xs)
480 {
481 	unsigned temp_idx;
482 	struct gettimeofday_vars *temp_varp;
483 
484 	temp_idx = (do_gtod.var_idx == 0);
485 	temp_varp = &do_gtod.vars[temp_idx];
486 
487 	temp_varp->tb_to_xs = new_tb_to_xs;
488 	temp_varp->tb_orig_stamp = new_tb_stamp;
489 	temp_varp->stamp_xsec = new_stamp_xsec;
490 	smp_mb();
491 	do_gtod.varp = temp_varp;
492 	do_gtod.var_idx = temp_idx;
493 
494 	/*
495 	 * tb_update_count is used to allow the userspace gettimeofday code
496 	 * to assure itself that it sees a consistent view of the tb_to_xs and
497 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
498 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
499 	 * the two values of tb_update_count match and are even then the
500 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
501 	 * loops back and reads them again until this criteria is met.
502 	 * We expect the caller to have done the first increment of
503 	 * vdso_data->tb_update_count already.
504 	 */
505 	vdso_data->tb_orig_stamp = new_tb_stamp;
506 	vdso_data->stamp_xsec = new_stamp_xsec;
507 	vdso_data->tb_to_xs = new_tb_to_xs;
508 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
509 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
510 	smp_wmb();
511 	++(vdso_data->tb_update_count);
512 }
513 
514 /*
515  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
516  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
517  * difference tb - tb_orig_stamp small enough to always fit inside a
518  * 32 bits number. This is a requirement of our fast 32 bits userland
519  * implementation in the vdso. If we "miss" a call to this function
520  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
521  * with a too big difference, then the vdso will fallback to calling
522  * the syscall
523  */
524 static __inline__ void timer_recalc_offset(u64 cur_tb)
525 {
526 	unsigned long offset;
527 	u64 new_stamp_xsec;
528 	u64 tlen, t2x;
529 	u64 tb, xsec_old, xsec_new;
530 	struct gettimeofday_vars *varp;
531 
532 	if (__USE_RTC())
533 		return;
534 	tlen = current_tick_length();
535 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
536 	if (tlen == last_tick_len && offset < 0x80000000u)
537 		return;
538 	if (tlen != last_tick_len) {
539 		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
540 		last_tick_len = tlen;
541 	} else
542 		t2x = do_gtod.varp->tb_to_xs;
543 	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
544 	do_div(new_stamp_xsec, 1000000000);
545 	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
546 
547 	++vdso_data->tb_update_count;
548 	smp_mb();
549 
550 	/*
551 	 * Make sure time doesn't go backwards for userspace gettimeofday.
552 	 */
553 	tb = get_tb();
554 	varp = do_gtod.varp;
555 	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
556 		+ varp->stamp_xsec;
557 	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
558 	if (xsec_new < xsec_old)
559 		new_stamp_xsec += xsec_old - xsec_new;
560 
561 	update_gtod(cur_tb, new_stamp_xsec, t2x);
562 }
563 
564 #ifdef CONFIG_SMP
565 unsigned long profile_pc(struct pt_regs *regs)
566 {
567 	unsigned long pc = instruction_pointer(regs);
568 
569 	if (in_lock_functions(pc))
570 		return regs->link;
571 
572 	return pc;
573 }
574 EXPORT_SYMBOL(profile_pc);
575 #endif
576 
577 #ifdef CONFIG_PPC_ISERIES
578 
579 /*
580  * This function recalibrates the timebase based on the 49-bit time-of-day
581  * value in the Titan chip.  The Titan is much more accurate than the value
582  * returned by the service processor for the timebase frequency.
583  */
584 
585 static void iSeries_tb_recal(void)
586 {
587 	struct div_result divres;
588 	unsigned long titan, tb;
589 	tb = get_tb();
590 	titan = HvCallXm_loadTod();
591 	if ( iSeries_recal_titan ) {
592 		unsigned long tb_ticks = tb - iSeries_recal_tb;
593 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
594 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
595 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
596 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
597 		char sign = '+';
598 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
599 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
600 
601 		if ( tick_diff < 0 ) {
602 			tick_diff = -tick_diff;
603 			sign = '-';
604 		}
605 		if ( tick_diff ) {
606 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
607 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
608 						new_tb_ticks_per_jiffy, sign, tick_diff );
609 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
610 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
611 				calc_cputime_factors();
612 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
613 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
614 				tb_to_xs = divres.result_low;
615 				do_gtod.varp->tb_to_xs = tb_to_xs;
616 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
617 				vdso_data->tb_to_xs = tb_to_xs;
618 			}
619 			else {
620 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
621 					"                   new tb_ticks_per_jiffy = %lu\n"
622 					"                   old tb_ticks_per_jiffy = %lu\n",
623 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
624 			}
625 		}
626 	}
627 	iSeries_recal_titan = titan;
628 	iSeries_recal_tb = tb;
629 }
630 #endif
631 
632 /*
633  * For iSeries shared processors, we have to let the hypervisor
634  * set the hardware decrementer.  We set a virtual decrementer
635  * in the lppaca and call the hypervisor if the virtual
636  * decrementer is less than the current value in the hardware
637  * decrementer. (almost always the new decrementer value will
638  * be greater than the current hardware decementer so the hypervisor
639  * call will not be needed)
640  */
641 
642 /*
643  * timer_interrupt - gets called when the decrementer overflows,
644  * with interrupts disabled.
645  */
646 void timer_interrupt(struct pt_regs * regs)
647 {
648 	int next_dec;
649 	int cpu = smp_processor_id();
650 	unsigned long ticks;
651 	u64 tb_next_jiffy;
652 
653 #ifdef CONFIG_PPC32
654 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
655 		do_IRQ(regs);
656 #endif
657 
658 	irq_enter();
659 
660 	profile_tick(CPU_PROFILING, regs);
661 	calculate_steal_time();
662 
663 #ifdef CONFIG_PPC_ISERIES
664 	get_lppaca()->int_dword.fields.decr_int = 0;
665 #endif
666 
667 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
668 	       >= tb_ticks_per_jiffy) {
669 		/* Update last_jiffy */
670 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
671 		/* Handle RTCL overflow on 601 */
672 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
673 			per_cpu(last_jiffy, cpu) -= 1000000000;
674 
675 		/*
676 		 * We cannot disable the decrementer, so in the period
677 		 * between this cpu's being marked offline in cpu_online_map
678 		 * and calling stop-self, it is taking timer interrupts.
679 		 * Avoid calling into the scheduler rebalancing code if this
680 		 * is the case.
681 		 */
682 		if (!cpu_is_offline(cpu))
683 			account_process_time(regs);
684 
685 		/*
686 		 * No need to check whether cpu is offline here; boot_cpuid
687 		 * should have been fixed up by now.
688 		 */
689 		if (cpu != boot_cpuid)
690 			continue;
691 
692 		write_seqlock(&xtime_lock);
693 		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
694 		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
695 			tb_last_jiffy = tb_next_jiffy;
696 			do_timer(regs);
697 			timer_recalc_offset(tb_last_jiffy);
698 			timer_check_rtc();
699 		}
700 		write_sequnlock(&xtime_lock);
701 	}
702 
703 	next_dec = tb_ticks_per_jiffy - ticks;
704 	set_dec(next_dec);
705 
706 #ifdef CONFIG_PPC_ISERIES
707 	if (hvlpevent_is_pending())
708 		process_hvlpevents(regs);
709 #endif
710 
711 #ifdef CONFIG_PPC64
712 	/* collect purr register values often, for accurate calculations */
713 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
714 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
715 		cu->current_tb = mfspr(SPRN_PURR);
716 	}
717 #endif
718 
719 	irq_exit();
720 }
721 
722 void wakeup_decrementer(void)
723 {
724 	unsigned long ticks;
725 
726 	/*
727 	 * The timebase gets saved on sleep and restored on wakeup,
728 	 * so all we need to do is to reset the decrementer.
729 	 */
730 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
731 	if (ticks < tb_ticks_per_jiffy)
732 		ticks = tb_ticks_per_jiffy - ticks;
733 	else
734 		ticks = 1;
735 	set_dec(ticks);
736 }
737 
738 #ifdef CONFIG_SMP
739 void __init smp_space_timers(unsigned int max_cpus)
740 {
741 	int i;
742 	unsigned long half = tb_ticks_per_jiffy / 2;
743 	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
744 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
745 
746 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
747 	previous_tb -= tb_ticks_per_jiffy;
748 	/*
749 	 * The stolen time calculation for POWER5 shared-processor LPAR
750 	 * systems works better if the two threads' timebase interrupts
751 	 * are staggered by half a jiffy with respect to each other.
752 	 */
753 	for_each_possible_cpu(i) {
754 		if (i == boot_cpuid)
755 			continue;
756 		if (i == (boot_cpuid ^ 1))
757 			per_cpu(last_jiffy, i) =
758 				per_cpu(last_jiffy, boot_cpuid) - half;
759 		else if (i & 1)
760 			per_cpu(last_jiffy, i) =
761 				per_cpu(last_jiffy, i ^ 1) + half;
762 		else {
763 			previous_tb += offset;
764 			per_cpu(last_jiffy, i) = previous_tb;
765 		}
766 	}
767 }
768 #endif
769 
770 /*
771  * Scheduler clock - returns current time in nanosec units.
772  *
773  * Note: mulhdu(a, b) (multiply high double unsigned) returns
774  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
775  * are 64-bit unsigned numbers.
776  */
777 unsigned long long sched_clock(void)
778 {
779 	if (__USE_RTC())
780 		return get_rtc();
781 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
782 }
783 
784 int do_settimeofday(struct timespec *tv)
785 {
786 	time_t wtm_sec, new_sec = tv->tv_sec;
787 	long wtm_nsec, new_nsec = tv->tv_nsec;
788 	unsigned long flags;
789 	u64 new_xsec;
790 	unsigned long tb_delta;
791 
792 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
793 		return -EINVAL;
794 
795 	write_seqlock_irqsave(&xtime_lock, flags);
796 
797 	/*
798 	 * Updating the RTC is not the job of this code. If the time is
799 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
800 	 * is cleared.  Tools like clock/hwclock either copy the RTC
801 	 * to the system time, in which case there is no point in writing
802 	 * to the RTC again, or write to the RTC but then they don't call
803 	 * settimeofday to perform this operation.
804 	 */
805 #ifdef CONFIG_PPC_ISERIES
806 	if (first_settimeofday) {
807 		iSeries_tb_recal();
808 		first_settimeofday = 0;
809 	}
810 #endif
811 
812 	/* Make userspace gettimeofday spin until we're done. */
813 	++vdso_data->tb_update_count;
814 	smp_mb();
815 
816 	/*
817 	 * Subtract off the number of nanoseconds since the
818 	 * beginning of the last tick.
819 	 * Note that since we don't increment jiffies_64 anywhere other
820 	 * than in do_timer (since we don't have a lost tick problem),
821 	 * wall_jiffies will always be the same as jiffies,
822 	 * and therefore the (jiffies - wall_jiffies) computation
823 	 * has been removed.
824 	 */
825 	tb_delta = tb_ticks_since(tb_last_jiffy);
826 	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
827 	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
828 
829 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
830 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
831 
832  	set_normalized_timespec(&xtime, new_sec, new_nsec);
833 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
834 
835 	/* In case of a large backwards jump in time with NTP, we want the
836 	 * clock to be updated as soon as the PLL is again in lock.
837 	 */
838 	last_rtc_update = new_sec - 658;
839 
840 	ntp_clear();
841 
842 	new_xsec = xtime.tv_nsec;
843 	if (new_xsec != 0) {
844 		new_xsec *= XSEC_PER_SEC;
845 		do_div(new_xsec, NSEC_PER_SEC);
846 	}
847 	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
848 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
849 
850 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
851 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
852 
853 	write_sequnlock_irqrestore(&xtime_lock, flags);
854 	clock_was_set();
855 	return 0;
856 }
857 
858 EXPORT_SYMBOL(do_settimeofday);
859 
860 static int __init get_freq(char *name, int cells, unsigned long *val)
861 {
862 	struct device_node *cpu;
863 	const unsigned int *fp;
864 	int found = 0;
865 
866 	/* The cpu node should have timebase and clock frequency properties */
867 	cpu = of_find_node_by_type(NULL, "cpu");
868 
869 	if (cpu) {
870 		fp = get_property(cpu, name, NULL);
871 		if (fp) {
872 			found = 1;
873 			*val = of_read_ulong(fp, cells);
874 		}
875 
876 		of_node_put(cpu);
877 	}
878 
879 	return found;
880 }
881 
882 void __init generic_calibrate_decr(void)
883 {
884 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
885 
886 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
887 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
888 
889 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
890 				"(not found)\n");
891 	}
892 
893 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
894 
895 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
896 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
897 
898 		printk(KERN_ERR "WARNING: Estimating processor frequency "
899 				"(not found)\n");
900 	}
901 
902 #ifdef CONFIG_BOOKE
903 	/* Set the time base to zero */
904 	mtspr(SPRN_TBWL, 0);
905 	mtspr(SPRN_TBWU, 0);
906 
907 	/* Clear any pending timer interrupts */
908 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
909 
910 	/* Enable decrementer interrupt */
911 	mtspr(SPRN_TCR, TCR_DIE);
912 #endif
913 }
914 
915 unsigned long get_boot_time(void)
916 {
917 	struct rtc_time tm;
918 
919 	if (ppc_md.get_boot_time)
920 		return ppc_md.get_boot_time();
921 	if (!ppc_md.get_rtc_time)
922 		return 0;
923 	ppc_md.get_rtc_time(&tm);
924 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
925 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
926 }
927 
928 /* This function is only called on the boot processor */
929 void __init time_init(void)
930 {
931 	unsigned long flags;
932 	unsigned long tm = 0;
933 	struct div_result res;
934 	u64 scale, x;
935 	unsigned shift;
936 
937         if (ppc_md.time_init != NULL)
938                 timezone_offset = ppc_md.time_init();
939 
940 	if (__USE_RTC()) {
941 		/* 601 processor: dec counts down by 128 every 128ns */
942 		ppc_tb_freq = 1000000000;
943 		tb_last_jiffy = get_rtcl();
944 	} else {
945 		/* Normal PowerPC with timebase register */
946 		ppc_md.calibrate_decr();
947 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
948 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
949 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
950 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
951 		tb_last_jiffy = get_tb();
952 	}
953 
954 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
955 	tb_ticks_per_sec = ppc_tb_freq;
956 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
957 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
958 	calc_cputime_factors();
959 
960 	/*
961 	 * Calculate the length of each tick in ns.  It will not be
962 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
963 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
964 	 * rounded up.
965 	 */
966 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
967 	do_div(x, ppc_tb_freq);
968 	tick_nsec = x;
969 	last_tick_len = x << TICKLEN_SCALE;
970 
971 	/*
972 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
973 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
974 	 * It is computed as:
975 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
976 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
977 	 * which turns out to be N = 51 - SHIFT_HZ.
978 	 * This gives the result as a 0.64 fixed-point fraction.
979 	 * That value is reduced by an offset amounting to 1 xsec per
980 	 * 2^31 timebase ticks to avoid problems with time going backwards
981 	 * by 1 xsec when we do timer_recalc_offset due to losing the
982 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
983 	 * since there are 2^20 xsec in a second.
984 	 */
985 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
986 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
987 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
988 	ticklen_to_xs = res.result_low;
989 
990 	/* Compute tb_to_xs from tick_nsec */
991 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
992 
993 	/*
994 	 * Compute scale factor for sched_clock.
995 	 * The calibrate_decr() function has set tb_ticks_per_sec,
996 	 * which is the timebase frequency.
997 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
998 	 * the 128-bit result as a 64.64 fixed-point number.
999 	 * We then shift that number right until it is less than 1.0,
1000 	 * giving us the scale factor and shift count to use in
1001 	 * sched_clock().
1002 	 */
1003 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1004 	scale = res.result_low;
1005 	for (shift = 0; res.result_high != 0; ++shift) {
1006 		scale = (scale >> 1) | (res.result_high << 63);
1007 		res.result_high >>= 1;
1008 	}
1009 	tb_to_ns_scale = scale;
1010 	tb_to_ns_shift = shift;
1011 
1012 	tm = get_boot_time();
1013 
1014 	write_seqlock_irqsave(&xtime_lock, flags);
1015 
1016 	/* If platform provided a timezone (pmac), we correct the time */
1017         if (timezone_offset) {
1018 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1019 		sys_tz.tz_dsttime = 0;
1020 		tm -= timezone_offset;
1021         }
1022 
1023 	xtime.tv_sec = tm;
1024 	xtime.tv_nsec = 0;
1025 	do_gtod.varp = &do_gtod.vars[0];
1026 	do_gtod.var_idx = 0;
1027 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
1028 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
1029 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1030 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1031 	do_gtod.varp->tb_to_xs = tb_to_xs;
1032 	do_gtod.tb_to_us = tb_to_us;
1033 
1034 	vdso_data->tb_orig_stamp = tb_last_jiffy;
1035 	vdso_data->tb_update_count = 0;
1036 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1037 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1038 	vdso_data->tb_to_xs = tb_to_xs;
1039 
1040 	time_freq = 0;
1041 
1042 	last_rtc_update = xtime.tv_sec;
1043 	set_normalized_timespec(&wall_to_monotonic,
1044 	                        -xtime.tv_sec, -xtime.tv_nsec);
1045 	write_sequnlock_irqrestore(&xtime_lock, flags);
1046 
1047 	/* Not exact, but the timer interrupt takes care of this */
1048 	set_dec(tb_ticks_per_jiffy);
1049 }
1050 
1051 
1052 #define FEBRUARY	2
1053 #define	STARTOFTIME	1970
1054 #define SECDAY		86400L
1055 #define SECYR		(SECDAY * 365)
1056 #define	leapyear(year)		((year) % 4 == 0 && \
1057 				 ((year) % 100 != 0 || (year) % 400 == 0))
1058 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1059 #define	days_in_month(a) 	(month_days[(a) - 1])
1060 
1061 static int month_days[12] = {
1062 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1063 };
1064 
1065 /*
1066  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1067  */
1068 void GregorianDay(struct rtc_time * tm)
1069 {
1070 	int leapsToDate;
1071 	int lastYear;
1072 	int day;
1073 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1074 
1075 	lastYear = tm->tm_year - 1;
1076 
1077 	/*
1078 	 * Number of leap corrections to apply up to end of last year
1079 	 */
1080 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1081 
1082 	/*
1083 	 * This year is a leap year if it is divisible by 4 except when it is
1084 	 * divisible by 100 unless it is divisible by 400
1085 	 *
1086 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1087 	 */
1088 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1089 
1090 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1091 		   tm->tm_mday;
1092 
1093 	tm->tm_wday = day % 7;
1094 }
1095 
1096 void to_tm(int tim, struct rtc_time * tm)
1097 {
1098 	register int    i;
1099 	register long   hms, day;
1100 
1101 	day = tim / SECDAY;
1102 	hms = tim % SECDAY;
1103 
1104 	/* Hours, minutes, seconds are easy */
1105 	tm->tm_hour = hms / 3600;
1106 	tm->tm_min = (hms % 3600) / 60;
1107 	tm->tm_sec = (hms % 3600) % 60;
1108 
1109 	/* Number of years in days */
1110 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1111 		day -= days_in_year(i);
1112 	tm->tm_year = i;
1113 
1114 	/* Number of months in days left */
1115 	if (leapyear(tm->tm_year))
1116 		days_in_month(FEBRUARY) = 29;
1117 	for (i = 1; day >= days_in_month(i); i++)
1118 		day -= days_in_month(i);
1119 	days_in_month(FEBRUARY) = 28;
1120 	tm->tm_mon = i;
1121 
1122 	/* Days are what is left over (+1) from all that. */
1123 	tm->tm_mday = day + 1;
1124 
1125 	/*
1126 	 * Determine the day of week
1127 	 */
1128 	GregorianDay(tm);
1129 }
1130 
1131 /* Auxiliary function to compute scaling factors */
1132 /* Actually the choice of a timebase running at 1/4 the of the bus
1133  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1134  * It makes this computation very precise (27-28 bits typically) which
1135  * is optimistic considering the stability of most processor clock
1136  * oscillators and the precision with which the timebase frequency
1137  * is measured but does not harm.
1138  */
1139 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1140 {
1141         unsigned mlt=0, tmp, err;
1142         /* No concern for performance, it's done once: use a stupid
1143          * but safe and compact method to find the multiplier.
1144          */
1145 
1146         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1147                 if (mulhwu(inscale, mlt|tmp) < outscale)
1148 			mlt |= tmp;
1149         }
1150 
1151         /* We might still be off by 1 for the best approximation.
1152          * A side effect of this is that if outscale is too large
1153          * the returned value will be zero.
1154          * Many corner cases have been checked and seem to work,
1155          * some might have been forgotten in the test however.
1156          */
1157 
1158         err = inscale * (mlt+1);
1159         if (err <= inscale/2)
1160 		mlt++;
1161         return mlt;
1162 }
1163 
1164 /*
1165  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1166  * result.
1167  */
1168 void div128_by_32(u64 dividend_high, u64 dividend_low,
1169 		  unsigned divisor, struct div_result *dr)
1170 {
1171 	unsigned long a, b, c, d;
1172 	unsigned long w, x, y, z;
1173 	u64 ra, rb, rc;
1174 
1175 	a = dividend_high >> 32;
1176 	b = dividend_high & 0xffffffff;
1177 	c = dividend_low >> 32;
1178 	d = dividend_low & 0xffffffff;
1179 
1180 	w = a / divisor;
1181 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1182 
1183 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1184 	x = ra;
1185 
1186 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1187 	y = rb;
1188 
1189 	do_div(rc, divisor);
1190 	z = rc;
1191 
1192 	dr->result_high = ((u64)w << 32) + x;
1193 	dr->result_low  = ((u64)y << 32) + z;
1194 
1195 }
1196