1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/errno.h> 36 #include <linux/module.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 55 #include <asm/io.h> 56 #include <asm/processor.h> 57 #include <asm/nvram.h> 58 #include <asm/cache.h> 59 #include <asm/machdep.h> 60 #include <asm/uaccess.h> 61 #include <asm/time.h> 62 #include <asm/prom.h> 63 #include <asm/irq.h> 64 #include <asm/div64.h> 65 #include <asm/smp.h> 66 #include <asm/vdso_datapage.h> 67 #ifdef CONFIG_PPC64 68 #include <asm/firmware.h> 69 #endif 70 #ifdef CONFIG_PPC_ISERIES 71 #include <asm/iseries/it_lp_queue.h> 72 #include <asm/iseries/hv_call_xm.h> 73 #endif 74 #include <asm/smp.h> 75 76 /* keep track of when we need to update the rtc */ 77 time_t last_rtc_update; 78 #ifdef CONFIG_PPC_ISERIES 79 unsigned long iSeries_recal_titan = 0; 80 unsigned long iSeries_recal_tb = 0; 81 static unsigned long first_settimeofday = 1; 82 #endif 83 84 /* The decrementer counts down by 128 every 128ns on a 601. */ 85 #define DECREMENTER_COUNT_601 (1000000000 / HZ) 86 87 #define XSEC_PER_SEC (1024*1024) 88 89 #ifdef CONFIG_PPC64 90 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 91 #else 92 /* compute ((xsec << 12) * max) >> 32 */ 93 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 94 #endif 95 96 unsigned long tb_ticks_per_jiffy; 97 unsigned long tb_ticks_per_usec = 100; /* sane default */ 98 EXPORT_SYMBOL(tb_ticks_per_usec); 99 unsigned long tb_ticks_per_sec; 100 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 101 u64 tb_to_xs; 102 unsigned tb_to_us; 103 104 #define TICKLEN_SCALE TICK_LENGTH_SHIFT 105 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 106 u64 ticklen_to_xs; /* 0.64 fraction */ 107 108 /* If last_tick_len corresponds to about 1/HZ seconds, then 109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 110 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 111 112 DEFINE_SPINLOCK(rtc_lock); 113 EXPORT_SYMBOL_GPL(rtc_lock); 114 115 u64 tb_to_ns_scale; 116 unsigned tb_to_ns_shift; 117 118 struct gettimeofday_struct do_gtod; 119 120 extern unsigned long wall_jiffies; 121 122 extern struct timezone sys_tz; 123 static long timezone_offset; 124 125 unsigned long ppc_proc_freq; 126 unsigned long ppc_tb_freq; 127 128 static u64 tb_last_jiffy __cacheline_aligned_in_smp; 129 static DEFINE_PER_CPU(u64, last_jiffy); 130 131 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 132 /* 133 * Factors for converting from cputime_t (timebase ticks) to 134 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 135 * These are all stored as 0.64 fixed-point binary fractions. 136 */ 137 u64 __cputime_jiffies_factor; 138 EXPORT_SYMBOL(__cputime_jiffies_factor); 139 u64 __cputime_msec_factor; 140 EXPORT_SYMBOL(__cputime_msec_factor); 141 u64 __cputime_sec_factor; 142 EXPORT_SYMBOL(__cputime_sec_factor); 143 u64 __cputime_clockt_factor; 144 EXPORT_SYMBOL(__cputime_clockt_factor); 145 146 static void calc_cputime_factors(void) 147 { 148 struct div_result res; 149 150 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 151 __cputime_jiffies_factor = res.result_low; 152 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 153 __cputime_msec_factor = res.result_low; 154 div128_by_32(1, 0, tb_ticks_per_sec, &res); 155 __cputime_sec_factor = res.result_low; 156 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 157 __cputime_clockt_factor = res.result_low; 158 } 159 160 /* 161 * Read the PURR on systems that have it, otherwise the timebase. 162 */ 163 static u64 read_purr(void) 164 { 165 if (cpu_has_feature(CPU_FTR_PURR)) 166 return mfspr(SPRN_PURR); 167 return mftb(); 168 } 169 170 /* 171 * Account time for a transition between system, hard irq 172 * or soft irq state. 173 */ 174 void account_system_vtime(struct task_struct *tsk) 175 { 176 u64 now, delta; 177 unsigned long flags; 178 179 local_irq_save(flags); 180 now = read_purr(); 181 delta = now - get_paca()->startpurr; 182 get_paca()->startpurr = now; 183 if (!in_interrupt()) { 184 delta += get_paca()->system_time; 185 get_paca()->system_time = 0; 186 } 187 account_system_time(tsk, 0, delta); 188 local_irq_restore(flags); 189 } 190 191 /* 192 * Transfer the user and system times accumulated in the paca 193 * by the exception entry and exit code to the generic process 194 * user and system time records. 195 * Must be called with interrupts disabled. 196 */ 197 void account_process_vtime(struct task_struct *tsk) 198 { 199 cputime_t utime; 200 201 utime = get_paca()->user_time; 202 get_paca()->user_time = 0; 203 account_user_time(tsk, utime); 204 } 205 206 static void account_process_time(struct pt_regs *regs) 207 { 208 int cpu = smp_processor_id(); 209 210 account_process_vtime(current); 211 run_local_timers(); 212 if (rcu_pending(cpu)) 213 rcu_check_callbacks(cpu, user_mode(regs)); 214 scheduler_tick(); 215 run_posix_cpu_timers(current); 216 } 217 218 #ifdef CONFIG_PPC_SPLPAR 219 /* 220 * Stuff for accounting stolen time. 221 */ 222 struct cpu_purr_data { 223 int initialized; /* thread is running */ 224 u64 tb0; /* timebase at origin time */ 225 u64 purr0; /* PURR at origin time */ 226 u64 tb; /* last TB value read */ 227 u64 purr; /* last PURR value read */ 228 u64 stolen; /* stolen time so far */ 229 spinlock_t lock; 230 }; 231 232 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 233 234 static void snapshot_tb_and_purr(void *data) 235 { 236 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 237 238 p->tb0 = mftb(); 239 p->purr0 = mfspr(SPRN_PURR); 240 p->tb = p->tb0; 241 p->purr = 0; 242 wmb(); 243 p->initialized = 1; 244 } 245 246 /* 247 * Called during boot when all cpus have come up. 248 */ 249 void snapshot_timebases(void) 250 { 251 int cpu; 252 253 if (!cpu_has_feature(CPU_FTR_PURR)) 254 return; 255 for_each_possible_cpu(cpu) 256 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock); 257 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1); 258 } 259 260 void calculate_steal_time(void) 261 { 262 u64 tb, purr, t0; 263 s64 stolen; 264 struct cpu_purr_data *p0, *pme, *phim; 265 int cpu; 266 267 if (!cpu_has_feature(CPU_FTR_PURR)) 268 return; 269 cpu = smp_processor_id(); 270 pme = &per_cpu(cpu_purr_data, cpu); 271 if (!pme->initialized) 272 return; /* this can happen in early boot */ 273 p0 = &per_cpu(cpu_purr_data, cpu & ~1); 274 phim = &per_cpu(cpu_purr_data, cpu ^ 1); 275 spin_lock(&p0->lock); 276 tb = mftb(); 277 purr = mfspr(SPRN_PURR) - pme->purr0; 278 if (!phim->initialized || !cpu_online(cpu ^ 1)) { 279 stolen = (tb - pme->tb) - (purr - pme->purr); 280 } else { 281 t0 = pme->tb0; 282 if (phim->tb0 < t0) 283 t0 = phim->tb0; 284 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen; 285 } 286 if (stolen > 0) { 287 account_steal_time(current, stolen); 288 p0->stolen += stolen; 289 } 290 pme->tb = tb; 291 pme->purr = purr; 292 spin_unlock(&p0->lock); 293 } 294 295 /* 296 * Must be called before the cpu is added to the online map when 297 * a cpu is being brought up at runtime. 298 */ 299 static void snapshot_purr(void) 300 { 301 int cpu; 302 u64 purr; 303 struct cpu_purr_data *p0, *pme, *phim; 304 unsigned long flags; 305 306 if (!cpu_has_feature(CPU_FTR_PURR)) 307 return; 308 cpu = smp_processor_id(); 309 pme = &per_cpu(cpu_purr_data, cpu); 310 p0 = &per_cpu(cpu_purr_data, cpu & ~1); 311 phim = &per_cpu(cpu_purr_data, cpu ^ 1); 312 spin_lock_irqsave(&p0->lock, flags); 313 pme->tb = pme->tb0 = mftb(); 314 purr = mfspr(SPRN_PURR); 315 if (!phim->initialized) { 316 pme->purr = 0; 317 pme->purr0 = purr; 318 } else { 319 /* set p->purr and p->purr0 for no change in p0->stolen */ 320 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen; 321 pme->purr0 = purr - pme->purr; 322 } 323 pme->initialized = 1; 324 spin_unlock_irqrestore(&p0->lock, flags); 325 } 326 327 #endif /* CONFIG_PPC_SPLPAR */ 328 329 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 330 #define calc_cputime_factors() 331 #define account_process_time(regs) update_process_times(user_mode(regs)) 332 #define calculate_steal_time() do { } while (0) 333 #endif 334 335 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 336 #define snapshot_purr() do { } while (0) 337 #endif 338 339 /* 340 * Called when a cpu comes up after the system has finished booting, 341 * i.e. as a result of a hotplug cpu action. 342 */ 343 void snapshot_timebase(void) 344 { 345 __get_cpu_var(last_jiffy) = get_tb(); 346 snapshot_purr(); 347 } 348 349 void __delay(unsigned long loops) 350 { 351 unsigned long start; 352 int diff; 353 354 if (__USE_RTC()) { 355 start = get_rtcl(); 356 do { 357 /* the RTCL register wraps at 1000000000 */ 358 diff = get_rtcl() - start; 359 if (diff < 0) 360 diff += 1000000000; 361 } while (diff < loops); 362 } else { 363 start = get_tbl(); 364 while (get_tbl() - start < loops) 365 HMT_low(); 366 HMT_medium(); 367 } 368 } 369 EXPORT_SYMBOL(__delay); 370 371 void udelay(unsigned long usecs) 372 { 373 __delay(tb_ticks_per_usec * usecs); 374 } 375 EXPORT_SYMBOL(udelay); 376 377 static __inline__ void timer_check_rtc(void) 378 { 379 /* 380 * update the rtc when needed, this should be performed on the 381 * right fraction of a second. Half or full second ? 382 * Full second works on mk48t59 clocks, others need testing. 383 * Note that this update is basically only used through 384 * the adjtimex system calls. Setting the HW clock in 385 * any other way is a /dev/rtc and userland business. 386 * This is still wrong by -0.5/+1.5 jiffies because of the 387 * timer interrupt resolution and possible delay, but here we 388 * hit a quantization limit which can only be solved by higher 389 * resolution timers and decoupling time management from timer 390 * interrupts. This is also wrong on the clocks 391 * which require being written at the half second boundary. 392 * We should have an rtc call that only sets the minutes and 393 * seconds like on Intel to avoid problems with non UTC clocks. 394 */ 395 if (ppc_md.set_rtc_time && ntp_synced() && 396 xtime.tv_sec - last_rtc_update >= 659 && 397 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) { 398 struct rtc_time tm; 399 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); 400 tm.tm_year -= 1900; 401 tm.tm_mon -= 1; 402 if (ppc_md.set_rtc_time(&tm) == 0) 403 last_rtc_update = xtime.tv_sec + 1; 404 else 405 /* Try again one minute later */ 406 last_rtc_update += 60; 407 } 408 } 409 410 /* 411 * This version of gettimeofday has microsecond resolution. 412 */ 413 static inline void __do_gettimeofday(struct timeval *tv) 414 { 415 unsigned long sec, usec; 416 u64 tb_ticks, xsec; 417 struct gettimeofday_vars *temp_varp; 418 u64 temp_tb_to_xs, temp_stamp_xsec; 419 420 /* 421 * These calculations are faster (gets rid of divides) 422 * if done in units of 1/2^20 rather than microseconds. 423 * The conversion to microseconds at the end is done 424 * without a divide (and in fact, without a multiply) 425 */ 426 temp_varp = do_gtod.varp; 427 428 /* Sampling the time base must be done after loading 429 * do_gtod.varp in order to avoid racing with update_gtod. 430 */ 431 data_barrier(temp_varp); 432 tb_ticks = get_tb() - temp_varp->tb_orig_stamp; 433 temp_tb_to_xs = temp_varp->tb_to_xs; 434 temp_stamp_xsec = temp_varp->stamp_xsec; 435 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); 436 sec = xsec / XSEC_PER_SEC; 437 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); 438 usec = SCALE_XSEC(usec, 1000000); 439 440 tv->tv_sec = sec; 441 tv->tv_usec = usec; 442 } 443 444 void do_gettimeofday(struct timeval *tv) 445 { 446 if (__USE_RTC()) { 447 /* do this the old way */ 448 unsigned long flags, seq; 449 unsigned int sec, nsec, usec; 450 451 do { 452 seq = read_seqbegin_irqsave(&xtime_lock, flags); 453 sec = xtime.tv_sec; 454 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy); 455 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 456 usec = nsec / 1000; 457 while (usec >= 1000000) { 458 usec -= 1000000; 459 ++sec; 460 } 461 tv->tv_sec = sec; 462 tv->tv_usec = usec; 463 return; 464 } 465 __do_gettimeofday(tv); 466 } 467 468 EXPORT_SYMBOL(do_gettimeofday); 469 470 /* 471 * There are two copies of tb_to_xs and stamp_xsec so that no 472 * lock is needed to access and use these values in 473 * do_gettimeofday. We alternate the copies and as long as a 474 * reasonable time elapses between changes, there will never 475 * be inconsistent values. ntpd has a minimum of one minute 476 * between updates. 477 */ 478 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 479 u64 new_tb_to_xs) 480 { 481 unsigned temp_idx; 482 struct gettimeofday_vars *temp_varp; 483 484 temp_idx = (do_gtod.var_idx == 0); 485 temp_varp = &do_gtod.vars[temp_idx]; 486 487 temp_varp->tb_to_xs = new_tb_to_xs; 488 temp_varp->tb_orig_stamp = new_tb_stamp; 489 temp_varp->stamp_xsec = new_stamp_xsec; 490 smp_mb(); 491 do_gtod.varp = temp_varp; 492 do_gtod.var_idx = temp_idx; 493 494 /* 495 * tb_update_count is used to allow the userspace gettimeofday code 496 * to assure itself that it sees a consistent view of the tb_to_xs and 497 * stamp_xsec variables. It reads the tb_update_count, then reads 498 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 499 * the two values of tb_update_count match and are even then the 500 * tb_to_xs and stamp_xsec values are consistent. If not, then it 501 * loops back and reads them again until this criteria is met. 502 * We expect the caller to have done the first increment of 503 * vdso_data->tb_update_count already. 504 */ 505 vdso_data->tb_orig_stamp = new_tb_stamp; 506 vdso_data->stamp_xsec = new_stamp_xsec; 507 vdso_data->tb_to_xs = new_tb_to_xs; 508 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 509 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 510 smp_wmb(); 511 ++(vdso_data->tb_update_count); 512 } 513 514 /* 515 * When the timebase - tb_orig_stamp gets too big, we do a manipulation 516 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 517 * difference tb - tb_orig_stamp small enough to always fit inside a 518 * 32 bits number. This is a requirement of our fast 32 bits userland 519 * implementation in the vdso. If we "miss" a call to this function 520 * (interrupt latency, CPU locked in a spinlock, ...) and we end up 521 * with a too big difference, then the vdso will fallback to calling 522 * the syscall 523 */ 524 static __inline__ void timer_recalc_offset(u64 cur_tb) 525 { 526 unsigned long offset; 527 u64 new_stamp_xsec; 528 u64 tlen, t2x; 529 u64 tb, xsec_old, xsec_new; 530 struct gettimeofday_vars *varp; 531 532 if (__USE_RTC()) 533 return; 534 tlen = current_tick_length(); 535 offset = cur_tb - do_gtod.varp->tb_orig_stamp; 536 if (tlen == last_tick_len && offset < 0x80000000u) 537 return; 538 if (tlen != last_tick_len) { 539 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs); 540 last_tick_len = tlen; 541 } else 542 t2x = do_gtod.varp->tb_to_xs; 543 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 544 do_div(new_stamp_xsec, 1000000000); 545 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 546 547 ++vdso_data->tb_update_count; 548 smp_mb(); 549 550 /* 551 * Make sure time doesn't go backwards for userspace gettimeofday. 552 */ 553 tb = get_tb(); 554 varp = do_gtod.varp; 555 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs) 556 + varp->stamp_xsec; 557 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec; 558 if (xsec_new < xsec_old) 559 new_stamp_xsec += xsec_old - xsec_new; 560 561 update_gtod(cur_tb, new_stamp_xsec, t2x); 562 } 563 564 #ifdef CONFIG_SMP 565 unsigned long profile_pc(struct pt_regs *regs) 566 { 567 unsigned long pc = instruction_pointer(regs); 568 569 if (in_lock_functions(pc)) 570 return regs->link; 571 572 return pc; 573 } 574 EXPORT_SYMBOL(profile_pc); 575 #endif 576 577 #ifdef CONFIG_PPC_ISERIES 578 579 /* 580 * This function recalibrates the timebase based on the 49-bit time-of-day 581 * value in the Titan chip. The Titan is much more accurate than the value 582 * returned by the service processor for the timebase frequency. 583 */ 584 585 static void iSeries_tb_recal(void) 586 { 587 struct div_result divres; 588 unsigned long titan, tb; 589 tb = get_tb(); 590 titan = HvCallXm_loadTod(); 591 if ( iSeries_recal_titan ) { 592 unsigned long tb_ticks = tb - iSeries_recal_tb; 593 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 594 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 595 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 596 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 597 char sign = '+'; 598 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 599 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 600 601 if ( tick_diff < 0 ) { 602 tick_diff = -tick_diff; 603 sign = '-'; 604 } 605 if ( tick_diff ) { 606 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 607 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 608 new_tb_ticks_per_jiffy, sign, tick_diff ); 609 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 610 tb_ticks_per_sec = new_tb_ticks_per_sec; 611 calc_cputime_factors(); 612 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 613 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 614 tb_to_xs = divres.result_low; 615 do_gtod.varp->tb_to_xs = tb_to_xs; 616 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 617 vdso_data->tb_to_xs = tb_to_xs; 618 } 619 else { 620 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 621 " new tb_ticks_per_jiffy = %lu\n" 622 " old tb_ticks_per_jiffy = %lu\n", 623 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 624 } 625 } 626 } 627 iSeries_recal_titan = titan; 628 iSeries_recal_tb = tb; 629 } 630 #endif 631 632 /* 633 * For iSeries shared processors, we have to let the hypervisor 634 * set the hardware decrementer. We set a virtual decrementer 635 * in the lppaca and call the hypervisor if the virtual 636 * decrementer is less than the current value in the hardware 637 * decrementer. (almost always the new decrementer value will 638 * be greater than the current hardware decementer so the hypervisor 639 * call will not be needed) 640 */ 641 642 /* 643 * timer_interrupt - gets called when the decrementer overflows, 644 * with interrupts disabled. 645 */ 646 void timer_interrupt(struct pt_regs * regs) 647 { 648 int next_dec; 649 int cpu = smp_processor_id(); 650 unsigned long ticks; 651 u64 tb_next_jiffy; 652 653 #ifdef CONFIG_PPC32 654 if (atomic_read(&ppc_n_lost_interrupts) != 0) 655 do_IRQ(regs); 656 #endif 657 658 irq_enter(); 659 660 profile_tick(CPU_PROFILING, regs); 661 calculate_steal_time(); 662 663 #ifdef CONFIG_PPC_ISERIES 664 get_lppaca()->int_dword.fields.decr_int = 0; 665 #endif 666 667 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) 668 >= tb_ticks_per_jiffy) { 669 /* Update last_jiffy */ 670 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; 671 /* Handle RTCL overflow on 601 */ 672 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) 673 per_cpu(last_jiffy, cpu) -= 1000000000; 674 675 /* 676 * We cannot disable the decrementer, so in the period 677 * between this cpu's being marked offline in cpu_online_map 678 * and calling stop-self, it is taking timer interrupts. 679 * Avoid calling into the scheduler rebalancing code if this 680 * is the case. 681 */ 682 if (!cpu_is_offline(cpu)) 683 account_process_time(regs); 684 685 /* 686 * No need to check whether cpu is offline here; boot_cpuid 687 * should have been fixed up by now. 688 */ 689 if (cpu != boot_cpuid) 690 continue; 691 692 write_seqlock(&xtime_lock); 693 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy; 694 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) { 695 tb_last_jiffy = tb_next_jiffy; 696 do_timer(regs); 697 timer_recalc_offset(tb_last_jiffy); 698 timer_check_rtc(); 699 } 700 write_sequnlock(&xtime_lock); 701 } 702 703 next_dec = tb_ticks_per_jiffy - ticks; 704 set_dec(next_dec); 705 706 #ifdef CONFIG_PPC_ISERIES 707 if (hvlpevent_is_pending()) 708 process_hvlpevents(regs); 709 #endif 710 711 #ifdef CONFIG_PPC64 712 /* collect purr register values often, for accurate calculations */ 713 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 714 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 715 cu->current_tb = mfspr(SPRN_PURR); 716 } 717 #endif 718 719 irq_exit(); 720 } 721 722 void wakeup_decrementer(void) 723 { 724 unsigned long ticks; 725 726 /* 727 * The timebase gets saved on sleep and restored on wakeup, 728 * so all we need to do is to reset the decrementer. 729 */ 730 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 731 if (ticks < tb_ticks_per_jiffy) 732 ticks = tb_ticks_per_jiffy - ticks; 733 else 734 ticks = 1; 735 set_dec(ticks); 736 } 737 738 #ifdef CONFIG_SMP 739 void __init smp_space_timers(unsigned int max_cpus) 740 { 741 int i; 742 unsigned long half = tb_ticks_per_jiffy / 2; 743 unsigned long offset = tb_ticks_per_jiffy / max_cpus; 744 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid); 745 746 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 747 previous_tb -= tb_ticks_per_jiffy; 748 /* 749 * The stolen time calculation for POWER5 shared-processor LPAR 750 * systems works better if the two threads' timebase interrupts 751 * are staggered by half a jiffy with respect to each other. 752 */ 753 for_each_possible_cpu(i) { 754 if (i == boot_cpuid) 755 continue; 756 if (i == (boot_cpuid ^ 1)) 757 per_cpu(last_jiffy, i) = 758 per_cpu(last_jiffy, boot_cpuid) - half; 759 else if (i & 1) 760 per_cpu(last_jiffy, i) = 761 per_cpu(last_jiffy, i ^ 1) + half; 762 else { 763 previous_tb += offset; 764 per_cpu(last_jiffy, i) = previous_tb; 765 } 766 } 767 } 768 #endif 769 770 /* 771 * Scheduler clock - returns current time in nanosec units. 772 * 773 * Note: mulhdu(a, b) (multiply high double unsigned) returns 774 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 775 * are 64-bit unsigned numbers. 776 */ 777 unsigned long long sched_clock(void) 778 { 779 if (__USE_RTC()) 780 return get_rtc(); 781 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 782 } 783 784 int do_settimeofday(struct timespec *tv) 785 { 786 time_t wtm_sec, new_sec = tv->tv_sec; 787 long wtm_nsec, new_nsec = tv->tv_nsec; 788 unsigned long flags; 789 u64 new_xsec; 790 unsigned long tb_delta; 791 792 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 793 return -EINVAL; 794 795 write_seqlock_irqsave(&xtime_lock, flags); 796 797 /* 798 * Updating the RTC is not the job of this code. If the time is 799 * stepped under NTP, the RTC will be updated after STA_UNSYNC 800 * is cleared. Tools like clock/hwclock either copy the RTC 801 * to the system time, in which case there is no point in writing 802 * to the RTC again, or write to the RTC but then they don't call 803 * settimeofday to perform this operation. 804 */ 805 #ifdef CONFIG_PPC_ISERIES 806 if (first_settimeofday) { 807 iSeries_tb_recal(); 808 first_settimeofday = 0; 809 } 810 #endif 811 812 /* Make userspace gettimeofday spin until we're done. */ 813 ++vdso_data->tb_update_count; 814 smp_mb(); 815 816 /* 817 * Subtract off the number of nanoseconds since the 818 * beginning of the last tick. 819 * Note that since we don't increment jiffies_64 anywhere other 820 * than in do_timer (since we don't have a lost tick problem), 821 * wall_jiffies will always be the same as jiffies, 822 * and therefore the (jiffies - wall_jiffies) computation 823 * has been removed. 824 */ 825 tb_delta = tb_ticks_since(tb_last_jiffy); 826 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */ 827 new_nsec -= SCALE_XSEC(tb_delta, 1000000000); 828 829 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 830 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 831 832 set_normalized_timespec(&xtime, new_sec, new_nsec); 833 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 834 835 /* In case of a large backwards jump in time with NTP, we want the 836 * clock to be updated as soon as the PLL is again in lock. 837 */ 838 last_rtc_update = new_sec - 658; 839 840 ntp_clear(); 841 842 new_xsec = xtime.tv_nsec; 843 if (new_xsec != 0) { 844 new_xsec *= XSEC_PER_SEC; 845 do_div(new_xsec, NSEC_PER_SEC); 846 } 847 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC; 848 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); 849 850 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 851 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 852 853 write_sequnlock_irqrestore(&xtime_lock, flags); 854 clock_was_set(); 855 return 0; 856 } 857 858 EXPORT_SYMBOL(do_settimeofday); 859 860 static int __init get_freq(char *name, int cells, unsigned long *val) 861 { 862 struct device_node *cpu; 863 const unsigned int *fp; 864 int found = 0; 865 866 /* The cpu node should have timebase and clock frequency properties */ 867 cpu = of_find_node_by_type(NULL, "cpu"); 868 869 if (cpu) { 870 fp = get_property(cpu, name, NULL); 871 if (fp) { 872 found = 1; 873 *val = of_read_ulong(fp, cells); 874 } 875 876 of_node_put(cpu); 877 } 878 879 return found; 880 } 881 882 void __init generic_calibrate_decr(void) 883 { 884 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 885 886 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 887 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 888 889 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 890 "(not found)\n"); 891 } 892 893 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 894 895 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 896 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 897 898 printk(KERN_ERR "WARNING: Estimating processor frequency " 899 "(not found)\n"); 900 } 901 902 #ifdef CONFIG_BOOKE 903 /* Set the time base to zero */ 904 mtspr(SPRN_TBWL, 0); 905 mtspr(SPRN_TBWU, 0); 906 907 /* Clear any pending timer interrupts */ 908 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 909 910 /* Enable decrementer interrupt */ 911 mtspr(SPRN_TCR, TCR_DIE); 912 #endif 913 } 914 915 unsigned long get_boot_time(void) 916 { 917 struct rtc_time tm; 918 919 if (ppc_md.get_boot_time) 920 return ppc_md.get_boot_time(); 921 if (!ppc_md.get_rtc_time) 922 return 0; 923 ppc_md.get_rtc_time(&tm); 924 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 925 tm.tm_hour, tm.tm_min, tm.tm_sec); 926 } 927 928 /* This function is only called on the boot processor */ 929 void __init time_init(void) 930 { 931 unsigned long flags; 932 unsigned long tm = 0; 933 struct div_result res; 934 u64 scale, x; 935 unsigned shift; 936 937 if (ppc_md.time_init != NULL) 938 timezone_offset = ppc_md.time_init(); 939 940 if (__USE_RTC()) { 941 /* 601 processor: dec counts down by 128 every 128ns */ 942 ppc_tb_freq = 1000000000; 943 tb_last_jiffy = get_rtcl(); 944 } else { 945 /* Normal PowerPC with timebase register */ 946 ppc_md.calibrate_decr(); 947 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 948 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 949 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 950 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 951 tb_last_jiffy = get_tb(); 952 } 953 954 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 955 tb_ticks_per_sec = ppc_tb_freq; 956 tb_ticks_per_usec = ppc_tb_freq / 1000000; 957 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 958 calc_cputime_factors(); 959 960 /* 961 * Calculate the length of each tick in ns. It will not be 962 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 963 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 964 * rounded up. 965 */ 966 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 967 do_div(x, ppc_tb_freq); 968 tick_nsec = x; 969 last_tick_len = x << TICKLEN_SCALE; 970 971 /* 972 * Compute ticklen_to_xs, which is a factor which gets multiplied 973 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 974 * It is computed as: 975 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 976 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 977 * which turns out to be N = 51 - SHIFT_HZ. 978 * This gives the result as a 0.64 fixed-point fraction. 979 * That value is reduced by an offset amounting to 1 xsec per 980 * 2^31 timebase ticks to avoid problems with time going backwards 981 * by 1 xsec when we do timer_recalc_offset due to losing the 982 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 983 * since there are 2^20 xsec in a second. 984 */ 985 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 986 tb_ticks_per_jiffy << SHIFT_HZ, &res); 987 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 988 ticklen_to_xs = res.result_low; 989 990 /* Compute tb_to_xs from tick_nsec */ 991 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 992 993 /* 994 * Compute scale factor for sched_clock. 995 * The calibrate_decr() function has set tb_ticks_per_sec, 996 * which is the timebase frequency. 997 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 998 * the 128-bit result as a 64.64 fixed-point number. 999 * We then shift that number right until it is less than 1.0, 1000 * giving us the scale factor and shift count to use in 1001 * sched_clock(). 1002 */ 1003 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1004 scale = res.result_low; 1005 for (shift = 0; res.result_high != 0; ++shift) { 1006 scale = (scale >> 1) | (res.result_high << 63); 1007 res.result_high >>= 1; 1008 } 1009 tb_to_ns_scale = scale; 1010 tb_to_ns_shift = shift; 1011 1012 tm = get_boot_time(); 1013 1014 write_seqlock_irqsave(&xtime_lock, flags); 1015 1016 /* If platform provided a timezone (pmac), we correct the time */ 1017 if (timezone_offset) { 1018 sys_tz.tz_minuteswest = -timezone_offset / 60; 1019 sys_tz.tz_dsttime = 0; 1020 tm -= timezone_offset; 1021 } 1022 1023 xtime.tv_sec = tm; 1024 xtime.tv_nsec = 0; 1025 do_gtod.varp = &do_gtod.vars[0]; 1026 do_gtod.var_idx = 0; 1027 do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 1028 __get_cpu_var(last_jiffy) = tb_last_jiffy; 1029 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1030 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 1031 do_gtod.varp->tb_to_xs = tb_to_xs; 1032 do_gtod.tb_to_us = tb_to_us; 1033 1034 vdso_data->tb_orig_stamp = tb_last_jiffy; 1035 vdso_data->tb_update_count = 0; 1036 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1037 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1038 vdso_data->tb_to_xs = tb_to_xs; 1039 1040 time_freq = 0; 1041 1042 last_rtc_update = xtime.tv_sec; 1043 set_normalized_timespec(&wall_to_monotonic, 1044 -xtime.tv_sec, -xtime.tv_nsec); 1045 write_sequnlock_irqrestore(&xtime_lock, flags); 1046 1047 /* Not exact, but the timer interrupt takes care of this */ 1048 set_dec(tb_ticks_per_jiffy); 1049 } 1050 1051 1052 #define FEBRUARY 2 1053 #define STARTOFTIME 1970 1054 #define SECDAY 86400L 1055 #define SECYR (SECDAY * 365) 1056 #define leapyear(year) ((year) % 4 == 0 && \ 1057 ((year) % 100 != 0 || (year) % 400 == 0)) 1058 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1059 #define days_in_month(a) (month_days[(a) - 1]) 1060 1061 static int month_days[12] = { 1062 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1063 }; 1064 1065 /* 1066 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1067 */ 1068 void GregorianDay(struct rtc_time * tm) 1069 { 1070 int leapsToDate; 1071 int lastYear; 1072 int day; 1073 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1074 1075 lastYear = tm->tm_year - 1; 1076 1077 /* 1078 * Number of leap corrections to apply up to end of last year 1079 */ 1080 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1081 1082 /* 1083 * This year is a leap year if it is divisible by 4 except when it is 1084 * divisible by 100 unless it is divisible by 400 1085 * 1086 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1087 */ 1088 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1089 1090 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1091 tm->tm_mday; 1092 1093 tm->tm_wday = day % 7; 1094 } 1095 1096 void to_tm(int tim, struct rtc_time * tm) 1097 { 1098 register int i; 1099 register long hms, day; 1100 1101 day = tim / SECDAY; 1102 hms = tim % SECDAY; 1103 1104 /* Hours, minutes, seconds are easy */ 1105 tm->tm_hour = hms / 3600; 1106 tm->tm_min = (hms % 3600) / 60; 1107 tm->tm_sec = (hms % 3600) % 60; 1108 1109 /* Number of years in days */ 1110 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1111 day -= days_in_year(i); 1112 tm->tm_year = i; 1113 1114 /* Number of months in days left */ 1115 if (leapyear(tm->tm_year)) 1116 days_in_month(FEBRUARY) = 29; 1117 for (i = 1; day >= days_in_month(i); i++) 1118 day -= days_in_month(i); 1119 days_in_month(FEBRUARY) = 28; 1120 tm->tm_mon = i; 1121 1122 /* Days are what is left over (+1) from all that. */ 1123 tm->tm_mday = day + 1; 1124 1125 /* 1126 * Determine the day of week 1127 */ 1128 GregorianDay(tm); 1129 } 1130 1131 /* Auxiliary function to compute scaling factors */ 1132 /* Actually the choice of a timebase running at 1/4 the of the bus 1133 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1134 * It makes this computation very precise (27-28 bits typically) which 1135 * is optimistic considering the stability of most processor clock 1136 * oscillators and the precision with which the timebase frequency 1137 * is measured but does not harm. 1138 */ 1139 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1140 { 1141 unsigned mlt=0, tmp, err; 1142 /* No concern for performance, it's done once: use a stupid 1143 * but safe and compact method to find the multiplier. 1144 */ 1145 1146 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1147 if (mulhwu(inscale, mlt|tmp) < outscale) 1148 mlt |= tmp; 1149 } 1150 1151 /* We might still be off by 1 for the best approximation. 1152 * A side effect of this is that if outscale is too large 1153 * the returned value will be zero. 1154 * Many corner cases have been checked and seem to work, 1155 * some might have been forgotten in the test however. 1156 */ 1157 1158 err = inscale * (mlt+1); 1159 if (err <= inscale/2) 1160 mlt++; 1161 return mlt; 1162 } 1163 1164 /* 1165 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1166 * result. 1167 */ 1168 void div128_by_32(u64 dividend_high, u64 dividend_low, 1169 unsigned divisor, struct div_result *dr) 1170 { 1171 unsigned long a, b, c, d; 1172 unsigned long w, x, y, z; 1173 u64 ra, rb, rc; 1174 1175 a = dividend_high >> 32; 1176 b = dividend_high & 0xffffffff; 1177 c = dividend_low >> 32; 1178 d = dividend_low & 0xffffffff; 1179 1180 w = a / divisor; 1181 ra = ((u64)(a - (w * divisor)) << 32) + b; 1182 1183 rb = ((u64) do_div(ra, divisor) << 32) + c; 1184 x = ra; 1185 1186 rc = ((u64) do_div(rb, divisor) << 32) + d; 1187 y = rb; 1188 1189 do_div(rc, divisor); 1190 z = rc; 1191 1192 dr->result_high = ((u64)w << 32) + x; 1193 dr->result_low = ((u64)y << 32) + z; 1194 1195 } 1196