xref: /linux/arch/powerpc/kernel/time.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/export.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <asm/trace.h>
58 
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
77 
78 /* powerpc clocksource/clockevent code */
79 
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
82 
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 	.name         = "rtc",
86 	.rating       = 400,
87 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
88 	.mask         = CLOCKSOURCE_MASK(64),
89 	.read         = rtc_read,
90 };
91 
92 static cycle_t timebase_read(struct clocksource *);
93 static struct clocksource clocksource_timebase = {
94 	.name         = "timebase",
95 	.rating       = 400,
96 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
97 	.mask         = CLOCKSOURCE_MASK(64),
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_MAX	0x7fffffff
102 
103 static int decrementer_set_next_event(unsigned long evt,
104 				      struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 				 struct clock_event_device *dev);
107 
108 static struct clock_event_device decrementer_clockevent = {
109 	.name           = "decrementer",
110 	.rating         = 200,
111 	.irq            = 0,
112 	.set_next_event = decrementer_set_next_event,
113 	.set_mode       = decrementer_set_mode,
114 	.features       = CLOCK_EVT_FEAT_ONESHOT,
115 };
116 
117 DEFINE_PER_CPU(u64, decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119 
120 #ifdef CONFIG_PPC_ISERIES
121 static unsigned long __initdata iSeries_recal_titan;
122 static signed long __initdata iSeries_recal_tb;
123 
124 /* Forward declaration is only needed for iSereis compiles */
125 static void __init clocksource_init(void);
126 #endif
127 
128 #define XSEC_PER_SEC (1024*1024)
129 
130 #ifdef CONFIG_PPC64
131 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
132 #else
133 /* compute ((xsec << 12) * max) >> 32 */
134 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
135 #endif
136 
137 unsigned long tb_ticks_per_jiffy;
138 unsigned long tb_ticks_per_usec = 100; /* sane default */
139 EXPORT_SYMBOL(tb_ticks_per_usec);
140 unsigned long tb_ticks_per_sec;
141 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
142 
143 DEFINE_SPINLOCK(rtc_lock);
144 EXPORT_SYMBOL_GPL(rtc_lock);
145 
146 static u64 tb_to_ns_scale __read_mostly;
147 static unsigned tb_to_ns_shift __read_mostly;
148 static u64 boot_tb __read_mostly;
149 
150 extern struct timezone sys_tz;
151 static long timezone_offset;
152 
153 unsigned long ppc_proc_freq;
154 EXPORT_SYMBOL_GPL(ppc_proc_freq);
155 unsigned long ppc_tb_freq;
156 EXPORT_SYMBOL_GPL(ppc_tb_freq);
157 
158 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
159 /*
160  * Factors for converting from cputime_t (timebase ticks) to
161  * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
162  * These are all stored as 0.64 fixed-point binary fractions.
163  */
164 u64 __cputime_jiffies_factor;
165 EXPORT_SYMBOL(__cputime_jiffies_factor);
166 u64 __cputime_usec_factor;
167 EXPORT_SYMBOL(__cputime_usec_factor);
168 u64 __cputime_sec_factor;
169 EXPORT_SYMBOL(__cputime_sec_factor);
170 u64 __cputime_clockt_factor;
171 EXPORT_SYMBOL(__cputime_clockt_factor);
172 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
173 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
174 
175 cputime_t cputime_one_jiffy;
176 
177 void (*dtl_consumer)(struct dtl_entry *, u64);
178 
179 static void calc_cputime_factors(void)
180 {
181 	struct div_result res;
182 
183 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
184 	__cputime_jiffies_factor = res.result_low;
185 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
186 	__cputime_usec_factor = res.result_low;
187 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
188 	__cputime_sec_factor = res.result_low;
189 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
190 	__cputime_clockt_factor = res.result_low;
191 }
192 
193 /*
194  * Read the SPURR on systems that have it, otherwise the PURR,
195  * or if that doesn't exist return the timebase value passed in.
196  */
197 static u64 read_spurr(u64 tb)
198 {
199 	if (cpu_has_feature(CPU_FTR_SPURR))
200 		return mfspr(SPRN_SPURR);
201 	if (cpu_has_feature(CPU_FTR_PURR))
202 		return mfspr(SPRN_PURR);
203 	return tb;
204 }
205 
206 #ifdef CONFIG_PPC_SPLPAR
207 
208 /*
209  * Scan the dispatch trace log and count up the stolen time.
210  * Should be called with interrupts disabled.
211  */
212 static u64 scan_dispatch_log(u64 stop_tb)
213 {
214 	u64 i = local_paca->dtl_ridx;
215 	struct dtl_entry *dtl = local_paca->dtl_curr;
216 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
217 	struct lppaca *vpa = local_paca->lppaca_ptr;
218 	u64 tb_delta;
219 	u64 stolen = 0;
220 	u64 dtb;
221 
222 	if (!dtl)
223 		return 0;
224 
225 	if (i == vpa->dtl_idx)
226 		return 0;
227 	while (i < vpa->dtl_idx) {
228 		if (dtl_consumer)
229 			dtl_consumer(dtl, i);
230 		dtb = dtl->timebase;
231 		tb_delta = dtl->enqueue_to_dispatch_time +
232 			dtl->ready_to_enqueue_time;
233 		barrier();
234 		if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
235 			/* buffer has overflowed */
236 			i = vpa->dtl_idx - N_DISPATCH_LOG;
237 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
238 			continue;
239 		}
240 		if (dtb > stop_tb)
241 			break;
242 		stolen += tb_delta;
243 		++i;
244 		++dtl;
245 		if (dtl == dtl_end)
246 			dtl = local_paca->dispatch_log;
247 	}
248 	local_paca->dtl_ridx = i;
249 	local_paca->dtl_curr = dtl;
250 	return stolen;
251 }
252 
253 /*
254  * Accumulate stolen time by scanning the dispatch trace log.
255  * Called on entry from user mode.
256  */
257 void accumulate_stolen_time(void)
258 {
259 	u64 sst, ust;
260 
261 	u8 save_soft_enabled = local_paca->soft_enabled;
262 	u8 save_hard_enabled = local_paca->hard_enabled;
263 
264 	/* We are called early in the exception entry, before
265 	 * soft/hard_enabled are sync'ed to the expected state
266 	 * for the exception. We are hard disabled but the PACA
267 	 * needs to reflect that so various debug stuff doesn't
268 	 * complain
269 	 */
270 	local_paca->soft_enabled = 0;
271 	local_paca->hard_enabled = 0;
272 
273 	sst = scan_dispatch_log(local_paca->starttime_user);
274 	ust = scan_dispatch_log(local_paca->starttime);
275 	local_paca->system_time -= sst;
276 	local_paca->user_time -= ust;
277 	local_paca->stolen_time += ust + sst;
278 
279 	local_paca->soft_enabled = save_soft_enabled;
280 	local_paca->hard_enabled = save_hard_enabled;
281 }
282 
283 static inline u64 calculate_stolen_time(u64 stop_tb)
284 {
285 	u64 stolen = 0;
286 
287 	if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
288 		stolen = scan_dispatch_log(stop_tb);
289 		get_paca()->system_time -= stolen;
290 	}
291 
292 	stolen += get_paca()->stolen_time;
293 	get_paca()->stolen_time = 0;
294 	return stolen;
295 }
296 
297 #else /* CONFIG_PPC_SPLPAR */
298 static inline u64 calculate_stolen_time(u64 stop_tb)
299 {
300 	return 0;
301 }
302 
303 #endif /* CONFIG_PPC_SPLPAR */
304 
305 /*
306  * Account time for a transition between system, hard irq
307  * or soft irq state.
308  */
309 void account_system_vtime(struct task_struct *tsk)
310 {
311 	u64 now, nowscaled, delta, deltascaled;
312 	unsigned long flags;
313 	u64 stolen, udelta, sys_scaled, user_scaled;
314 
315 	local_irq_save(flags);
316 	now = mftb();
317 	nowscaled = read_spurr(now);
318 	get_paca()->system_time += now - get_paca()->starttime;
319 	get_paca()->starttime = now;
320 	deltascaled = nowscaled - get_paca()->startspurr;
321 	get_paca()->startspurr = nowscaled;
322 
323 	stolen = calculate_stolen_time(now);
324 
325 	delta = get_paca()->system_time;
326 	get_paca()->system_time = 0;
327 	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
328 	get_paca()->utime_sspurr = get_paca()->user_time;
329 
330 	/*
331 	 * Because we don't read the SPURR on every kernel entry/exit,
332 	 * deltascaled includes both user and system SPURR ticks.
333 	 * Apportion these ticks to system SPURR ticks and user
334 	 * SPURR ticks in the same ratio as the system time (delta)
335 	 * and user time (udelta) values obtained from the timebase
336 	 * over the same interval.  The system ticks get accounted here;
337 	 * the user ticks get saved up in paca->user_time_scaled to be
338 	 * used by account_process_tick.
339 	 */
340 	sys_scaled = delta;
341 	user_scaled = udelta;
342 	if (deltascaled != delta + udelta) {
343 		if (udelta) {
344 			sys_scaled = deltascaled * delta / (delta + udelta);
345 			user_scaled = deltascaled - sys_scaled;
346 		} else {
347 			sys_scaled = deltascaled;
348 		}
349 	}
350 	get_paca()->user_time_scaled += user_scaled;
351 
352 	if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
353 		account_system_time(tsk, 0, delta, sys_scaled);
354 		if (stolen)
355 			account_steal_time(stolen);
356 	} else {
357 		account_idle_time(delta + stolen);
358 	}
359 	local_irq_restore(flags);
360 }
361 EXPORT_SYMBOL_GPL(account_system_vtime);
362 
363 /*
364  * Transfer the user and system times accumulated in the paca
365  * by the exception entry and exit code to the generic process
366  * user and system time records.
367  * Must be called with interrupts disabled.
368  * Assumes that account_system_vtime() has been called recently
369  * (i.e. since the last entry from usermode) so that
370  * get_paca()->user_time_scaled is up to date.
371  */
372 void account_process_tick(struct task_struct *tsk, int user_tick)
373 {
374 	cputime_t utime, utimescaled;
375 
376 	utime = get_paca()->user_time;
377 	utimescaled = get_paca()->user_time_scaled;
378 	get_paca()->user_time = 0;
379 	get_paca()->user_time_scaled = 0;
380 	get_paca()->utime_sspurr = 0;
381 	account_user_time(tsk, utime, utimescaled);
382 }
383 
384 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
385 #define calc_cputime_factors()
386 #endif
387 
388 void __delay(unsigned long loops)
389 {
390 	unsigned long start;
391 	int diff;
392 
393 	if (__USE_RTC()) {
394 		start = get_rtcl();
395 		do {
396 			/* the RTCL register wraps at 1000000000 */
397 			diff = get_rtcl() - start;
398 			if (diff < 0)
399 				diff += 1000000000;
400 		} while (diff < loops);
401 	} else {
402 		start = get_tbl();
403 		while (get_tbl() - start < loops)
404 			HMT_low();
405 		HMT_medium();
406 	}
407 }
408 EXPORT_SYMBOL(__delay);
409 
410 void udelay(unsigned long usecs)
411 {
412 	__delay(tb_ticks_per_usec * usecs);
413 }
414 EXPORT_SYMBOL(udelay);
415 
416 #ifdef CONFIG_SMP
417 unsigned long profile_pc(struct pt_regs *regs)
418 {
419 	unsigned long pc = instruction_pointer(regs);
420 
421 	if (in_lock_functions(pc))
422 		return regs->link;
423 
424 	return pc;
425 }
426 EXPORT_SYMBOL(profile_pc);
427 #endif
428 
429 #ifdef CONFIG_PPC_ISERIES
430 
431 /*
432  * This function recalibrates the timebase based on the 49-bit time-of-day
433  * value in the Titan chip.  The Titan is much more accurate than the value
434  * returned by the service processor for the timebase frequency.
435  */
436 
437 static int __init iSeries_tb_recal(void)
438 {
439 	unsigned long titan, tb;
440 
441 	/* Make sure we only run on iSeries */
442 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
443 		return -ENODEV;
444 
445 	tb = get_tb();
446 	titan = HvCallXm_loadTod();
447 	if ( iSeries_recal_titan ) {
448 		unsigned long tb_ticks = tb - iSeries_recal_tb;
449 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
450 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
451 		unsigned long new_tb_ticks_per_jiffy =
452 			DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
453 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
454 		char sign = '+';
455 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
456 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
457 
458 		if ( tick_diff < 0 ) {
459 			tick_diff = -tick_diff;
460 			sign = '-';
461 		}
462 		if ( tick_diff ) {
463 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
464 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
465 						new_tb_ticks_per_jiffy, sign, tick_diff );
466 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
467 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
468 				calc_cputime_factors();
469 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
470 				setup_cputime_one_jiffy();
471 			}
472 			else {
473 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
474 					"                   new tb_ticks_per_jiffy = %lu\n"
475 					"                   old tb_ticks_per_jiffy = %lu\n",
476 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
477 			}
478 		}
479 	}
480 	iSeries_recal_titan = titan;
481 	iSeries_recal_tb = tb;
482 
483 	/* Called here as now we know accurate values for the timebase */
484 	clocksource_init();
485 	return 0;
486 }
487 late_initcall(iSeries_tb_recal);
488 
489 /* Called from platform early init */
490 void __init iSeries_time_init_early(void)
491 {
492 	iSeries_recal_tb = get_tb();
493 	iSeries_recal_titan = HvCallXm_loadTod();
494 }
495 #endif /* CONFIG_PPC_ISERIES */
496 
497 #ifdef CONFIG_IRQ_WORK
498 
499 /*
500  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
501  */
502 #ifdef CONFIG_PPC64
503 static inline unsigned long test_irq_work_pending(void)
504 {
505 	unsigned long x;
506 
507 	asm volatile("lbz %0,%1(13)"
508 		: "=r" (x)
509 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
510 	return x;
511 }
512 
513 static inline void set_irq_work_pending_flag(void)
514 {
515 	asm volatile("stb %0,%1(13)" : :
516 		"r" (1),
517 		"i" (offsetof(struct paca_struct, irq_work_pending)));
518 }
519 
520 static inline void clear_irq_work_pending(void)
521 {
522 	asm volatile("stb %0,%1(13)" : :
523 		"r" (0),
524 		"i" (offsetof(struct paca_struct, irq_work_pending)));
525 }
526 
527 #else /* 32-bit */
528 
529 DEFINE_PER_CPU(u8, irq_work_pending);
530 
531 #define set_irq_work_pending_flag()	__get_cpu_var(irq_work_pending) = 1
532 #define test_irq_work_pending()		__get_cpu_var(irq_work_pending)
533 #define clear_irq_work_pending()	__get_cpu_var(irq_work_pending) = 0
534 
535 #endif /* 32 vs 64 bit */
536 
537 void arch_irq_work_raise(void)
538 {
539 	preempt_disable();
540 	set_irq_work_pending_flag();
541 	set_dec(1);
542 	preempt_enable();
543 }
544 
545 #else  /* CONFIG_IRQ_WORK */
546 
547 #define test_irq_work_pending()	0
548 #define clear_irq_work_pending()
549 
550 #endif /* CONFIG_IRQ_WORK */
551 
552 /*
553  * For iSeries shared processors, we have to let the hypervisor
554  * set the hardware decrementer.  We set a virtual decrementer
555  * in the lppaca and call the hypervisor if the virtual
556  * decrementer is less than the current value in the hardware
557  * decrementer. (almost always the new decrementer value will
558  * be greater than the current hardware decementer so the hypervisor
559  * call will not be needed)
560  */
561 
562 /*
563  * timer_interrupt - gets called when the decrementer overflows,
564  * with interrupts disabled.
565  */
566 void timer_interrupt(struct pt_regs * regs)
567 {
568 	struct pt_regs *old_regs;
569 	u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
570 	struct clock_event_device *evt = &__get_cpu_var(decrementers);
571 
572 	/* Ensure a positive value is written to the decrementer, or else
573 	 * some CPUs will continue to take decrementer exceptions.
574 	 */
575 	set_dec(DECREMENTER_MAX);
576 
577 	/* Some implementations of hotplug will get timer interrupts while
578 	 * offline, just ignore these
579 	 */
580 	if (!cpu_online(smp_processor_id()))
581 		return;
582 
583 	trace_timer_interrupt_entry(regs);
584 
585 	__get_cpu_var(irq_stat).timer_irqs++;
586 
587 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
588 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
589 		do_IRQ(regs);
590 #endif
591 
592 	old_regs = set_irq_regs(regs);
593 	irq_enter();
594 
595 	if (test_irq_work_pending()) {
596 		clear_irq_work_pending();
597 		irq_work_run();
598 	}
599 
600 #ifdef CONFIG_PPC_ISERIES
601 	if (firmware_has_feature(FW_FEATURE_ISERIES))
602 		get_lppaca()->int_dword.fields.decr_int = 0;
603 #endif
604 
605 	*next_tb = ~(u64)0;
606 	if (evt->event_handler)
607 		evt->event_handler(evt);
608 
609 #ifdef CONFIG_PPC_ISERIES
610 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
611 		process_hvlpevents();
612 #endif
613 
614 #ifdef CONFIG_PPC64
615 	/* collect purr register values often, for accurate calculations */
616 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
617 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
618 		cu->current_tb = mfspr(SPRN_PURR);
619 	}
620 #endif
621 
622 	irq_exit();
623 	set_irq_regs(old_regs);
624 
625 	trace_timer_interrupt_exit(regs);
626 }
627 
628 #ifdef CONFIG_SUSPEND
629 static void generic_suspend_disable_irqs(void)
630 {
631 	/* Disable the decrementer, so that it doesn't interfere
632 	 * with suspending.
633 	 */
634 
635 	set_dec(DECREMENTER_MAX);
636 	local_irq_disable();
637 	set_dec(DECREMENTER_MAX);
638 }
639 
640 static void generic_suspend_enable_irqs(void)
641 {
642 	local_irq_enable();
643 }
644 
645 /* Overrides the weak version in kernel/power/main.c */
646 void arch_suspend_disable_irqs(void)
647 {
648 	if (ppc_md.suspend_disable_irqs)
649 		ppc_md.suspend_disable_irqs();
650 	generic_suspend_disable_irqs();
651 }
652 
653 /* Overrides the weak version in kernel/power/main.c */
654 void arch_suspend_enable_irqs(void)
655 {
656 	generic_suspend_enable_irqs();
657 	if (ppc_md.suspend_enable_irqs)
658 		ppc_md.suspend_enable_irqs();
659 }
660 #endif
661 
662 /*
663  * Scheduler clock - returns current time in nanosec units.
664  *
665  * Note: mulhdu(a, b) (multiply high double unsigned) returns
666  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
667  * are 64-bit unsigned numbers.
668  */
669 unsigned long long sched_clock(void)
670 {
671 	if (__USE_RTC())
672 		return get_rtc();
673 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
674 }
675 
676 static int __init get_freq(char *name, int cells, unsigned long *val)
677 {
678 	struct device_node *cpu;
679 	const unsigned int *fp;
680 	int found = 0;
681 
682 	/* The cpu node should have timebase and clock frequency properties */
683 	cpu = of_find_node_by_type(NULL, "cpu");
684 
685 	if (cpu) {
686 		fp = of_get_property(cpu, name, NULL);
687 		if (fp) {
688 			found = 1;
689 			*val = of_read_ulong(fp, cells);
690 		}
691 
692 		of_node_put(cpu);
693 	}
694 
695 	return found;
696 }
697 
698 /* should become __cpuinit when secondary_cpu_time_init also is */
699 void start_cpu_decrementer(void)
700 {
701 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
702 	/* Clear any pending timer interrupts */
703 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
704 
705 	/* Enable decrementer interrupt */
706 	mtspr(SPRN_TCR, TCR_DIE);
707 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
708 }
709 
710 void __init generic_calibrate_decr(void)
711 {
712 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
713 
714 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
715 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
716 
717 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
718 				"(not found)\n");
719 	}
720 
721 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
722 
723 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
724 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
725 
726 		printk(KERN_ERR "WARNING: Estimating processor frequency "
727 				"(not found)\n");
728 	}
729 }
730 
731 int update_persistent_clock(struct timespec now)
732 {
733 	struct rtc_time tm;
734 
735 	if (!ppc_md.set_rtc_time)
736 		return 0;
737 
738 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
739 	tm.tm_year -= 1900;
740 	tm.tm_mon -= 1;
741 
742 	return ppc_md.set_rtc_time(&tm);
743 }
744 
745 static void __read_persistent_clock(struct timespec *ts)
746 {
747 	struct rtc_time tm;
748 	static int first = 1;
749 
750 	ts->tv_nsec = 0;
751 	/* XXX this is a litle fragile but will work okay in the short term */
752 	if (first) {
753 		first = 0;
754 		if (ppc_md.time_init)
755 			timezone_offset = ppc_md.time_init();
756 
757 		/* get_boot_time() isn't guaranteed to be safe to call late */
758 		if (ppc_md.get_boot_time) {
759 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
760 			return;
761 		}
762 	}
763 	if (!ppc_md.get_rtc_time) {
764 		ts->tv_sec = 0;
765 		return;
766 	}
767 	ppc_md.get_rtc_time(&tm);
768 
769 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
770 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
771 }
772 
773 void read_persistent_clock(struct timespec *ts)
774 {
775 	__read_persistent_clock(ts);
776 
777 	/* Sanitize it in case real time clock is set below EPOCH */
778 	if (ts->tv_sec < 0) {
779 		ts->tv_sec = 0;
780 		ts->tv_nsec = 0;
781 	}
782 
783 }
784 
785 /* clocksource code */
786 static cycle_t rtc_read(struct clocksource *cs)
787 {
788 	return (cycle_t)get_rtc();
789 }
790 
791 static cycle_t timebase_read(struct clocksource *cs)
792 {
793 	return (cycle_t)get_tb();
794 }
795 
796 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
797 			struct clocksource *clock, u32 mult)
798 {
799 	u64 new_tb_to_xs, new_stamp_xsec;
800 	u32 frac_sec;
801 
802 	if (clock != &clocksource_timebase)
803 		return;
804 
805 	/* Make userspace gettimeofday spin until we're done. */
806 	++vdso_data->tb_update_count;
807 	smp_mb();
808 
809 	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
810 	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
811 	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
812 	do_div(new_stamp_xsec, 1000000000);
813 	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
814 
815 	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
816 	/* this is tv_nsec / 1e9 as a 0.32 fraction */
817 	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
818 
819 	/*
820 	 * tb_update_count is used to allow the userspace gettimeofday code
821 	 * to assure itself that it sees a consistent view of the tb_to_xs and
822 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
823 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
824 	 * the two values of tb_update_count match and are even then the
825 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
826 	 * loops back and reads them again until this criteria is met.
827 	 * We expect the caller to have done the first increment of
828 	 * vdso_data->tb_update_count already.
829 	 */
830 	vdso_data->tb_orig_stamp = clock->cycle_last;
831 	vdso_data->stamp_xsec = new_stamp_xsec;
832 	vdso_data->tb_to_xs = new_tb_to_xs;
833 	vdso_data->wtom_clock_sec = wtm->tv_sec;
834 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
835 	vdso_data->stamp_xtime = *wall_time;
836 	vdso_data->stamp_sec_fraction = frac_sec;
837 	smp_wmb();
838 	++(vdso_data->tb_update_count);
839 }
840 
841 void update_vsyscall_tz(void)
842 {
843 	/* Make userspace gettimeofday spin until we're done. */
844 	++vdso_data->tb_update_count;
845 	smp_mb();
846 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
847 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
848 	smp_mb();
849 	++vdso_data->tb_update_count;
850 }
851 
852 static void __init clocksource_init(void)
853 {
854 	struct clocksource *clock;
855 
856 	if (__USE_RTC())
857 		clock = &clocksource_rtc;
858 	else
859 		clock = &clocksource_timebase;
860 
861 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
862 		printk(KERN_ERR "clocksource: %s is already registered\n",
863 		       clock->name);
864 		return;
865 	}
866 
867 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
868 	       clock->name, clock->mult, clock->shift);
869 }
870 
871 static int decrementer_set_next_event(unsigned long evt,
872 				      struct clock_event_device *dev)
873 {
874 	__get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
875 	set_dec(evt);
876 	return 0;
877 }
878 
879 static void decrementer_set_mode(enum clock_event_mode mode,
880 				 struct clock_event_device *dev)
881 {
882 	if (mode != CLOCK_EVT_MODE_ONESHOT)
883 		decrementer_set_next_event(DECREMENTER_MAX, dev);
884 }
885 
886 static void register_decrementer_clockevent(int cpu)
887 {
888 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
889 
890 	*dec = decrementer_clockevent;
891 	dec->cpumask = cpumask_of(cpu);
892 
893 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
894 		    dec->name, dec->mult, dec->shift, cpu);
895 
896 	clockevents_register_device(dec);
897 }
898 
899 static void __init init_decrementer_clockevent(void)
900 {
901 	int cpu = smp_processor_id();
902 
903 	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
904 
905 	decrementer_clockevent.max_delta_ns =
906 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
907 	decrementer_clockevent.min_delta_ns =
908 		clockevent_delta2ns(2, &decrementer_clockevent);
909 
910 	register_decrementer_clockevent(cpu);
911 }
912 
913 void secondary_cpu_time_init(void)
914 {
915 	/* Start the decrementer on CPUs that have manual control
916 	 * such as BookE
917 	 */
918 	start_cpu_decrementer();
919 
920 	/* FIME: Should make unrelatred change to move snapshot_timebase
921 	 * call here ! */
922 	register_decrementer_clockevent(smp_processor_id());
923 }
924 
925 /* This function is only called on the boot processor */
926 void __init time_init(void)
927 {
928 	struct div_result res;
929 	u64 scale;
930 	unsigned shift;
931 
932 	if (__USE_RTC()) {
933 		/* 601 processor: dec counts down by 128 every 128ns */
934 		ppc_tb_freq = 1000000000;
935 	} else {
936 		/* Normal PowerPC with timebase register */
937 		ppc_md.calibrate_decr();
938 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
939 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
940 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
941 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
942 	}
943 
944 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
945 	tb_ticks_per_sec = ppc_tb_freq;
946 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
947 	calc_cputime_factors();
948 	setup_cputime_one_jiffy();
949 
950 	/*
951 	 * Compute scale factor for sched_clock.
952 	 * The calibrate_decr() function has set tb_ticks_per_sec,
953 	 * which is the timebase frequency.
954 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
955 	 * the 128-bit result as a 64.64 fixed-point number.
956 	 * We then shift that number right until it is less than 1.0,
957 	 * giving us the scale factor and shift count to use in
958 	 * sched_clock().
959 	 */
960 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
961 	scale = res.result_low;
962 	for (shift = 0; res.result_high != 0; ++shift) {
963 		scale = (scale >> 1) | (res.result_high << 63);
964 		res.result_high >>= 1;
965 	}
966 	tb_to_ns_scale = scale;
967 	tb_to_ns_shift = shift;
968 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
969 	boot_tb = get_tb_or_rtc();
970 
971 	/* If platform provided a timezone (pmac), we correct the time */
972 	if (timezone_offset) {
973 		sys_tz.tz_minuteswest = -timezone_offset / 60;
974 		sys_tz.tz_dsttime = 0;
975 	}
976 
977 	vdso_data->tb_update_count = 0;
978 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
979 
980 	/* Start the decrementer on CPUs that have manual control
981 	 * such as BookE
982 	 */
983 	start_cpu_decrementer();
984 
985 	/* Register the clocksource, if we're not running on iSeries */
986 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
987 		clocksource_init();
988 
989 	init_decrementer_clockevent();
990 }
991 
992 
993 #define FEBRUARY	2
994 #define	STARTOFTIME	1970
995 #define SECDAY		86400L
996 #define SECYR		(SECDAY * 365)
997 #define	leapyear(year)		((year) % 4 == 0 && \
998 				 ((year) % 100 != 0 || (year) % 400 == 0))
999 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1000 #define	days_in_month(a) 	(month_days[(a) - 1])
1001 
1002 static int month_days[12] = {
1003 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1004 };
1005 
1006 /*
1007  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1008  */
1009 void GregorianDay(struct rtc_time * tm)
1010 {
1011 	int leapsToDate;
1012 	int lastYear;
1013 	int day;
1014 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1015 
1016 	lastYear = tm->tm_year - 1;
1017 
1018 	/*
1019 	 * Number of leap corrections to apply up to end of last year
1020 	 */
1021 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1022 
1023 	/*
1024 	 * This year is a leap year if it is divisible by 4 except when it is
1025 	 * divisible by 100 unless it is divisible by 400
1026 	 *
1027 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1028 	 */
1029 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1030 
1031 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1032 		   tm->tm_mday;
1033 
1034 	tm->tm_wday = day % 7;
1035 }
1036 
1037 void to_tm(int tim, struct rtc_time * tm)
1038 {
1039 	register int    i;
1040 	register long   hms, day;
1041 
1042 	day = tim / SECDAY;
1043 	hms = tim % SECDAY;
1044 
1045 	/* Hours, minutes, seconds are easy */
1046 	tm->tm_hour = hms / 3600;
1047 	tm->tm_min = (hms % 3600) / 60;
1048 	tm->tm_sec = (hms % 3600) % 60;
1049 
1050 	/* Number of years in days */
1051 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1052 		day -= days_in_year(i);
1053 	tm->tm_year = i;
1054 
1055 	/* Number of months in days left */
1056 	if (leapyear(tm->tm_year))
1057 		days_in_month(FEBRUARY) = 29;
1058 	for (i = 1; day >= days_in_month(i); i++)
1059 		day -= days_in_month(i);
1060 	days_in_month(FEBRUARY) = 28;
1061 	tm->tm_mon = i;
1062 
1063 	/* Days are what is left over (+1) from all that. */
1064 	tm->tm_mday = day + 1;
1065 
1066 	/*
1067 	 * Determine the day of week
1068 	 */
1069 	GregorianDay(tm);
1070 }
1071 
1072 /*
1073  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1074  * result.
1075  */
1076 void div128_by_32(u64 dividend_high, u64 dividend_low,
1077 		  unsigned divisor, struct div_result *dr)
1078 {
1079 	unsigned long a, b, c, d;
1080 	unsigned long w, x, y, z;
1081 	u64 ra, rb, rc;
1082 
1083 	a = dividend_high >> 32;
1084 	b = dividend_high & 0xffffffff;
1085 	c = dividend_low >> 32;
1086 	d = dividend_low & 0xffffffff;
1087 
1088 	w = a / divisor;
1089 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1090 
1091 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1092 	x = ra;
1093 
1094 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1095 	y = rb;
1096 
1097 	do_div(rc, divisor);
1098 	z = rc;
1099 
1100 	dr->result_high = ((u64)w << 32) + x;
1101 	dr->result_low  = ((u64)y << 32) + z;
1102 
1103 }
1104 
1105 /* We don't need to calibrate delay, we use the CPU timebase for that */
1106 void calibrate_delay(void)
1107 {
1108 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1109 	 * as the number of __delay(1) in a jiffy, so make it so
1110 	 */
1111 	loops_per_jiffy = tb_ticks_per_jiffy;
1112 }
1113 
1114 static int __init rtc_init(void)
1115 {
1116 	struct platform_device *pdev;
1117 
1118 	if (!ppc_md.get_rtc_time)
1119 		return -ENODEV;
1120 
1121 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1122 	if (IS_ERR(pdev))
1123 		return PTR_ERR(pdev);
1124 
1125 	return 0;
1126 }
1127 
1128 module_init(rtc_init);
1129