1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/errno.h> 36 #include <linux/export.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 #include <linux/irq.h> 55 #include <linux/delay.h> 56 #include <linux/irq_work.h> 57 #include <asm/trace.h> 58 59 #include <asm/io.h> 60 #include <asm/processor.h> 61 #include <asm/nvram.h> 62 #include <asm/cache.h> 63 #include <asm/machdep.h> 64 #include <asm/uaccess.h> 65 #include <asm/time.h> 66 #include <asm/prom.h> 67 #include <asm/irq.h> 68 #include <asm/div64.h> 69 #include <asm/smp.h> 70 #include <asm/vdso_datapage.h> 71 #include <asm/firmware.h> 72 #include <asm/cputime.h> 73 #ifdef CONFIG_PPC_ISERIES 74 #include <asm/iseries/it_lp_queue.h> 75 #include <asm/iseries/hv_call_xm.h> 76 #endif 77 78 /* powerpc clocksource/clockevent code */ 79 80 #include <linux/clockchips.h> 81 #include <linux/clocksource.h> 82 83 static cycle_t rtc_read(struct clocksource *); 84 static struct clocksource clocksource_rtc = { 85 .name = "rtc", 86 .rating = 400, 87 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 88 .mask = CLOCKSOURCE_MASK(64), 89 .read = rtc_read, 90 }; 91 92 static cycle_t timebase_read(struct clocksource *); 93 static struct clocksource clocksource_timebase = { 94 .name = "timebase", 95 .rating = 400, 96 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 97 .mask = CLOCKSOURCE_MASK(64), 98 .read = timebase_read, 99 }; 100 101 #define DECREMENTER_MAX 0x7fffffff 102 103 static int decrementer_set_next_event(unsigned long evt, 104 struct clock_event_device *dev); 105 static void decrementer_set_mode(enum clock_event_mode mode, 106 struct clock_event_device *dev); 107 108 static struct clock_event_device decrementer_clockevent = { 109 .name = "decrementer", 110 .rating = 200, 111 .irq = 0, 112 .set_next_event = decrementer_set_next_event, 113 .set_mode = decrementer_set_mode, 114 .features = CLOCK_EVT_FEAT_ONESHOT, 115 }; 116 117 DEFINE_PER_CPU(u64, decrementers_next_tb); 118 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 119 120 #ifdef CONFIG_PPC_ISERIES 121 static unsigned long __initdata iSeries_recal_titan; 122 static signed long __initdata iSeries_recal_tb; 123 124 /* Forward declaration is only needed for iSereis compiles */ 125 static void __init clocksource_init(void); 126 #endif 127 128 #define XSEC_PER_SEC (1024*1024) 129 130 #ifdef CONFIG_PPC64 131 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 132 #else 133 /* compute ((xsec << 12) * max) >> 32 */ 134 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 135 #endif 136 137 unsigned long tb_ticks_per_jiffy; 138 unsigned long tb_ticks_per_usec = 100; /* sane default */ 139 EXPORT_SYMBOL(tb_ticks_per_usec); 140 unsigned long tb_ticks_per_sec; 141 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 142 143 DEFINE_SPINLOCK(rtc_lock); 144 EXPORT_SYMBOL_GPL(rtc_lock); 145 146 static u64 tb_to_ns_scale __read_mostly; 147 static unsigned tb_to_ns_shift __read_mostly; 148 static u64 boot_tb __read_mostly; 149 150 extern struct timezone sys_tz; 151 static long timezone_offset; 152 153 unsigned long ppc_proc_freq; 154 EXPORT_SYMBOL_GPL(ppc_proc_freq); 155 unsigned long ppc_tb_freq; 156 EXPORT_SYMBOL_GPL(ppc_tb_freq); 157 158 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 159 /* 160 * Factors for converting from cputime_t (timebase ticks) to 161 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds). 162 * These are all stored as 0.64 fixed-point binary fractions. 163 */ 164 u64 __cputime_jiffies_factor; 165 EXPORT_SYMBOL(__cputime_jiffies_factor); 166 u64 __cputime_usec_factor; 167 EXPORT_SYMBOL(__cputime_usec_factor); 168 u64 __cputime_sec_factor; 169 EXPORT_SYMBOL(__cputime_sec_factor); 170 u64 __cputime_clockt_factor; 171 EXPORT_SYMBOL(__cputime_clockt_factor); 172 DEFINE_PER_CPU(unsigned long, cputime_last_delta); 173 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); 174 175 cputime_t cputime_one_jiffy; 176 177 void (*dtl_consumer)(struct dtl_entry *, u64); 178 179 static void calc_cputime_factors(void) 180 { 181 struct div_result res; 182 183 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 184 __cputime_jiffies_factor = res.result_low; 185 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 186 __cputime_usec_factor = res.result_low; 187 div128_by_32(1, 0, tb_ticks_per_sec, &res); 188 __cputime_sec_factor = res.result_low; 189 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 190 __cputime_clockt_factor = res.result_low; 191 } 192 193 /* 194 * Read the SPURR on systems that have it, otherwise the PURR, 195 * or if that doesn't exist return the timebase value passed in. 196 */ 197 static u64 read_spurr(u64 tb) 198 { 199 if (cpu_has_feature(CPU_FTR_SPURR)) 200 return mfspr(SPRN_SPURR); 201 if (cpu_has_feature(CPU_FTR_PURR)) 202 return mfspr(SPRN_PURR); 203 return tb; 204 } 205 206 #ifdef CONFIG_PPC_SPLPAR 207 208 /* 209 * Scan the dispatch trace log and count up the stolen time. 210 * Should be called with interrupts disabled. 211 */ 212 static u64 scan_dispatch_log(u64 stop_tb) 213 { 214 u64 i = local_paca->dtl_ridx; 215 struct dtl_entry *dtl = local_paca->dtl_curr; 216 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 217 struct lppaca *vpa = local_paca->lppaca_ptr; 218 u64 tb_delta; 219 u64 stolen = 0; 220 u64 dtb; 221 222 if (!dtl) 223 return 0; 224 225 if (i == vpa->dtl_idx) 226 return 0; 227 while (i < vpa->dtl_idx) { 228 if (dtl_consumer) 229 dtl_consumer(dtl, i); 230 dtb = dtl->timebase; 231 tb_delta = dtl->enqueue_to_dispatch_time + 232 dtl->ready_to_enqueue_time; 233 barrier(); 234 if (i + N_DISPATCH_LOG < vpa->dtl_idx) { 235 /* buffer has overflowed */ 236 i = vpa->dtl_idx - N_DISPATCH_LOG; 237 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 238 continue; 239 } 240 if (dtb > stop_tb) 241 break; 242 stolen += tb_delta; 243 ++i; 244 ++dtl; 245 if (dtl == dtl_end) 246 dtl = local_paca->dispatch_log; 247 } 248 local_paca->dtl_ridx = i; 249 local_paca->dtl_curr = dtl; 250 return stolen; 251 } 252 253 /* 254 * Accumulate stolen time by scanning the dispatch trace log. 255 * Called on entry from user mode. 256 */ 257 void accumulate_stolen_time(void) 258 { 259 u64 sst, ust; 260 261 u8 save_soft_enabled = local_paca->soft_enabled; 262 u8 save_hard_enabled = local_paca->hard_enabled; 263 264 /* We are called early in the exception entry, before 265 * soft/hard_enabled are sync'ed to the expected state 266 * for the exception. We are hard disabled but the PACA 267 * needs to reflect that so various debug stuff doesn't 268 * complain 269 */ 270 local_paca->soft_enabled = 0; 271 local_paca->hard_enabled = 0; 272 273 sst = scan_dispatch_log(local_paca->starttime_user); 274 ust = scan_dispatch_log(local_paca->starttime); 275 local_paca->system_time -= sst; 276 local_paca->user_time -= ust; 277 local_paca->stolen_time += ust + sst; 278 279 local_paca->soft_enabled = save_soft_enabled; 280 local_paca->hard_enabled = save_hard_enabled; 281 } 282 283 static inline u64 calculate_stolen_time(u64 stop_tb) 284 { 285 u64 stolen = 0; 286 287 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) { 288 stolen = scan_dispatch_log(stop_tb); 289 get_paca()->system_time -= stolen; 290 } 291 292 stolen += get_paca()->stolen_time; 293 get_paca()->stolen_time = 0; 294 return stolen; 295 } 296 297 #else /* CONFIG_PPC_SPLPAR */ 298 static inline u64 calculate_stolen_time(u64 stop_tb) 299 { 300 return 0; 301 } 302 303 #endif /* CONFIG_PPC_SPLPAR */ 304 305 /* 306 * Account time for a transition between system, hard irq 307 * or soft irq state. 308 */ 309 void account_system_vtime(struct task_struct *tsk) 310 { 311 u64 now, nowscaled, delta, deltascaled; 312 unsigned long flags; 313 u64 stolen, udelta, sys_scaled, user_scaled; 314 315 local_irq_save(flags); 316 now = mftb(); 317 nowscaled = read_spurr(now); 318 get_paca()->system_time += now - get_paca()->starttime; 319 get_paca()->starttime = now; 320 deltascaled = nowscaled - get_paca()->startspurr; 321 get_paca()->startspurr = nowscaled; 322 323 stolen = calculate_stolen_time(now); 324 325 delta = get_paca()->system_time; 326 get_paca()->system_time = 0; 327 udelta = get_paca()->user_time - get_paca()->utime_sspurr; 328 get_paca()->utime_sspurr = get_paca()->user_time; 329 330 /* 331 * Because we don't read the SPURR on every kernel entry/exit, 332 * deltascaled includes both user and system SPURR ticks. 333 * Apportion these ticks to system SPURR ticks and user 334 * SPURR ticks in the same ratio as the system time (delta) 335 * and user time (udelta) values obtained from the timebase 336 * over the same interval. The system ticks get accounted here; 337 * the user ticks get saved up in paca->user_time_scaled to be 338 * used by account_process_tick. 339 */ 340 sys_scaled = delta; 341 user_scaled = udelta; 342 if (deltascaled != delta + udelta) { 343 if (udelta) { 344 sys_scaled = deltascaled * delta / (delta + udelta); 345 user_scaled = deltascaled - sys_scaled; 346 } else { 347 sys_scaled = deltascaled; 348 } 349 } 350 get_paca()->user_time_scaled += user_scaled; 351 352 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) { 353 account_system_time(tsk, 0, delta, sys_scaled); 354 if (stolen) 355 account_steal_time(stolen); 356 } else { 357 account_idle_time(delta + stolen); 358 } 359 local_irq_restore(flags); 360 } 361 EXPORT_SYMBOL_GPL(account_system_vtime); 362 363 /* 364 * Transfer the user and system times accumulated in the paca 365 * by the exception entry and exit code to the generic process 366 * user and system time records. 367 * Must be called with interrupts disabled. 368 * Assumes that account_system_vtime() has been called recently 369 * (i.e. since the last entry from usermode) so that 370 * get_paca()->user_time_scaled is up to date. 371 */ 372 void account_process_tick(struct task_struct *tsk, int user_tick) 373 { 374 cputime_t utime, utimescaled; 375 376 utime = get_paca()->user_time; 377 utimescaled = get_paca()->user_time_scaled; 378 get_paca()->user_time = 0; 379 get_paca()->user_time_scaled = 0; 380 get_paca()->utime_sspurr = 0; 381 account_user_time(tsk, utime, utimescaled); 382 } 383 384 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 385 #define calc_cputime_factors() 386 #endif 387 388 void __delay(unsigned long loops) 389 { 390 unsigned long start; 391 int diff; 392 393 if (__USE_RTC()) { 394 start = get_rtcl(); 395 do { 396 /* the RTCL register wraps at 1000000000 */ 397 diff = get_rtcl() - start; 398 if (diff < 0) 399 diff += 1000000000; 400 } while (diff < loops); 401 } else { 402 start = get_tbl(); 403 while (get_tbl() - start < loops) 404 HMT_low(); 405 HMT_medium(); 406 } 407 } 408 EXPORT_SYMBOL(__delay); 409 410 void udelay(unsigned long usecs) 411 { 412 __delay(tb_ticks_per_usec * usecs); 413 } 414 EXPORT_SYMBOL(udelay); 415 416 #ifdef CONFIG_SMP 417 unsigned long profile_pc(struct pt_regs *regs) 418 { 419 unsigned long pc = instruction_pointer(regs); 420 421 if (in_lock_functions(pc)) 422 return regs->link; 423 424 return pc; 425 } 426 EXPORT_SYMBOL(profile_pc); 427 #endif 428 429 #ifdef CONFIG_PPC_ISERIES 430 431 /* 432 * This function recalibrates the timebase based on the 49-bit time-of-day 433 * value in the Titan chip. The Titan is much more accurate than the value 434 * returned by the service processor for the timebase frequency. 435 */ 436 437 static int __init iSeries_tb_recal(void) 438 { 439 unsigned long titan, tb; 440 441 /* Make sure we only run on iSeries */ 442 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 443 return -ENODEV; 444 445 tb = get_tb(); 446 titan = HvCallXm_loadTod(); 447 if ( iSeries_recal_titan ) { 448 unsigned long tb_ticks = tb - iSeries_recal_tb; 449 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 450 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 451 unsigned long new_tb_ticks_per_jiffy = 452 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ); 453 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 454 char sign = '+'; 455 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 456 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 457 458 if ( tick_diff < 0 ) { 459 tick_diff = -tick_diff; 460 sign = '-'; 461 } 462 if ( tick_diff ) { 463 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 464 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 465 new_tb_ticks_per_jiffy, sign, tick_diff ); 466 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 467 tb_ticks_per_sec = new_tb_ticks_per_sec; 468 calc_cputime_factors(); 469 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 470 setup_cputime_one_jiffy(); 471 } 472 else { 473 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 474 " new tb_ticks_per_jiffy = %lu\n" 475 " old tb_ticks_per_jiffy = %lu\n", 476 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 477 } 478 } 479 } 480 iSeries_recal_titan = titan; 481 iSeries_recal_tb = tb; 482 483 /* Called here as now we know accurate values for the timebase */ 484 clocksource_init(); 485 return 0; 486 } 487 late_initcall(iSeries_tb_recal); 488 489 /* Called from platform early init */ 490 void __init iSeries_time_init_early(void) 491 { 492 iSeries_recal_tb = get_tb(); 493 iSeries_recal_titan = HvCallXm_loadTod(); 494 } 495 #endif /* CONFIG_PPC_ISERIES */ 496 497 #ifdef CONFIG_IRQ_WORK 498 499 /* 500 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 501 */ 502 #ifdef CONFIG_PPC64 503 static inline unsigned long test_irq_work_pending(void) 504 { 505 unsigned long x; 506 507 asm volatile("lbz %0,%1(13)" 508 : "=r" (x) 509 : "i" (offsetof(struct paca_struct, irq_work_pending))); 510 return x; 511 } 512 513 static inline void set_irq_work_pending_flag(void) 514 { 515 asm volatile("stb %0,%1(13)" : : 516 "r" (1), 517 "i" (offsetof(struct paca_struct, irq_work_pending))); 518 } 519 520 static inline void clear_irq_work_pending(void) 521 { 522 asm volatile("stb %0,%1(13)" : : 523 "r" (0), 524 "i" (offsetof(struct paca_struct, irq_work_pending))); 525 } 526 527 #else /* 32-bit */ 528 529 DEFINE_PER_CPU(u8, irq_work_pending); 530 531 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 532 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) 533 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 534 535 #endif /* 32 vs 64 bit */ 536 537 void arch_irq_work_raise(void) 538 { 539 preempt_disable(); 540 set_irq_work_pending_flag(); 541 set_dec(1); 542 preempt_enable(); 543 } 544 545 #else /* CONFIG_IRQ_WORK */ 546 547 #define test_irq_work_pending() 0 548 #define clear_irq_work_pending() 549 550 #endif /* CONFIG_IRQ_WORK */ 551 552 /* 553 * For iSeries shared processors, we have to let the hypervisor 554 * set the hardware decrementer. We set a virtual decrementer 555 * in the lppaca and call the hypervisor if the virtual 556 * decrementer is less than the current value in the hardware 557 * decrementer. (almost always the new decrementer value will 558 * be greater than the current hardware decementer so the hypervisor 559 * call will not be needed) 560 */ 561 562 /* 563 * timer_interrupt - gets called when the decrementer overflows, 564 * with interrupts disabled. 565 */ 566 void timer_interrupt(struct pt_regs * regs) 567 { 568 struct pt_regs *old_regs; 569 u64 *next_tb = &__get_cpu_var(decrementers_next_tb); 570 struct clock_event_device *evt = &__get_cpu_var(decrementers); 571 572 /* Ensure a positive value is written to the decrementer, or else 573 * some CPUs will continue to take decrementer exceptions. 574 */ 575 set_dec(DECREMENTER_MAX); 576 577 /* Some implementations of hotplug will get timer interrupts while 578 * offline, just ignore these 579 */ 580 if (!cpu_online(smp_processor_id())) 581 return; 582 583 trace_timer_interrupt_entry(regs); 584 585 __get_cpu_var(irq_stat).timer_irqs++; 586 587 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC) 588 if (atomic_read(&ppc_n_lost_interrupts) != 0) 589 do_IRQ(regs); 590 #endif 591 592 old_regs = set_irq_regs(regs); 593 irq_enter(); 594 595 if (test_irq_work_pending()) { 596 clear_irq_work_pending(); 597 irq_work_run(); 598 } 599 600 #ifdef CONFIG_PPC_ISERIES 601 if (firmware_has_feature(FW_FEATURE_ISERIES)) 602 get_lppaca()->int_dword.fields.decr_int = 0; 603 #endif 604 605 *next_tb = ~(u64)0; 606 if (evt->event_handler) 607 evt->event_handler(evt); 608 609 #ifdef CONFIG_PPC_ISERIES 610 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending()) 611 process_hvlpevents(); 612 #endif 613 614 #ifdef CONFIG_PPC64 615 /* collect purr register values often, for accurate calculations */ 616 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 617 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 618 cu->current_tb = mfspr(SPRN_PURR); 619 } 620 #endif 621 622 irq_exit(); 623 set_irq_regs(old_regs); 624 625 trace_timer_interrupt_exit(regs); 626 } 627 628 #ifdef CONFIG_SUSPEND 629 static void generic_suspend_disable_irqs(void) 630 { 631 /* Disable the decrementer, so that it doesn't interfere 632 * with suspending. 633 */ 634 635 set_dec(DECREMENTER_MAX); 636 local_irq_disable(); 637 set_dec(DECREMENTER_MAX); 638 } 639 640 static void generic_suspend_enable_irqs(void) 641 { 642 local_irq_enable(); 643 } 644 645 /* Overrides the weak version in kernel/power/main.c */ 646 void arch_suspend_disable_irqs(void) 647 { 648 if (ppc_md.suspend_disable_irqs) 649 ppc_md.suspend_disable_irqs(); 650 generic_suspend_disable_irqs(); 651 } 652 653 /* Overrides the weak version in kernel/power/main.c */ 654 void arch_suspend_enable_irqs(void) 655 { 656 generic_suspend_enable_irqs(); 657 if (ppc_md.suspend_enable_irqs) 658 ppc_md.suspend_enable_irqs(); 659 } 660 #endif 661 662 /* 663 * Scheduler clock - returns current time in nanosec units. 664 * 665 * Note: mulhdu(a, b) (multiply high double unsigned) returns 666 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 667 * are 64-bit unsigned numbers. 668 */ 669 unsigned long long sched_clock(void) 670 { 671 if (__USE_RTC()) 672 return get_rtc(); 673 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 674 } 675 676 static int __init get_freq(char *name, int cells, unsigned long *val) 677 { 678 struct device_node *cpu; 679 const unsigned int *fp; 680 int found = 0; 681 682 /* The cpu node should have timebase and clock frequency properties */ 683 cpu = of_find_node_by_type(NULL, "cpu"); 684 685 if (cpu) { 686 fp = of_get_property(cpu, name, NULL); 687 if (fp) { 688 found = 1; 689 *val = of_read_ulong(fp, cells); 690 } 691 692 of_node_put(cpu); 693 } 694 695 return found; 696 } 697 698 /* should become __cpuinit when secondary_cpu_time_init also is */ 699 void start_cpu_decrementer(void) 700 { 701 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 702 /* Clear any pending timer interrupts */ 703 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 704 705 /* Enable decrementer interrupt */ 706 mtspr(SPRN_TCR, TCR_DIE); 707 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */ 708 } 709 710 void __init generic_calibrate_decr(void) 711 { 712 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 713 714 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 715 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 716 717 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 718 "(not found)\n"); 719 } 720 721 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 722 723 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 724 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 725 726 printk(KERN_ERR "WARNING: Estimating processor frequency " 727 "(not found)\n"); 728 } 729 } 730 731 int update_persistent_clock(struct timespec now) 732 { 733 struct rtc_time tm; 734 735 if (!ppc_md.set_rtc_time) 736 return 0; 737 738 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 739 tm.tm_year -= 1900; 740 tm.tm_mon -= 1; 741 742 return ppc_md.set_rtc_time(&tm); 743 } 744 745 static void __read_persistent_clock(struct timespec *ts) 746 { 747 struct rtc_time tm; 748 static int first = 1; 749 750 ts->tv_nsec = 0; 751 /* XXX this is a litle fragile but will work okay in the short term */ 752 if (first) { 753 first = 0; 754 if (ppc_md.time_init) 755 timezone_offset = ppc_md.time_init(); 756 757 /* get_boot_time() isn't guaranteed to be safe to call late */ 758 if (ppc_md.get_boot_time) { 759 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 760 return; 761 } 762 } 763 if (!ppc_md.get_rtc_time) { 764 ts->tv_sec = 0; 765 return; 766 } 767 ppc_md.get_rtc_time(&tm); 768 769 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 770 tm.tm_hour, tm.tm_min, tm.tm_sec); 771 } 772 773 void read_persistent_clock(struct timespec *ts) 774 { 775 __read_persistent_clock(ts); 776 777 /* Sanitize it in case real time clock is set below EPOCH */ 778 if (ts->tv_sec < 0) { 779 ts->tv_sec = 0; 780 ts->tv_nsec = 0; 781 } 782 783 } 784 785 /* clocksource code */ 786 static cycle_t rtc_read(struct clocksource *cs) 787 { 788 return (cycle_t)get_rtc(); 789 } 790 791 static cycle_t timebase_read(struct clocksource *cs) 792 { 793 return (cycle_t)get_tb(); 794 } 795 796 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm, 797 struct clocksource *clock, u32 mult) 798 { 799 u64 new_tb_to_xs, new_stamp_xsec; 800 u32 frac_sec; 801 802 if (clock != &clocksource_timebase) 803 return; 804 805 /* Make userspace gettimeofday spin until we're done. */ 806 ++vdso_data->tb_update_count; 807 smp_mb(); 808 809 /* 19342813113834067 ~= 2^(20+64) / 1e9 */ 810 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); 811 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC; 812 do_div(new_stamp_xsec, 1000000000); 813 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC; 814 815 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC); 816 /* this is tv_nsec / 1e9 as a 0.32 fraction */ 817 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32; 818 819 /* 820 * tb_update_count is used to allow the userspace gettimeofday code 821 * to assure itself that it sees a consistent view of the tb_to_xs and 822 * stamp_xsec variables. It reads the tb_update_count, then reads 823 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 824 * the two values of tb_update_count match and are even then the 825 * tb_to_xs and stamp_xsec values are consistent. If not, then it 826 * loops back and reads them again until this criteria is met. 827 * We expect the caller to have done the first increment of 828 * vdso_data->tb_update_count already. 829 */ 830 vdso_data->tb_orig_stamp = clock->cycle_last; 831 vdso_data->stamp_xsec = new_stamp_xsec; 832 vdso_data->tb_to_xs = new_tb_to_xs; 833 vdso_data->wtom_clock_sec = wtm->tv_sec; 834 vdso_data->wtom_clock_nsec = wtm->tv_nsec; 835 vdso_data->stamp_xtime = *wall_time; 836 vdso_data->stamp_sec_fraction = frac_sec; 837 smp_wmb(); 838 ++(vdso_data->tb_update_count); 839 } 840 841 void update_vsyscall_tz(void) 842 { 843 /* Make userspace gettimeofday spin until we're done. */ 844 ++vdso_data->tb_update_count; 845 smp_mb(); 846 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 847 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 848 smp_mb(); 849 ++vdso_data->tb_update_count; 850 } 851 852 static void __init clocksource_init(void) 853 { 854 struct clocksource *clock; 855 856 if (__USE_RTC()) 857 clock = &clocksource_rtc; 858 else 859 clock = &clocksource_timebase; 860 861 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 862 printk(KERN_ERR "clocksource: %s is already registered\n", 863 clock->name); 864 return; 865 } 866 867 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 868 clock->name, clock->mult, clock->shift); 869 } 870 871 static int decrementer_set_next_event(unsigned long evt, 872 struct clock_event_device *dev) 873 { 874 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt; 875 set_dec(evt); 876 return 0; 877 } 878 879 static void decrementer_set_mode(enum clock_event_mode mode, 880 struct clock_event_device *dev) 881 { 882 if (mode != CLOCK_EVT_MODE_ONESHOT) 883 decrementer_set_next_event(DECREMENTER_MAX, dev); 884 } 885 886 static void register_decrementer_clockevent(int cpu) 887 { 888 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 889 890 *dec = decrementer_clockevent; 891 dec->cpumask = cpumask_of(cpu); 892 893 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 894 dec->name, dec->mult, dec->shift, cpu); 895 896 clockevents_register_device(dec); 897 } 898 899 static void __init init_decrementer_clockevent(void) 900 { 901 int cpu = smp_processor_id(); 902 903 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4); 904 905 decrementer_clockevent.max_delta_ns = 906 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); 907 decrementer_clockevent.min_delta_ns = 908 clockevent_delta2ns(2, &decrementer_clockevent); 909 910 register_decrementer_clockevent(cpu); 911 } 912 913 void secondary_cpu_time_init(void) 914 { 915 /* Start the decrementer on CPUs that have manual control 916 * such as BookE 917 */ 918 start_cpu_decrementer(); 919 920 /* FIME: Should make unrelatred change to move snapshot_timebase 921 * call here ! */ 922 register_decrementer_clockevent(smp_processor_id()); 923 } 924 925 /* This function is only called on the boot processor */ 926 void __init time_init(void) 927 { 928 struct div_result res; 929 u64 scale; 930 unsigned shift; 931 932 if (__USE_RTC()) { 933 /* 601 processor: dec counts down by 128 every 128ns */ 934 ppc_tb_freq = 1000000000; 935 } else { 936 /* Normal PowerPC with timebase register */ 937 ppc_md.calibrate_decr(); 938 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 939 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 940 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 941 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 942 } 943 944 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 945 tb_ticks_per_sec = ppc_tb_freq; 946 tb_ticks_per_usec = ppc_tb_freq / 1000000; 947 calc_cputime_factors(); 948 setup_cputime_one_jiffy(); 949 950 /* 951 * Compute scale factor for sched_clock. 952 * The calibrate_decr() function has set tb_ticks_per_sec, 953 * which is the timebase frequency. 954 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 955 * the 128-bit result as a 64.64 fixed-point number. 956 * We then shift that number right until it is less than 1.0, 957 * giving us the scale factor and shift count to use in 958 * sched_clock(). 959 */ 960 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 961 scale = res.result_low; 962 for (shift = 0; res.result_high != 0; ++shift) { 963 scale = (scale >> 1) | (res.result_high << 63); 964 res.result_high >>= 1; 965 } 966 tb_to_ns_scale = scale; 967 tb_to_ns_shift = shift; 968 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 969 boot_tb = get_tb_or_rtc(); 970 971 /* If platform provided a timezone (pmac), we correct the time */ 972 if (timezone_offset) { 973 sys_tz.tz_minuteswest = -timezone_offset / 60; 974 sys_tz.tz_dsttime = 0; 975 } 976 977 vdso_data->tb_update_count = 0; 978 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 979 980 /* Start the decrementer on CPUs that have manual control 981 * such as BookE 982 */ 983 start_cpu_decrementer(); 984 985 /* Register the clocksource, if we're not running on iSeries */ 986 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 987 clocksource_init(); 988 989 init_decrementer_clockevent(); 990 } 991 992 993 #define FEBRUARY 2 994 #define STARTOFTIME 1970 995 #define SECDAY 86400L 996 #define SECYR (SECDAY * 365) 997 #define leapyear(year) ((year) % 4 == 0 && \ 998 ((year) % 100 != 0 || (year) % 400 == 0)) 999 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1000 #define days_in_month(a) (month_days[(a) - 1]) 1001 1002 static int month_days[12] = { 1003 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1004 }; 1005 1006 /* 1007 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1008 */ 1009 void GregorianDay(struct rtc_time * tm) 1010 { 1011 int leapsToDate; 1012 int lastYear; 1013 int day; 1014 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1015 1016 lastYear = tm->tm_year - 1; 1017 1018 /* 1019 * Number of leap corrections to apply up to end of last year 1020 */ 1021 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1022 1023 /* 1024 * This year is a leap year if it is divisible by 4 except when it is 1025 * divisible by 100 unless it is divisible by 400 1026 * 1027 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1028 */ 1029 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1030 1031 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1032 tm->tm_mday; 1033 1034 tm->tm_wday = day % 7; 1035 } 1036 1037 void to_tm(int tim, struct rtc_time * tm) 1038 { 1039 register int i; 1040 register long hms, day; 1041 1042 day = tim / SECDAY; 1043 hms = tim % SECDAY; 1044 1045 /* Hours, minutes, seconds are easy */ 1046 tm->tm_hour = hms / 3600; 1047 tm->tm_min = (hms % 3600) / 60; 1048 tm->tm_sec = (hms % 3600) % 60; 1049 1050 /* Number of years in days */ 1051 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1052 day -= days_in_year(i); 1053 tm->tm_year = i; 1054 1055 /* Number of months in days left */ 1056 if (leapyear(tm->tm_year)) 1057 days_in_month(FEBRUARY) = 29; 1058 for (i = 1; day >= days_in_month(i); i++) 1059 day -= days_in_month(i); 1060 days_in_month(FEBRUARY) = 28; 1061 tm->tm_mon = i; 1062 1063 /* Days are what is left over (+1) from all that. */ 1064 tm->tm_mday = day + 1; 1065 1066 /* 1067 * Determine the day of week 1068 */ 1069 GregorianDay(tm); 1070 } 1071 1072 /* 1073 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1074 * result. 1075 */ 1076 void div128_by_32(u64 dividend_high, u64 dividend_low, 1077 unsigned divisor, struct div_result *dr) 1078 { 1079 unsigned long a, b, c, d; 1080 unsigned long w, x, y, z; 1081 u64 ra, rb, rc; 1082 1083 a = dividend_high >> 32; 1084 b = dividend_high & 0xffffffff; 1085 c = dividend_low >> 32; 1086 d = dividend_low & 0xffffffff; 1087 1088 w = a / divisor; 1089 ra = ((u64)(a - (w * divisor)) << 32) + b; 1090 1091 rb = ((u64) do_div(ra, divisor) << 32) + c; 1092 x = ra; 1093 1094 rc = ((u64) do_div(rb, divisor) << 32) + d; 1095 y = rb; 1096 1097 do_div(rc, divisor); 1098 z = rc; 1099 1100 dr->result_high = ((u64)w << 32) + x; 1101 dr->result_low = ((u64)y << 32) + z; 1102 1103 } 1104 1105 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1106 void calibrate_delay(void) 1107 { 1108 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1109 * as the number of __delay(1) in a jiffy, so make it so 1110 */ 1111 loops_per_jiffy = tb_ticks_per_jiffy; 1112 } 1113 1114 static int __init rtc_init(void) 1115 { 1116 struct platform_device *pdev; 1117 1118 if (!ppc_md.get_rtc_time) 1119 return -ENODEV; 1120 1121 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); 1122 if (IS_ERR(pdev)) 1123 return PTR_ERR(pdev); 1124 1125 return 0; 1126 } 1127 1128 module_init(rtc_init); 1129