1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/kernel.h> 35 #include <linux/param.h> 36 #include <linux/string.h> 37 #include <linux/mm.h> 38 #include <linux/interrupt.h> 39 #include <linux/timex.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/time.h> 42 #include <linux/init.h> 43 #include <linux/profile.h> 44 #include <linux/cpu.h> 45 #include <linux/security.h> 46 #include <linux/percpu.h> 47 #include <linux/rtc.h> 48 #include <linux/jiffies.h> 49 #include <linux/posix-timers.h> 50 #include <linux/irq.h> 51 #include <linux/delay.h> 52 #include <linux/irq_work.h> 53 #include <linux/of_clk.h> 54 #include <linux/suspend.h> 55 #include <linux/sched/cputime.h> 56 #include <linux/processor.h> 57 #include <asm/trace.h> 58 59 #include <asm/io.h> 60 #include <asm/nvram.h> 61 #include <asm/cache.h> 62 #include <asm/machdep.h> 63 #include <linux/uaccess.h> 64 #include <asm/time.h> 65 #include <asm/prom.h> 66 #include <asm/irq.h> 67 #include <asm/div64.h> 68 #include <asm/smp.h> 69 #include <asm/vdso_datapage.h> 70 #include <asm/firmware.h> 71 #include <asm/asm-prototypes.h> 72 73 /* powerpc clocksource/clockevent code */ 74 75 #include <linux/clockchips.h> 76 #include <linux/timekeeper_internal.h> 77 78 static u64 timebase_read(struct clocksource *); 79 static struct clocksource clocksource_timebase = { 80 .name = "timebase", 81 .rating = 400, 82 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 83 .mask = CLOCKSOURCE_MASK(64), 84 .read = timebase_read, 85 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER, 86 }; 87 88 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 89 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 90 91 static int decrementer_set_next_event(unsigned long evt, 92 struct clock_event_device *dev); 93 static int decrementer_shutdown(struct clock_event_device *evt); 94 95 struct clock_event_device decrementer_clockevent = { 96 .name = "decrementer", 97 .rating = 200, 98 .irq = 0, 99 .set_next_event = decrementer_set_next_event, 100 .set_state_oneshot_stopped = decrementer_shutdown, 101 .set_state_shutdown = decrementer_shutdown, 102 .tick_resume = decrementer_shutdown, 103 .features = CLOCK_EVT_FEAT_ONESHOT | 104 CLOCK_EVT_FEAT_C3STOP, 105 }; 106 EXPORT_SYMBOL(decrementer_clockevent); 107 108 DEFINE_PER_CPU(u64, decrementers_next_tb); 109 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 110 111 #define XSEC_PER_SEC (1024*1024) 112 113 #ifdef CONFIG_PPC64 114 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 115 #else 116 /* compute ((xsec << 12) * max) >> 32 */ 117 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 118 #endif 119 120 unsigned long tb_ticks_per_jiffy; 121 unsigned long tb_ticks_per_usec = 100; /* sane default */ 122 EXPORT_SYMBOL(tb_ticks_per_usec); 123 unsigned long tb_ticks_per_sec; 124 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 125 126 DEFINE_SPINLOCK(rtc_lock); 127 EXPORT_SYMBOL_GPL(rtc_lock); 128 129 static u64 tb_to_ns_scale __read_mostly; 130 static unsigned tb_to_ns_shift __read_mostly; 131 static u64 boot_tb __read_mostly; 132 133 extern struct timezone sys_tz; 134 static long timezone_offset; 135 136 unsigned long ppc_proc_freq; 137 EXPORT_SYMBOL_GPL(ppc_proc_freq); 138 unsigned long ppc_tb_freq; 139 EXPORT_SYMBOL_GPL(ppc_tb_freq); 140 141 bool tb_invalid; 142 143 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 144 /* 145 * Factor for converting from cputime_t (timebase ticks) to 146 * microseconds. This is stored as 0.64 fixed-point binary fraction. 147 */ 148 u64 __cputime_usec_factor; 149 EXPORT_SYMBOL(__cputime_usec_factor); 150 151 #ifdef CONFIG_PPC_SPLPAR 152 void (*dtl_consumer)(struct dtl_entry *, u64); 153 #endif 154 155 static void calc_cputime_factors(void) 156 { 157 struct div_result res; 158 159 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 160 __cputime_usec_factor = res.result_low; 161 } 162 163 /* 164 * Read the SPURR on systems that have it, otherwise the PURR, 165 * or if that doesn't exist return the timebase value passed in. 166 */ 167 static inline unsigned long read_spurr(unsigned long tb) 168 { 169 if (cpu_has_feature(CPU_FTR_SPURR)) 170 return mfspr(SPRN_SPURR); 171 if (cpu_has_feature(CPU_FTR_PURR)) 172 return mfspr(SPRN_PURR); 173 return tb; 174 } 175 176 #ifdef CONFIG_PPC_SPLPAR 177 178 #include <asm/dtl.h> 179 180 /* 181 * Scan the dispatch trace log and count up the stolen time. 182 * Should be called with interrupts disabled. 183 */ 184 static u64 scan_dispatch_log(u64 stop_tb) 185 { 186 u64 i = local_paca->dtl_ridx; 187 struct dtl_entry *dtl = local_paca->dtl_curr; 188 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 189 struct lppaca *vpa = local_paca->lppaca_ptr; 190 u64 tb_delta; 191 u64 stolen = 0; 192 u64 dtb; 193 194 if (!dtl) 195 return 0; 196 197 if (i == be64_to_cpu(vpa->dtl_idx)) 198 return 0; 199 while (i < be64_to_cpu(vpa->dtl_idx)) { 200 dtb = be64_to_cpu(dtl->timebase); 201 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 202 be32_to_cpu(dtl->ready_to_enqueue_time); 203 barrier(); 204 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 205 /* buffer has overflowed */ 206 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 207 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 208 continue; 209 } 210 if (dtb > stop_tb) 211 break; 212 if (dtl_consumer) 213 dtl_consumer(dtl, i); 214 stolen += tb_delta; 215 ++i; 216 ++dtl; 217 if (dtl == dtl_end) 218 dtl = local_paca->dispatch_log; 219 } 220 local_paca->dtl_ridx = i; 221 local_paca->dtl_curr = dtl; 222 return stolen; 223 } 224 225 /* 226 * Accumulate stolen time by scanning the dispatch trace log. 227 * Called on entry from user mode. 228 */ 229 void notrace accumulate_stolen_time(void) 230 { 231 u64 sst, ust; 232 unsigned long save_irq_soft_mask = irq_soft_mask_return(); 233 struct cpu_accounting_data *acct = &local_paca->accounting; 234 235 /* We are called early in the exception entry, before 236 * soft/hard_enabled are sync'ed to the expected state 237 * for the exception. We are hard disabled but the PACA 238 * needs to reflect that so various debug stuff doesn't 239 * complain 240 */ 241 irq_soft_mask_set(IRQS_DISABLED); 242 243 sst = scan_dispatch_log(acct->starttime_user); 244 ust = scan_dispatch_log(acct->starttime); 245 acct->stime -= sst; 246 acct->utime -= ust; 247 acct->steal_time += ust + sst; 248 249 irq_soft_mask_set(save_irq_soft_mask); 250 } 251 252 static inline u64 calculate_stolen_time(u64 stop_tb) 253 { 254 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 255 return 0; 256 257 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 258 return scan_dispatch_log(stop_tb); 259 260 return 0; 261 } 262 263 #else /* CONFIG_PPC_SPLPAR */ 264 static inline u64 calculate_stolen_time(u64 stop_tb) 265 { 266 return 0; 267 } 268 269 #endif /* CONFIG_PPC_SPLPAR */ 270 271 /* 272 * Account time for a transition between system, hard irq 273 * or soft irq state. 274 */ 275 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 276 unsigned long now, unsigned long stime) 277 { 278 unsigned long stime_scaled = 0; 279 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 280 unsigned long nowscaled, deltascaled; 281 unsigned long utime, utime_scaled; 282 283 nowscaled = read_spurr(now); 284 deltascaled = nowscaled - acct->startspurr; 285 acct->startspurr = nowscaled; 286 utime = acct->utime - acct->utime_sspurr; 287 acct->utime_sspurr = acct->utime; 288 289 /* 290 * Because we don't read the SPURR on every kernel entry/exit, 291 * deltascaled includes both user and system SPURR ticks. 292 * Apportion these ticks to system SPURR ticks and user 293 * SPURR ticks in the same ratio as the system time (delta) 294 * and user time (udelta) values obtained from the timebase 295 * over the same interval. The system ticks get accounted here; 296 * the user ticks get saved up in paca->user_time_scaled to be 297 * used by account_process_tick. 298 */ 299 stime_scaled = stime; 300 utime_scaled = utime; 301 if (deltascaled != stime + utime) { 302 if (utime) { 303 stime_scaled = deltascaled * stime / (stime + utime); 304 utime_scaled = deltascaled - stime_scaled; 305 } else { 306 stime_scaled = deltascaled; 307 } 308 } 309 acct->utime_scaled += utime_scaled; 310 #endif 311 312 return stime_scaled; 313 } 314 315 static unsigned long vtime_delta(struct task_struct *tsk, 316 unsigned long *stime_scaled, 317 unsigned long *steal_time) 318 { 319 unsigned long now, stime; 320 struct cpu_accounting_data *acct = get_accounting(tsk); 321 322 WARN_ON_ONCE(!irqs_disabled()); 323 324 now = mftb(); 325 stime = now - acct->starttime; 326 acct->starttime = now; 327 328 *stime_scaled = vtime_delta_scaled(acct, now, stime); 329 330 *steal_time = calculate_stolen_time(now); 331 332 return stime; 333 } 334 335 void vtime_account_kernel(struct task_struct *tsk) 336 { 337 unsigned long stime, stime_scaled, steal_time; 338 struct cpu_accounting_data *acct = get_accounting(tsk); 339 340 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 341 342 stime -= min(stime, steal_time); 343 acct->steal_time += steal_time; 344 345 if ((tsk->flags & PF_VCPU) && !irq_count()) { 346 acct->gtime += stime; 347 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 348 acct->utime_scaled += stime_scaled; 349 #endif 350 } else { 351 if (hardirq_count()) 352 acct->hardirq_time += stime; 353 else if (in_serving_softirq()) 354 acct->softirq_time += stime; 355 else 356 acct->stime += stime; 357 358 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 359 acct->stime_scaled += stime_scaled; 360 #endif 361 } 362 } 363 EXPORT_SYMBOL_GPL(vtime_account_kernel); 364 365 void vtime_account_idle(struct task_struct *tsk) 366 { 367 unsigned long stime, stime_scaled, steal_time; 368 struct cpu_accounting_data *acct = get_accounting(tsk); 369 370 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 371 acct->idle_time += stime + steal_time; 372 } 373 374 static void vtime_flush_scaled(struct task_struct *tsk, 375 struct cpu_accounting_data *acct) 376 { 377 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 378 if (acct->utime_scaled) 379 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 380 if (acct->stime_scaled) 381 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 382 383 acct->utime_scaled = 0; 384 acct->utime_sspurr = 0; 385 acct->stime_scaled = 0; 386 #endif 387 } 388 389 /* 390 * Account the whole cputime accumulated in the paca 391 * Must be called with interrupts disabled. 392 * Assumes that vtime_account_kernel/idle() has been called 393 * recently (i.e. since the last entry from usermode) so that 394 * get_paca()->user_time_scaled is up to date. 395 */ 396 void vtime_flush(struct task_struct *tsk) 397 { 398 struct cpu_accounting_data *acct = get_accounting(tsk); 399 400 if (acct->utime) 401 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 402 403 if (acct->gtime) 404 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 405 406 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 407 account_steal_time(cputime_to_nsecs(acct->steal_time)); 408 acct->steal_time = 0; 409 } 410 411 if (acct->idle_time) 412 account_idle_time(cputime_to_nsecs(acct->idle_time)); 413 414 if (acct->stime) 415 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 416 CPUTIME_SYSTEM); 417 418 if (acct->hardirq_time) 419 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 420 CPUTIME_IRQ); 421 if (acct->softirq_time) 422 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 423 CPUTIME_SOFTIRQ); 424 425 vtime_flush_scaled(tsk, acct); 426 427 acct->utime = 0; 428 acct->gtime = 0; 429 acct->idle_time = 0; 430 acct->stime = 0; 431 acct->hardirq_time = 0; 432 acct->softirq_time = 0; 433 } 434 435 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 436 #define calc_cputime_factors() 437 #endif 438 439 void __delay(unsigned long loops) 440 { 441 unsigned long start; 442 443 spin_begin(); 444 if (tb_invalid) { 445 /* 446 * TB is in error state and isn't ticking anymore. 447 * HMI handler was unable to recover from TB error. 448 * Return immediately, so that kernel won't get stuck here. 449 */ 450 spin_cpu_relax(); 451 } else { 452 start = mftb(); 453 while (mftb() - start < loops) 454 spin_cpu_relax(); 455 } 456 spin_end(); 457 } 458 EXPORT_SYMBOL(__delay); 459 460 void udelay(unsigned long usecs) 461 { 462 __delay(tb_ticks_per_usec * usecs); 463 } 464 EXPORT_SYMBOL(udelay); 465 466 #ifdef CONFIG_SMP 467 unsigned long profile_pc(struct pt_regs *regs) 468 { 469 unsigned long pc = instruction_pointer(regs); 470 471 if (in_lock_functions(pc)) 472 return regs->link; 473 474 return pc; 475 } 476 EXPORT_SYMBOL(profile_pc); 477 #endif 478 479 #ifdef CONFIG_IRQ_WORK 480 481 /* 482 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 483 */ 484 #ifdef CONFIG_PPC64 485 static inline unsigned long test_irq_work_pending(void) 486 { 487 unsigned long x; 488 489 asm volatile("lbz %0,%1(13)" 490 : "=r" (x) 491 : "i" (offsetof(struct paca_struct, irq_work_pending))); 492 return x; 493 } 494 495 static inline void set_irq_work_pending_flag(void) 496 { 497 asm volatile("stb %0,%1(13)" : : 498 "r" (1), 499 "i" (offsetof(struct paca_struct, irq_work_pending))); 500 } 501 502 static inline void clear_irq_work_pending(void) 503 { 504 asm volatile("stb %0,%1(13)" : : 505 "r" (0), 506 "i" (offsetof(struct paca_struct, irq_work_pending))); 507 } 508 509 #else /* 32-bit */ 510 511 DEFINE_PER_CPU(u8, irq_work_pending); 512 513 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 514 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 515 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 516 517 #endif /* 32 vs 64 bit */ 518 519 void arch_irq_work_raise(void) 520 { 521 /* 522 * 64-bit code that uses irq soft-mask can just cause an immediate 523 * interrupt here that gets soft masked, if this is called under 524 * local_irq_disable(). It might be possible to prevent that happening 525 * by noticing interrupts are disabled and setting decrementer pending 526 * to be replayed when irqs are enabled. The problem there is that 527 * tracing can call irq_work_raise, including in code that does low 528 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 529 * which could get tangled up if we're messing with the same state 530 * here. 531 */ 532 preempt_disable(); 533 set_irq_work_pending_flag(); 534 set_dec(1); 535 preempt_enable(); 536 } 537 538 #else /* CONFIG_IRQ_WORK */ 539 540 #define test_irq_work_pending() 0 541 #define clear_irq_work_pending() 542 543 #endif /* CONFIG_IRQ_WORK */ 544 545 /* 546 * timer_interrupt - gets called when the decrementer overflows, 547 * with interrupts disabled. 548 */ 549 void timer_interrupt(struct pt_regs *regs) 550 { 551 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 552 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 553 struct pt_regs *old_regs; 554 u64 now; 555 556 /* Some implementations of hotplug will get timer interrupts while 557 * offline, just ignore these and we also need to set 558 * decrementers_next_tb as MAX to make sure __check_irq_replay 559 * don't replay timer interrupt when return, otherwise we'll trap 560 * here infinitely :( 561 */ 562 if (unlikely(!cpu_online(smp_processor_id()))) { 563 *next_tb = ~(u64)0; 564 set_dec(decrementer_max); 565 return; 566 } 567 568 /* Ensure a positive value is written to the decrementer, or else 569 * some CPUs will continue to take decrementer exceptions. When the 570 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 571 * 31 bits, which is about 4 seconds on most systems, which gives 572 * the watchdog a chance of catching timer interrupt hard lockups. 573 */ 574 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 575 set_dec(0x7fffffff); 576 else 577 set_dec(decrementer_max); 578 579 /* Conditionally hard-enable interrupts now that the DEC has been 580 * bumped to its maximum value 581 */ 582 may_hard_irq_enable(); 583 584 585 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 586 if (atomic_read(&ppc_n_lost_interrupts) != 0) 587 do_IRQ(regs); 588 #endif 589 590 old_regs = set_irq_regs(regs); 591 irq_enter(); 592 trace_timer_interrupt_entry(regs); 593 594 if (test_irq_work_pending()) { 595 clear_irq_work_pending(); 596 irq_work_run(); 597 } 598 599 now = get_tb(); 600 if (now >= *next_tb) { 601 *next_tb = ~(u64)0; 602 if (evt->event_handler) 603 evt->event_handler(evt); 604 __this_cpu_inc(irq_stat.timer_irqs_event); 605 } else { 606 now = *next_tb - now; 607 if (now <= decrementer_max) 608 set_dec(now); 609 /* We may have raced with new irq work */ 610 if (test_irq_work_pending()) 611 set_dec(1); 612 __this_cpu_inc(irq_stat.timer_irqs_others); 613 } 614 615 trace_timer_interrupt_exit(regs); 616 irq_exit(); 617 set_irq_regs(old_regs); 618 } 619 EXPORT_SYMBOL(timer_interrupt); 620 621 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 622 void timer_broadcast_interrupt(void) 623 { 624 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 625 626 *next_tb = ~(u64)0; 627 tick_receive_broadcast(); 628 __this_cpu_inc(irq_stat.broadcast_irqs_event); 629 } 630 #endif 631 632 #ifdef CONFIG_SUSPEND 633 static void generic_suspend_disable_irqs(void) 634 { 635 /* Disable the decrementer, so that it doesn't interfere 636 * with suspending. 637 */ 638 639 set_dec(decrementer_max); 640 local_irq_disable(); 641 set_dec(decrementer_max); 642 } 643 644 static void generic_suspend_enable_irqs(void) 645 { 646 local_irq_enable(); 647 } 648 649 /* Overrides the weak version in kernel/power/main.c */ 650 void arch_suspend_disable_irqs(void) 651 { 652 if (ppc_md.suspend_disable_irqs) 653 ppc_md.suspend_disable_irqs(); 654 generic_suspend_disable_irqs(); 655 } 656 657 /* Overrides the weak version in kernel/power/main.c */ 658 void arch_suspend_enable_irqs(void) 659 { 660 generic_suspend_enable_irqs(); 661 if (ppc_md.suspend_enable_irqs) 662 ppc_md.suspend_enable_irqs(); 663 } 664 #endif 665 666 unsigned long long tb_to_ns(unsigned long long ticks) 667 { 668 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 669 } 670 EXPORT_SYMBOL_GPL(tb_to_ns); 671 672 /* 673 * Scheduler clock - returns current time in nanosec units. 674 * 675 * Note: mulhdu(a, b) (multiply high double unsigned) returns 676 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 677 * are 64-bit unsigned numbers. 678 */ 679 notrace unsigned long long sched_clock(void) 680 { 681 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 682 } 683 684 685 #ifdef CONFIG_PPC_PSERIES 686 687 /* 688 * Running clock - attempts to give a view of time passing for a virtualised 689 * kernels. 690 * Uses the VTB register if available otherwise a next best guess. 691 */ 692 unsigned long long running_clock(void) 693 { 694 /* 695 * Don't read the VTB as a host since KVM does not switch in host 696 * timebase into the VTB when it takes a guest off the CPU, reading the 697 * VTB would result in reading 'last switched out' guest VTB. 698 * 699 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 700 * would be unsafe to rely only on the #ifdef above. 701 */ 702 if (firmware_has_feature(FW_FEATURE_LPAR) && 703 cpu_has_feature(CPU_FTR_ARCH_207S)) 704 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 705 706 /* 707 * This is a next best approximation without a VTB. 708 * On a host which is running bare metal there should never be any stolen 709 * time and on a host which doesn't do any virtualisation TB *should* equal 710 * VTB so it makes no difference anyway. 711 */ 712 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 713 } 714 #endif 715 716 static int __init get_freq(char *name, int cells, unsigned long *val) 717 { 718 struct device_node *cpu; 719 const __be32 *fp; 720 int found = 0; 721 722 /* The cpu node should have timebase and clock frequency properties */ 723 cpu = of_find_node_by_type(NULL, "cpu"); 724 725 if (cpu) { 726 fp = of_get_property(cpu, name, NULL); 727 if (fp) { 728 found = 1; 729 *val = of_read_ulong(fp, cells); 730 } 731 732 of_node_put(cpu); 733 } 734 735 return found; 736 } 737 738 static void start_cpu_decrementer(void) 739 { 740 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 741 unsigned int tcr; 742 743 /* Clear any pending timer interrupts */ 744 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 745 746 tcr = mfspr(SPRN_TCR); 747 /* 748 * The watchdog may have already been enabled by u-boot. So leave 749 * TRC[WP] (Watchdog Period) alone. 750 */ 751 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 752 tcr |= TCR_DIE; /* Enable decrementer */ 753 mtspr(SPRN_TCR, tcr); 754 #endif 755 } 756 757 void __init generic_calibrate_decr(void) 758 { 759 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 760 761 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 762 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 763 764 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 765 "(not found)\n"); 766 } 767 768 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 769 770 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 771 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 772 773 printk(KERN_ERR "WARNING: Estimating processor frequency " 774 "(not found)\n"); 775 } 776 } 777 778 int update_persistent_clock64(struct timespec64 now) 779 { 780 struct rtc_time tm; 781 782 if (!ppc_md.set_rtc_time) 783 return -ENODEV; 784 785 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 786 787 return ppc_md.set_rtc_time(&tm); 788 } 789 790 static void __read_persistent_clock(struct timespec64 *ts) 791 { 792 struct rtc_time tm; 793 static int first = 1; 794 795 ts->tv_nsec = 0; 796 /* XXX this is a litle fragile but will work okay in the short term */ 797 if (first) { 798 first = 0; 799 if (ppc_md.time_init) 800 timezone_offset = ppc_md.time_init(); 801 802 /* get_boot_time() isn't guaranteed to be safe to call late */ 803 if (ppc_md.get_boot_time) { 804 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 805 return; 806 } 807 } 808 if (!ppc_md.get_rtc_time) { 809 ts->tv_sec = 0; 810 return; 811 } 812 ppc_md.get_rtc_time(&tm); 813 814 ts->tv_sec = rtc_tm_to_time64(&tm); 815 } 816 817 void read_persistent_clock64(struct timespec64 *ts) 818 { 819 __read_persistent_clock(ts); 820 821 /* Sanitize it in case real time clock is set below EPOCH */ 822 if (ts->tv_sec < 0) { 823 ts->tv_sec = 0; 824 ts->tv_nsec = 0; 825 } 826 827 } 828 829 /* clocksource code */ 830 static notrace u64 timebase_read(struct clocksource *cs) 831 { 832 return (u64)get_tb(); 833 } 834 835 static void __init clocksource_init(void) 836 { 837 struct clocksource *clock = &clocksource_timebase; 838 839 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 840 printk(KERN_ERR "clocksource: %s is already registered\n", 841 clock->name); 842 return; 843 } 844 845 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 846 clock->name, clock->mult, clock->shift); 847 } 848 849 static int decrementer_set_next_event(unsigned long evt, 850 struct clock_event_device *dev) 851 { 852 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 853 set_dec(evt); 854 855 /* We may have raced with new irq work */ 856 if (test_irq_work_pending()) 857 set_dec(1); 858 859 return 0; 860 } 861 862 static int decrementer_shutdown(struct clock_event_device *dev) 863 { 864 decrementer_set_next_event(decrementer_max, dev); 865 return 0; 866 } 867 868 static void register_decrementer_clockevent(int cpu) 869 { 870 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 871 872 *dec = decrementer_clockevent; 873 dec->cpumask = cpumask_of(cpu); 874 875 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 876 877 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 878 dec->name, dec->mult, dec->shift, cpu); 879 880 /* Set values for KVM, see kvm_emulate_dec() */ 881 decrementer_clockevent.mult = dec->mult; 882 decrementer_clockevent.shift = dec->shift; 883 } 884 885 static void enable_large_decrementer(void) 886 { 887 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 888 return; 889 890 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 891 return; 892 893 /* 894 * If we're running as the hypervisor we need to enable the LD manually 895 * otherwise firmware should have done it for us. 896 */ 897 if (cpu_has_feature(CPU_FTR_HVMODE)) 898 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 899 } 900 901 static void __init set_decrementer_max(void) 902 { 903 struct device_node *cpu; 904 u32 bits = 32; 905 906 /* Prior to ISAv3 the decrementer is always 32 bit */ 907 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 908 return; 909 910 cpu = of_find_node_by_type(NULL, "cpu"); 911 912 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 913 if (bits > 64 || bits < 32) { 914 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 915 bits = 32; 916 } 917 918 /* calculate the signed maximum given this many bits */ 919 decrementer_max = (1ul << (bits - 1)) - 1; 920 } 921 922 of_node_put(cpu); 923 924 pr_info("time_init: %u bit decrementer (max: %llx)\n", 925 bits, decrementer_max); 926 } 927 928 static void __init init_decrementer_clockevent(void) 929 { 930 register_decrementer_clockevent(smp_processor_id()); 931 } 932 933 void secondary_cpu_time_init(void) 934 { 935 /* Enable and test the large decrementer for this cpu */ 936 enable_large_decrementer(); 937 938 /* Start the decrementer on CPUs that have manual control 939 * such as BookE 940 */ 941 start_cpu_decrementer(); 942 943 /* FIME: Should make unrelatred change to move snapshot_timebase 944 * call here ! */ 945 register_decrementer_clockevent(smp_processor_id()); 946 } 947 948 /* This function is only called on the boot processor */ 949 void __init time_init(void) 950 { 951 struct div_result res; 952 u64 scale; 953 unsigned shift; 954 955 /* Normal PowerPC with timebase register */ 956 ppc_md.calibrate_decr(); 957 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 958 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 959 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 960 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 961 962 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 963 tb_ticks_per_sec = ppc_tb_freq; 964 tb_ticks_per_usec = ppc_tb_freq / 1000000; 965 calc_cputime_factors(); 966 967 /* 968 * Compute scale factor for sched_clock. 969 * The calibrate_decr() function has set tb_ticks_per_sec, 970 * which is the timebase frequency. 971 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 972 * the 128-bit result as a 64.64 fixed-point number. 973 * We then shift that number right until it is less than 1.0, 974 * giving us the scale factor and shift count to use in 975 * sched_clock(). 976 */ 977 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 978 scale = res.result_low; 979 for (shift = 0; res.result_high != 0; ++shift) { 980 scale = (scale >> 1) | (res.result_high << 63); 981 res.result_high >>= 1; 982 } 983 tb_to_ns_scale = scale; 984 tb_to_ns_shift = shift; 985 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 986 boot_tb = get_tb(); 987 988 /* If platform provided a timezone (pmac), we correct the time */ 989 if (timezone_offset) { 990 sys_tz.tz_minuteswest = -timezone_offset / 60; 991 sys_tz.tz_dsttime = 0; 992 } 993 994 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 995 996 /* initialise and enable the large decrementer (if we have one) */ 997 set_decrementer_max(); 998 enable_large_decrementer(); 999 1000 /* Start the decrementer on CPUs that have manual control 1001 * such as BookE 1002 */ 1003 start_cpu_decrementer(); 1004 1005 /* Register the clocksource */ 1006 clocksource_init(); 1007 1008 init_decrementer_clockevent(); 1009 tick_setup_hrtimer_broadcast(); 1010 1011 of_clk_init(NULL); 1012 } 1013 1014 /* 1015 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1016 * result. 1017 */ 1018 void div128_by_32(u64 dividend_high, u64 dividend_low, 1019 unsigned divisor, struct div_result *dr) 1020 { 1021 unsigned long a, b, c, d; 1022 unsigned long w, x, y, z; 1023 u64 ra, rb, rc; 1024 1025 a = dividend_high >> 32; 1026 b = dividend_high & 0xffffffff; 1027 c = dividend_low >> 32; 1028 d = dividend_low & 0xffffffff; 1029 1030 w = a / divisor; 1031 ra = ((u64)(a - (w * divisor)) << 32) + b; 1032 1033 rb = ((u64) do_div(ra, divisor) << 32) + c; 1034 x = ra; 1035 1036 rc = ((u64) do_div(rb, divisor) << 32) + d; 1037 y = rb; 1038 1039 do_div(rc, divisor); 1040 z = rc; 1041 1042 dr->result_high = ((u64)w << 32) + x; 1043 dr->result_low = ((u64)y << 32) + z; 1044 1045 } 1046 1047 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1048 void calibrate_delay(void) 1049 { 1050 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1051 * as the number of __delay(1) in a jiffy, so make it so 1052 */ 1053 loops_per_jiffy = tb_ticks_per_jiffy; 1054 } 1055 1056 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1057 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1058 { 1059 ppc_md.get_rtc_time(tm); 1060 return 0; 1061 } 1062 1063 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1064 { 1065 if (!ppc_md.set_rtc_time) 1066 return -EOPNOTSUPP; 1067 1068 if (ppc_md.set_rtc_time(tm) < 0) 1069 return -EOPNOTSUPP; 1070 1071 return 0; 1072 } 1073 1074 static const struct rtc_class_ops rtc_generic_ops = { 1075 .read_time = rtc_generic_get_time, 1076 .set_time = rtc_generic_set_time, 1077 }; 1078 1079 static int __init rtc_init(void) 1080 { 1081 struct platform_device *pdev; 1082 1083 if (!ppc_md.get_rtc_time) 1084 return -ENODEV; 1085 1086 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1087 &rtc_generic_ops, 1088 sizeof(rtc_generic_ops)); 1089 1090 return PTR_ERR_OR_ZERO(pdev); 1091 } 1092 1093 device_initcall(rtc_init); 1094 #endif 1095