xref: /linux/arch/powerpc/kernel/time.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
57 #include <asm/trace.h>
58 
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
77 
78 /* powerpc clocksource/clockevent code */
79 
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
82 
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 	.name         = "rtc",
86 	.rating       = 400,
87 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
88 	.mask         = CLOCKSOURCE_MASK(64),
89 	.shift        = 22,
90 	.mult         = 0,	/* To be filled in */
91 	.read         = rtc_read,
92 };
93 
94 static cycle_t timebase_read(struct clocksource *);
95 static struct clocksource clocksource_timebase = {
96 	.name         = "timebase",
97 	.rating       = 400,
98 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
99 	.mask         = CLOCKSOURCE_MASK(64),
100 	.shift        = 22,
101 	.mult         = 0,	/* To be filled in */
102 	.read         = timebase_read,
103 };
104 
105 #define DECREMENTER_MAX	0x7fffffff
106 
107 static int decrementer_set_next_event(unsigned long evt,
108 				      struct clock_event_device *dev);
109 static void decrementer_set_mode(enum clock_event_mode mode,
110 				 struct clock_event_device *dev);
111 
112 static struct clock_event_device decrementer_clockevent = {
113        .name           = "decrementer",
114        .rating         = 200,
115        .shift          = 0,	/* To be filled in */
116        .mult           = 0,	/* To be filled in */
117        .irq            = 0,
118        .set_next_event = decrementer_set_next_event,
119        .set_mode       = decrementer_set_mode,
120        .features       = CLOCK_EVT_FEAT_ONESHOT,
121 };
122 
123 struct decrementer_clock {
124 	struct clock_event_device event;
125 	u64 next_tb;
126 };
127 
128 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
129 
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan;
132 static signed long __initdata iSeries_recal_tb;
133 
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init clocksource_init(void);
136 #endif
137 
138 #define XSEC_PER_SEC (1024*1024)
139 
140 #ifdef CONFIG_PPC64
141 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
142 #else
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
145 #endif
146 
147 unsigned long tb_ticks_per_jiffy;
148 unsigned long tb_ticks_per_usec = 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec);
150 unsigned long tb_ticks_per_sec;
151 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
152 u64 tb_to_xs;
153 unsigned tb_to_us;
154 
155 #define TICKLEN_SCALE	NTP_SCALE_SHIFT
156 static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
157 static u64 ticklen_to_xs;	/* 0.64 fraction */
158 
159 /* If last_tick_len corresponds to about 1/HZ seconds, then
160    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
162 
163 DEFINE_SPINLOCK(rtc_lock);
164 EXPORT_SYMBOL_GPL(rtc_lock);
165 
166 static u64 tb_to_ns_scale __read_mostly;
167 static unsigned tb_to_ns_shift __read_mostly;
168 static unsigned long boot_tb __read_mostly;
169 
170 extern struct timezone sys_tz;
171 static long timezone_offset;
172 
173 unsigned long ppc_proc_freq;
174 EXPORT_SYMBOL(ppc_proc_freq);
175 unsigned long ppc_tb_freq;
176 
177 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
178 static DEFINE_PER_CPU(u64, last_jiffy);
179 
180 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
181 /*
182  * Factors for converting from cputime_t (timebase ticks) to
183  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
184  * These are all stored as 0.64 fixed-point binary fractions.
185  */
186 u64 __cputime_jiffies_factor;
187 EXPORT_SYMBOL(__cputime_jiffies_factor);
188 u64 __cputime_msec_factor;
189 EXPORT_SYMBOL(__cputime_msec_factor);
190 u64 __cputime_sec_factor;
191 EXPORT_SYMBOL(__cputime_sec_factor);
192 u64 __cputime_clockt_factor;
193 EXPORT_SYMBOL(__cputime_clockt_factor);
194 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
195 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
196 
197 cputime_t cputime_one_jiffy;
198 
199 static void calc_cputime_factors(void)
200 {
201 	struct div_result res;
202 
203 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
204 	__cputime_jiffies_factor = res.result_low;
205 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
206 	__cputime_msec_factor = res.result_low;
207 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
208 	__cputime_sec_factor = res.result_low;
209 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
210 	__cputime_clockt_factor = res.result_low;
211 }
212 
213 /*
214  * Read the PURR on systems that have it, otherwise the timebase.
215  */
216 static u64 read_purr(void)
217 {
218 	if (cpu_has_feature(CPU_FTR_PURR))
219 		return mfspr(SPRN_PURR);
220 	return mftb();
221 }
222 
223 /*
224  * Read the SPURR on systems that have it, otherwise the purr
225  */
226 static u64 read_spurr(u64 purr)
227 {
228 	/*
229 	 * cpus without PURR won't have a SPURR
230 	 * We already know the former when we use this, so tell gcc
231 	 */
232 	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
233 		return mfspr(SPRN_SPURR);
234 	return purr;
235 }
236 
237 /*
238  * Account time for a transition between system, hard irq
239  * or soft irq state.
240  */
241 void account_system_vtime(struct task_struct *tsk)
242 {
243 	u64 now, nowscaled, delta, deltascaled, sys_time;
244 	unsigned long flags;
245 
246 	local_irq_save(flags);
247 	now = read_purr();
248 	nowscaled = read_spurr(now);
249 	delta = now - get_paca()->startpurr;
250 	deltascaled = nowscaled - get_paca()->startspurr;
251 	get_paca()->startpurr = now;
252 	get_paca()->startspurr = nowscaled;
253 	if (!in_interrupt()) {
254 		/* deltascaled includes both user and system time.
255 		 * Hence scale it based on the purr ratio to estimate
256 		 * the system time */
257 		sys_time = get_paca()->system_time;
258 		if (get_paca()->user_time)
259 			deltascaled = deltascaled * sys_time /
260 			     (sys_time + get_paca()->user_time);
261 		delta += sys_time;
262 		get_paca()->system_time = 0;
263 	}
264 	if (in_irq() || idle_task(smp_processor_id()) != tsk)
265 		account_system_time(tsk, 0, delta, deltascaled);
266 	else
267 		account_idle_time(delta);
268 	__get_cpu_var(cputime_last_delta) = delta;
269 	__get_cpu_var(cputime_scaled_last_delta) = deltascaled;
270 	local_irq_restore(flags);
271 }
272 EXPORT_SYMBOL_GPL(account_system_vtime);
273 
274 /*
275  * Transfer the user and system times accumulated in the paca
276  * by the exception entry and exit code to the generic process
277  * user and system time records.
278  * Must be called with interrupts disabled.
279  */
280 void account_process_tick(struct task_struct *tsk, int user_tick)
281 {
282 	cputime_t utime, utimescaled;
283 
284 	utime = get_paca()->user_time;
285 	get_paca()->user_time = 0;
286 	utimescaled = cputime_to_scaled(utime);
287 	account_user_time(tsk, utime, utimescaled);
288 }
289 
290 /*
291  * Stuff for accounting stolen time.
292  */
293 struct cpu_purr_data {
294 	int	initialized;			/* thread is running */
295 	u64	tb;			/* last TB value read */
296 	u64	purr;			/* last PURR value read */
297 	u64	spurr;			/* last SPURR value read */
298 };
299 
300 /*
301  * Each entry in the cpu_purr_data array is manipulated only by its
302  * "owner" cpu -- usually in the timer interrupt but also occasionally
303  * in process context for cpu online.  As long as cpus do not touch
304  * each others' cpu_purr_data, disabling local interrupts is
305  * sufficient to serialize accesses.
306  */
307 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
308 
309 static void snapshot_tb_and_purr(void *data)
310 {
311 	unsigned long flags;
312 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
313 
314 	local_irq_save(flags);
315 	p->tb = get_tb_or_rtc();
316 	p->purr = mfspr(SPRN_PURR);
317 	wmb();
318 	p->initialized = 1;
319 	local_irq_restore(flags);
320 }
321 
322 /*
323  * Called during boot when all cpus have come up.
324  */
325 void snapshot_timebases(void)
326 {
327 	if (!cpu_has_feature(CPU_FTR_PURR))
328 		return;
329 	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
330 }
331 
332 /*
333  * Must be called with interrupts disabled.
334  */
335 void calculate_steal_time(void)
336 {
337 	u64 tb, purr;
338 	s64 stolen;
339 	struct cpu_purr_data *pme;
340 
341 	pme = &__get_cpu_var(cpu_purr_data);
342 	if (!pme->initialized)
343 		return;		/* !CPU_FTR_PURR or early in early boot */
344 	tb = mftb();
345 	purr = mfspr(SPRN_PURR);
346 	stolen = (tb - pme->tb) - (purr - pme->purr);
347 	if (stolen > 0) {
348 		if (idle_task(smp_processor_id()) != current)
349 			account_steal_time(stolen);
350 		else
351 			account_idle_time(stolen);
352 	}
353 	pme->tb = tb;
354 	pme->purr = purr;
355 }
356 
357 #ifdef CONFIG_PPC_SPLPAR
358 /*
359  * Must be called before the cpu is added to the online map when
360  * a cpu is being brought up at runtime.
361  */
362 static void snapshot_purr(void)
363 {
364 	struct cpu_purr_data *pme;
365 	unsigned long flags;
366 
367 	if (!cpu_has_feature(CPU_FTR_PURR))
368 		return;
369 	local_irq_save(flags);
370 	pme = &__get_cpu_var(cpu_purr_data);
371 	pme->tb = mftb();
372 	pme->purr = mfspr(SPRN_PURR);
373 	pme->initialized = 1;
374 	local_irq_restore(flags);
375 }
376 
377 #endif /* CONFIG_PPC_SPLPAR */
378 
379 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
380 #define calc_cputime_factors()
381 #define calculate_steal_time()		do { } while (0)
382 #endif
383 
384 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
385 #define snapshot_purr()			do { } while (0)
386 #endif
387 
388 /*
389  * Called when a cpu comes up after the system has finished booting,
390  * i.e. as a result of a hotplug cpu action.
391  */
392 void snapshot_timebase(void)
393 {
394 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
395 	snapshot_purr();
396 }
397 
398 void __delay(unsigned long loops)
399 {
400 	unsigned long start;
401 	int diff;
402 
403 	if (__USE_RTC()) {
404 		start = get_rtcl();
405 		do {
406 			/* the RTCL register wraps at 1000000000 */
407 			diff = get_rtcl() - start;
408 			if (diff < 0)
409 				diff += 1000000000;
410 		} while (diff < loops);
411 	} else {
412 		start = get_tbl();
413 		while (get_tbl() - start < loops)
414 			HMT_low();
415 		HMT_medium();
416 	}
417 }
418 EXPORT_SYMBOL(__delay);
419 
420 void udelay(unsigned long usecs)
421 {
422 	__delay(tb_ticks_per_usec * usecs);
423 }
424 EXPORT_SYMBOL(udelay);
425 
426 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
427 			       u64 new_tb_to_xs)
428 {
429 	/*
430 	 * tb_update_count is used to allow the userspace gettimeofday code
431 	 * to assure itself that it sees a consistent view of the tb_to_xs and
432 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
433 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
434 	 * the two values of tb_update_count match and are even then the
435 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
436 	 * loops back and reads them again until this criteria is met.
437 	 * We expect the caller to have done the first increment of
438 	 * vdso_data->tb_update_count already.
439 	 */
440 	vdso_data->tb_orig_stamp = new_tb_stamp;
441 	vdso_data->stamp_xsec = new_stamp_xsec;
442 	vdso_data->tb_to_xs = new_tb_to_xs;
443 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
444 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
445 	vdso_data->stamp_xtime = xtime;
446 	smp_wmb();
447 	++(vdso_data->tb_update_count);
448 }
449 
450 #ifdef CONFIG_SMP
451 unsigned long profile_pc(struct pt_regs *regs)
452 {
453 	unsigned long pc = instruction_pointer(regs);
454 
455 	if (in_lock_functions(pc))
456 		return regs->link;
457 
458 	return pc;
459 }
460 EXPORT_SYMBOL(profile_pc);
461 #endif
462 
463 #ifdef CONFIG_PPC_ISERIES
464 
465 /*
466  * This function recalibrates the timebase based on the 49-bit time-of-day
467  * value in the Titan chip.  The Titan is much more accurate than the value
468  * returned by the service processor for the timebase frequency.
469  */
470 
471 static int __init iSeries_tb_recal(void)
472 {
473 	struct div_result divres;
474 	unsigned long titan, tb;
475 
476 	/* Make sure we only run on iSeries */
477 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
478 		return -ENODEV;
479 
480 	tb = get_tb();
481 	titan = HvCallXm_loadTod();
482 	if ( iSeries_recal_titan ) {
483 		unsigned long tb_ticks = tb - iSeries_recal_tb;
484 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
485 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
486 		unsigned long new_tb_ticks_per_jiffy =
487 			DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
488 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
489 		char sign = '+';
490 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
491 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
492 
493 		if ( tick_diff < 0 ) {
494 			tick_diff = -tick_diff;
495 			sign = '-';
496 		}
497 		if ( tick_diff ) {
498 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
499 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
500 						new_tb_ticks_per_jiffy, sign, tick_diff );
501 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
502 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
503 				calc_cputime_factors();
504 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
505 				tb_to_xs = divres.result_low;
506 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
507 				vdso_data->tb_to_xs = tb_to_xs;
508 				setup_cputime_one_jiffy();
509 			}
510 			else {
511 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
512 					"                   new tb_ticks_per_jiffy = %lu\n"
513 					"                   old tb_ticks_per_jiffy = %lu\n",
514 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
515 			}
516 		}
517 	}
518 	iSeries_recal_titan = titan;
519 	iSeries_recal_tb = tb;
520 
521 	/* Called here as now we know accurate values for the timebase */
522 	clocksource_init();
523 	return 0;
524 }
525 late_initcall(iSeries_tb_recal);
526 
527 /* Called from platform early init */
528 void __init iSeries_time_init_early(void)
529 {
530 	iSeries_recal_tb = get_tb();
531 	iSeries_recal_titan = HvCallXm_loadTod();
532 }
533 #endif /* CONFIG_PPC_ISERIES */
534 
535 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
536 DEFINE_PER_CPU(u8, perf_event_pending);
537 
538 void set_perf_event_pending(void)
539 {
540 	get_cpu_var(perf_event_pending) = 1;
541 	set_dec(1);
542 	put_cpu_var(perf_event_pending);
543 }
544 
545 #define test_perf_event_pending()	__get_cpu_var(perf_event_pending)
546 #define clear_perf_event_pending()	__get_cpu_var(perf_event_pending) = 0
547 
548 #else  /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
549 
550 #define test_perf_event_pending()	0
551 #define clear_perf_event_pending()
552 
553 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
554 
555 /*
556  * For iSeries shared processors, we have to let the hypervisor
557  * set the hardware decrementer.  We set a virtual decrementer
558  * in the lppaca and call the hypervisor if the virtual
559  * decrementer is less than the current value in the hardware
560  * decrementer. (almost always the new decrementer value will
561  * be greater than the current hardware decementer so the hypervisor
562  * call will not be needed)
563  */
564 
565 /*
566  * timer_interrupt - gets called when the decrementer overflows,
567  * with interrupts disabled.
568  */
569 void timer_interrupt(struct pt_regs * regs)
570 {
571 	struct pt_regs *old_regs;
572 	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
573 	struct clock_event_device *evt = &decrementer->event;
574 	u64 now;
575 
576 	trace_timer_interrupt_entry(regs);
577 
578 	__get_cpu_var(irq_stat).timer_irqs++;
579 
580 	/* Ensure a positive value is written to the decrementer, or else
581 	 * some CPUs will continuue to take decrementer exceptions */
582 	set_dec(DECREMENTER_MAX);
583 
584 #ifdef CONFIG_PPC32
585 	if (test_perf_event_pending()) {
586 		clear_perf_event_pending();
587 		perf_event_do_pending();
588 	}
589 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
590 		do_IRQ(regs);
591 #endif
592 
593 	now = get_tb_or_rtc();
594 	if (now < decrementer->next_tb) {
595 		/* not time for this event yet */
596 		now = decrementer->next_tb - now;
597 		if (now <= DECREMENTER_MAX)
598 			set_dec((int)now);
599 		trace_timer_interrupt_exit(regs);
600 		return;
601 	}
602 	old_regs = set_irq_regs(regs);
603 	irq_enter();
604 
605 	calculate_steal_time();
606 
607 #ifdef CONFIG_PPC_ISERIES
608 	if (firmware_has_feature(FW_FEATURE_ISERIES))
609 		get_lppaca()->int_dword.fields.decr_int = 0;
610 #endif
611 
612 	if (evt->event_handler)
613 		evt->event_handler(evt);
614 
615 #ifdef CONFIG_PPC_ISERIES
616 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
617 		process_hvlpevents();
618 #endif
619 
620 #ifdef CONFIG_PPC64
621 	/* collect purr register values often, for accurate calculations */
622 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
623 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
624 		cu->current_tb = mfspr(SPRN_PURR);
625 	}
626 #endif
627 
628 	irq_exit();
629 	set_irq_regs(old_regs);
630 
631 	trace_timer_interrupt_exit(regs);
632 }
633 
634 void wakeup_decrementer(void)
635 {
636 	unsigned long ticks;
637 
638 	/*
639 	 * The timebase gets saved on sleep and restored on wakeup,
640 	 * so all we need to do is to reset the decrementer.
641 	 */
642 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
643 	if (ticks < tb_ticks_per_jiffy)
644 		ticks = tb_ticks_per_jiffy - ticks;
645 	else
646 		ticks = 1;
647 	set_dec(ticks);
648 }
649 
650 #ifdef CONFIG_SUSPEND
651 void generic_suspend_disable_irqs(void)
652 {
653 	preempt_disable();
654 
655 	/* Disable the decrementer, so that it doesn't interfere
656 	 * with suspending.
657 	 */
658 
659 	set_dec(0x7fffffff);
660 	local_irq_disable();
661 	set_dec(0x7fffffff);
662 }
663 
664 void generic_suspend_enable_irqs(void)
665 {
666 	wakeup_decrementer();
667 
668 	local_irq_enable();
669 	preempt_enable();
670 }
671 
672 /* Overrides the weak version in kernel/power/main.c */
673 void arch_suspend_disable_irqs(void)
674 {
675 	if (ppc_md.suspend_disable_irqs)
676 		ppc_md.suspend_disable_irqs();
677 	generic_suspend_disable_irqs();
678 }
679 
680 /* Overrides the weak version in kernel/power/main.c */
681 void arch_suspend_enable_irqs(void)
682 {
683 	generic_suspend_enable_irqs();
684 	if (ppc_md.suspend_enable_irqs)
685 		ppc_md.suspend_enable_irqs();
686 }
687 #endif
688 
689 #ifdef CONFIG_SMP
690 void __init smp_space_timers(unsigned int max_cpus)
691 {
692 	int i;
693 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
694 
695 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
696 	previous_tb -= tb_ticks_per_jiffy;
697 
698 	for_each_possible_cpu(i) {
699 		if (i == boot_cpuid)
700 			continue;
701 		per_cpu(last_jiffy, i) = previous_tb;
702 	}
703 }
704 #endif
705 
706 /*
707  * Scheduler clock - returns current time in nanosec units.
708  *
709  * Note: mulhdu(a, b) (multiply high double unsigned) returns
710  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
711  * are 64-bit unsigned numbers.
712  */
713 unsigned long long sched_clock(void)
714 {
715 	if (__USE_RTC())
716 		return get_rtc();
717 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
718 }
719 
720 static int __init get_freq(char *name, int cells, unsigned long *val)
721 {
722 	struct device_node *cpu;
723 	const unsigned int *fp;
724 	int found = 0;
725 
726 	/* The cpu node should have timebase and clock frequency properties */
727 	cpu = of_find_node_by_type(NULL, "cpu");
728 
729 	if (cpu) {
730 		fp = of_get_property(cpu, name, NULL);
731 		if (fp) {
732 			found = 1;
733 			*val = of_read_ulong(fp, cells);
734 		}
735 
736 		of_node_put(cpu);
737 	}
738 
739 	return found;
740 }
741 
742 /* should become __cpuinit when secondary_cpu_time_init also is */
743 void start_cpu_decrementer(void)
744 {
745 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
746 	/* Clear any pending timer interrupts */
747 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
748 
749 	/* Enable decrementer interrupt */
750 	mtspr(SPRN_TCR, TCR_DIE);
751 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
752 }
753 
754 void __init generic_calibrate_decr(void)
755 {
756 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
757 
758 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
759 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
760 
761 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
762 				"(not found)\n");
763 	}
764 
765 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
766 
767 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
768 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
769 
770 		printk(KERN_ERR "WARNING: Estimating processor frequency "
771 				"(not found)\n");
772 	}
773 }
774 
775 int update_persistent_clock(struct timespec now)
776 {
777 	struct rtc_time tm;
778 
779 	if (!ppc_md.set_rtc_time)
780 		return 0;
781 
782 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
783 	tm.tm_year -= 1900;
784 	tm.tm_mon -= 1;
785 
786 	return ppc_md.set_rtc_time(&tm);
787 }
788 
789 static void __read_persistent_clock(struct timespec *ts)
790 {
791 	struct rtc_time tm;
792 	static int first = 1;
793 
794 	ts->tv_nsec = 0;
795 	/* XXX this is a litle fragile but will work okay in the short term */
796 	if (first) {
797 		first = 0;
798 		if (ppc_md.time_init)
799 			timezone_offset = ppc_md.time_init();
800 
801 		/* get_boot_time() isn't guaranteed to be safe to call late */
802 		if (ppc_md.get_boot_time) {
803 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
804 			return;
805 		}
806 	}
807 	if (!ppc_md.get_rtc_time) {
808 		ts->tv_sec = 0;
809 		return;
810 	}
811 	ppc_md.get_rtc_time(&tm);
812 
813 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
814 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
815 }
816 
817 void read_persistent_clock(struct timespec *ts)
818 {
819 	__read_persistent_clock(ts);
820 
821 	/* Sanitize it in case real time clock is set below EPOCH */
822 	if (ts->tv_sec < 0) {
823 		ts->tv_sec = 0;
824 		ts->tv_nsec = 0;
825 	}
826 
827 }
828 
829 /* clocksource code */
830 static cycle_t rtc_read(struct clocksource *cs)
831 {
832 	return (cycle_t)get_rtc();
833 }
834 
835 static cycle_t timebase_read(struct clocksource *cs)
836 {
837 	return (cycle_t)get_tb();
838 }
839 
840 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
841 		     u32 mult)
842 {
843 	u64 t2x, stamp_xsec;
844 
845 	if (clock != &clocksource_timebase)
846 		return;
847 
848 	/* Make userspace gettimeofday spin until we're done. */
849 	++vdso_data->tb_update_count;
850 	smp_mb();
851 
852 	/* XXX this assumes clock->shift == 22 */
853 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
854 	t2x = (u64) mult * 4611686018ULL;
855 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
856 	do_div(stamp_xsec, 1000000000);
857 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
858 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
859 }
860 
861 void update_vsyscall_tz(void)
862 {
863 	/* Make userspace gettimeofday spin until we're done. */
864 	++vdso_data->tb_update_count;
865 	smp_mb();
866 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
867 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
868 	smp_mb();
869 	++vdso_data->tb_update_count;
870 }
871 
872 static void __init clocksource_init(void)
873 {
874 	struct clocksource *clock;
875 
876 	if (__USE_RTC())
877 		clock = &clocksource_rtc;
878 	else
879 		clock = &clocksource_timebase;
880 
881 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
882 
883 	if (clocksource_register(clock)) {
884 		printk(KERN_ERR "clocksource: %s is already registered\n",
885 		       clock->name);
886 		return;
887 	}
888 
889 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
890 	       clock->name, clock->mult, clock->shift);
891 }
892 
893 static int decrementer_set_next_event(unsigned long evt,
894 				      struct clock_event_device *dev)
895 {
896 	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
897 	set_dec(evt);
898 	return 0;
899 }
900 
901 static void decrementer_set_mode(enum clock_event_mode mode,
902 				 struct clock_event_device *dev)
903 {
904 	if (mode != CLOCK_EVT_MODE_ONESHOT)
905 		decrementer_set_next_event(DECREMENTER_MAX, dev);
906 }
907 
908 static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
909 				int shift)
910 {
911 	uint64_t tmp = ((uint64_t)ticks) << shift;
912 
913 	do_div(tmp, nsec);
914 	return tmp;
915 }
916 
917 static void __init setup_clockevent_multiplier(unsigned long hz)
918 {
919 	u64 mult, shift = 32;
920 
921 	while (1) {
922 		mult = div_sc64(hz, NSEC_PER_SEC, shift);
923 		if (mult && (mult >> 32UL) == 0UL)
924 			break;
925 
926 		shift--;
927 	}
928 
929 	decrementer_clockevent.shift = shift;
930 	decrementer_clockevent.mult = mult;
931 }
932 
933 static void register_decrementer_clockevent(int cpu)
934 {
935 	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
936 
937 	*dec = decrementer_clockevent;
938 	dec->cpumask = cpumask_of(cpu);
939 
940 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
941 		    dec->name, dec->mult, dec->shift, cpu);
942 
943 	clockevents_register_device(dec);
944 }
945 
946 static void __init init_decrementer_clockevent(void)
947 {
948 	int cpu = smp_processor_id();
949 
950 	setup_clockevent_multiplier(ppc_tb_freq);
951 	decrementer_clockevent.max_delta_ns =
952 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
953 	decrementer_clockevent.min_delta_ns =
954 		clockevent_delta2ns(2, &decrementer_clockevent);
955 
956 	register_decrementer_clockevent(cpu);
957 }
958 
959 void secondary_cpu_time_init(void)
960 {
961 	/* Start the decrementer on CPUs that have manual control
962 	 * such as BookE
963 	 */
964 	start_cpu_decrementer();
965 
966 	/* FIME: Should make unrelatred change to move snapshot_timebase
967 	 * call here ! */
968 	register_decrementer_clockevent(smp_processor_id());
969 }
970 
971 /* This function is only called on the boot processor */
972 void __init time_init(void)
973 {
974 	unsigned long flags;
975 	struct div_result res;
976 	u64 scale, x;
977 	unsigned shift;
978 
979 	if (__USE_RTC()) {
980 		/* 601 processor: dec counts down by 128 every 128ns */
981 		ppc_tb_freq = 1000000000;
982 		tb_last_jiffy = get_rtcl();
983 	} else {
984 		/* Normal PowerPC with timebase register */
985 		ppc_md.calibrate_decr();
986 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
987 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
988 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
989 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
990 		tb_last_jiffy = get_tb();
991 	}
992 
993 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
994 	tb_ticks_per_sec = ppc_tb_freq;
995 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
996 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
997 	calc_cputime_factors();
998 	setup_cputime_one_jiffy();
999 
1000 	/*
1001 	 * Calculate the length of each tick in ns.  It will not be
1002 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
1003 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
1004 	 * rounded up.
1005 	 */
1006 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
1007 	do_div(x, ppc_tb_freq);
1008 	tick_nsec = x;
1009 	last_tick_len = x << TICKLEN_SCALE;
1010 
1011 	/*
1012 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
1013 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
1014 	 * It is computed as:
1015 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
1016 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1017 	 * which turns out to be N = 51 - SHIFT_HZ.
1018 	 * This gives the result as a 0.64 fixed-point fraction.
1019 	 * That value is reduced by an offset amounting to 1 xsec per
1020 	 * 2^31 timebase ticks to avoid problems with time going backwards
1021 	 * by 1 xsec when we do timer_recalc_offset due to losing the
1022 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
1023 	 * since there are 2^20 xsec in a second.
1024 	 */
1025 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1026 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
1027 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1028 	ticklen_to_xs = res.result_low;
1029 
1030 	/* Compute tb_to_xs from tick_nsec */
1031 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1032 
1033 	/*
1034 	 * Compute scale factor for sched_clock.
1035 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1036 	 * which is the timebase frequency.
1037 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1038 	 * the 128-bit result as a 64.64 fixed-point number.
1039 	 * We then shift that number right until it is less than 1.0,
1040 	 * giving us the scale factor and shift count to use in
1041 	 * sched_clock().
1042 	 */
1043 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1044 	scale = res.result_low;
1045 	for (shift = 0; res.result_high != 0; ++shift) {
1046 		scale = (scale >> 1) | (res.result_high << 63);
1047 		res.result_high >>= 1;
1048 	}
1049 	tb_to_ns_scale = scale;
1050 	tb_to_ns_shift = shift;
1051 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1052 	boot_tb = get_tb_or_rtc();
1053 
1054 	write_seqlock_irqsave(&xtime_lock, flags);
1055 
1056 	/* If platform provided a timezone (pmac), we correct the time */
1057         if (timezone_offset) {
1058 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1059 		sys_tz.tz_dsttime = 0;
1060         }
1061 
1062 	vdso_data->tb_orig_stamp = tb_last_jiffy;
1063 	vdso_data->tb_update_count = 0;
1064 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1065 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1066 	vdso_data->tb_to_xs = tb_to_xs;
1067 
1068 	write_sequnlock_irqrestore(&xtime_lock, flags);
1069 
1070 	/* Start the decrementer on CPUs that have manual control
1071 	 * such as BookE
1072 	 */
1073 	start_cpu_decrementer();
1074 
1075 	/* Register the clocksource, if we're not running on iSeries */
1076 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
1077 		clocksource_init();
1078 
1079 	init_decrementer_clockevent();
1080 }
1081 
1082 
1083 #define FEBRUARY	2
1084 #define	STARTOFTIME	1970
1085 #define SECDAY		86400L
1086 #define SECYR		(SECDAY * 365)
1087 #define	leapyear(year)		((year) % 4 == 0 && \
1088 				 ((year) % 100 != 0 || (year) % 400 == 0))
1089 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1090 #define	days_in_month(a) 	(month_days[(a) - 1])
1091 
1092 static int month_days[12] = {
1093 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1094 };
1095 
1096 /*
1097  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1098  */
1099 void GregorianDay(struct rtc_time * tm)
1100 {
1101 	int leapsToDate;
1102 	int lastYear;
1103 	int day;
1104 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1105 
1106 	lastYear = tm->tm_year - 1;
1107 
1108 	/*
1109 	 * Number of leap corrections to apply up to end of last year
1110 	 */
1111 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1112 
1113 	/*
1114 	 * This year is a leap year if it is divisible by 4 except when it is
1115 	 * divisible by 100 unless it is divisible by 400
1116 	 *
1117 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1118 	 */
1119 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1120 
1121 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1122 		   tm->tm_mday;
1123 
1124 	tm->tm_wday = day % 7;
1125 }
1126 
1127 void to_tm(int tim, struct rtc_time * tm)
1128 {
1129 	register int    i;
1130 	register long   hms, day;
1131 
1132 	day = tim / SECDAY;
1133 	hms = tim % SECDAY;
1134 
1135 	/* Hours, minutes, seconds are easy */
1136 	tm->tm_hour = hms / 3600;
1137 	tm->tm_min = (hms % 3600) / 60;
1138 	tm->tm_sec = (hms % 3600) % 60;
1139 
1140 	/* Number of years in days */
1141 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1142 		day -= days_in_year(i);
1143 	tm->tm_year = i;
1144 
1145 	/* Number of months in days left */
1146 	if (leapyear(tm->tm_year))
1147 		days_in_month(FEBRUARY) = 29;
1148 	for (i = 1; day >= days_in_month(i); i++)
1149 		day -= days_in_month(i);
1150 	days_in_month(FEBRUARY) = 28;
1151 	tm->tm_mon = i;
1152 
1153 	/* Days are what is left over (+1) from all that. */
1154 	tm->tm_mday = day + 1;
1155 
1156 	/*
1157 	 * Determine the day of week
1158 	 */
1159 	GregorianDay(tm);
1160 }
1161 
1162 /* Auxiliary function to compute scaling factors */
1163 /* Actually the choice of a timebase running at 1/4 the of the bus
1164  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1165  * It makes this computation very precise (27-28 bits typically) which
1166  * is optimistic considering the stability of most processor clock
1167  * oscillators and the precision with which the timebase frequency
1168  * is measured but does not harm.
1169  */
1170 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1171 {
1172         unsigned mlt=0, tmp, err;
1173         /* No concern for performance, it's done once: use a stupid
1174          * but safe and compact method to find the multiplier.
1175          */
1176 
1177         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1178                 if (mulhwu(inscale, mlt|tmp) < outscale)
1179 			mlt |= tmp;
1180         }
1181 
1182         /* We might still be off by 1 for the best approximation.
1183          * A side effect of this is that if outscale is too large
1184          * the returned value will be zero.
1185          * Many corner cases have been checked and seem to work,
1186          * some might have been forgotten in the test however.
1187          */
1188 
1189         err = inscale * (mlt+1);
1190         if (err <= inscale/2)
1191 		mlt++;
1192         return mlt;
1193 }
1194 
1195 /*
1196  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1197  * result.
1198  */
1199 void div128_by_32(u64 dividend_high, u64 dividend_low,
1200 		  unsigned divisor, struct div_result *dr)
1201 {
1202 	unsigned long a, b, c, d;
1203 	unsigned long w, x, y, z;
1204 	u64 ra, rb, rc;
1205 
1206 	a = dividend_high >> 32;
1207 	b = dividend_high & 0xffffffff;
1208 	c = dividend_low >> 32;
1209 	d = dividend_low & 0xffffffff;
1210 
1211 	w = a / divisor;
1212 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1213 
1214 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1215 	x = ra;
1216 
1217 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1218 	y = rb;
1219 
1220 	do_div(rc, divisor);
1221 	z = rc;
1222 
1223 	dr->result_high = ((u64)w << 32) + x;
1224 	dr->result_low  = ((u64)y << 32) + z;
1225 
1226 }
1227 
1228 /* We don't need to calibrate delay, we use the CPU timebase for that */
1229 void calibrate_delay(void)
1230 {
1231 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1232 	 * as the number of __delay(1) in a jiffy, so make it so
1233 	 */
1234 	loops_per_jiffy = tb_ticks_per_jiffy;
1235 }
1236 
1237 static int __init rtc_init(void)
1238 {
1239 	struct platform_device *pdev;
1240 
1241 	if (!ppc_md.get_rtc_time)
1242 		return -ENODEV;
1243 
1244 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1245 	if (IS_ERR(pdev))
1246 		return PTR_ERR(pdev);
1247 
1248 	return 0;
1249 }
1250 
1251 module_init(rtc_init);
1252