1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/kernel.h> 35 #include <linux/param.h> 36 #include <linux/string.h> 37 #include <linux/mm.h> 38 #include <linux/interrupt.h> 39 #include <linux/timex.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/time.h> 42 #include <linux/init.h> 43 #include <linux/profile.h> 44 #include <linux/cpu.h> 45 #include <linux/security.h> 46 #include <linux/percpu.h> 47 #include <linux/rtc.h> 48 #include <linux/jiffies.h> 49 #include <linux/posix-timers.h> 50 #include <linux/irq.h> 51 #include <linux/delay.h> 52 #include <linux/irq_work.h> 53 #include <linux/of_clk.h> 54 #include <linux/suspend.h> 55 #include <linux/sched/cputime.h> 56 #include <linux/sched/clock.h> 57 #include <linux/processor.h> 58 #include <asm/trace.h> 59 60 #include <asm/interrupt.h> 61 #include <asm/io.h> 62 #include <asm/nvram.h> 63 #include <asm/cache.h> 64 #include <asm/machdep.h> 65 #include <linux/uaccess.h> 66 #include <asm/time.h> 67 #include <asm/prom.h> 68 #include <asm/irq.h> 69 #include <asm/div64.h> 70 #include <asm/smp.h> 71 #include <asm/vdso_datapage.h> 72 #include <asm/firmware.h> 73 #include <asm/asm-prototypes.h> 74 75 /* powerpc clocksource/clockevent code */ 76 77 #include <linux/clockchips.h> 78 #include <linux/timekeeper_internal.h> 79 80 static u64 timebase_read(struct clocksource *); 81 static struct clocksource clocksource_timebase = { 82 .name = "timebase", 83 .rating = 400, 84 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 85 .mask = CLOCKSOURCE_MASK(64), 86 .read = timebase_read, 87 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER, 88 }; 89 90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 92 93 static int decrementer_set_next_event(unsigned long evt, 94 struct clock_event_device *dev); 95 static int decrementer_shutdown(struct clock_event_device *evt); 96 97 struct clock_event_device decrementer_clockevent = { 98 .name = "decrementer", 99 .rating = 200, 100 .irq = 0, 101 .set_next_event = decrementer_set_next_event, 102 .set_state_oneshot_stopped = decrementer_shutdown, 103 .set_state_shutdown = decrementer_shutdown, 104 .tick_resume = decrementer_shutdown, 105 .features = CLOCK_EVT_FEAT_ONESHOT | 106 CLOCK_EVT_FEAT_C3STOP, 107 }; 108 EXPORT_SYMBOL(decrementer_clockevent); 109 110 DEFINE_PER_CPU(u64, decrementers_next_tb); 111 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 112 113 #define XSEC_PER_SEC (1024*1024) 114 115 #ifdef CONFIG_PPC64 116 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 117 #else 118 /* compute ((xsec << 12) * max) >> 32 */ 119 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 120 #endif 121 122 unsigned long tb_ticks_per_jiffy; 123 unsigned long tb_ticks_per_usec = 100; /* sane default */ 124 EXPORT_SYMBOL(tb_ticks_per_usec); 125 unsigned long tb_ticks_per_sec; 126 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 127 128 DEFINE_SPINLOCK(rtc_lock); 129 EXPORT_SYMBOL_GPL(rtc_lock); 130 131 static u64 tb_to_ns_scale __read_mostly; 132 static unsigned tb_to_ns_shift __read_mostly; 133 static u64 boot_tb __read_mostly; 134 135 extern struct timezone sys_tz; 136 static long timezone_offset; 137 138 unsigned long ppc_proc_freq; 139 EXPORT_SYMBOL_GPL(ppc_proc_freq); 140 unsigned long ppc_tb_freq; 141 EXPORT_SYMBOL_GPL(ppc_tb_freq); 142 143 bool tb_invalid; 144 145 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 146 /* 147 * Factor for converting from cputime_t (timebase ticks) to 148 * microseconds. This is stored as 0.64 fixed-point binary fraction. 149 */ 150 u64 __cputime_usec_factor; 151 EXPORT_SYMBOL(__cputime_usec_factor); 152 153 #ifdef CONFIG_PPC_SPLPAR 154 void (*dtl_consumer)(struct dtl_entry *, u64); 155 #endif 156 157 static void calc_cputime_factors(void) 158 { 159 struct div_result res; 160 161 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 162 __cputime_usec_factor = res.result_low; 163 } 164 165 /* 166 * Read the SPURR on systems that have it, otherwise the PURR, 167 * or if that doesn't exist return the timebase value passed in. 168 */ 169 static inline unsigned long read_spurr(unsigned long tb) 170 { 171 if (cpu_has_feature(CPU_FTR_SPURR)) 172 return mfspr(SPRN_SPURR); 173 if (cpu_has_feature(CPU_FTR_PURR)) 174 return mfspr(SPRN_PURR); 175 return tb; 176 } 177 178 #ifdef CONFIG_PPC_SPLPAR 179 180 #include <asm/dtl.h> 181 182 /* 183 * Scan the dispatch trace log and count up the stolen time. 184 * Should be called with interrupts disabled. 185 */ 186 static u64 scan_dispatch_log(u64 stop_tb) 187 { 188 u64 i = local_paca->dtl_ridx; 189 struct dtl_entry *dtl = local_paca->dtl_curr; 190 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 191 struct lppaca *vpa = local_paca->lppaca_ptr; 192 u64 tb_delta; 193 u64 stolen = 0; 194 u64 dtb; 195 196 if (!dtl) 197 return 0; 198 199 if (i == be64_to_cpu(vpa->dtl_idx)) 200 return 0; 201 while (i < be64_to_cpu(vpa->dtl_idx)) { 202 dtb = be64_to_cpu(dtl->timebase); 203 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 204 be32_to_cpu(dtl->ready_to_enqueue_time); 205 barrier(); 206 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 207 /* buffer has overflowed */ 208 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 209 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 210 continue; 211 } 212 if (dtb > stop_tb) 213 break; 214 if (dtl_consumer) 215 dtl_consumer(dtl, i); 216 stolen += tb_delta; 217 ++i; 218 ++dtl; 219 if (dtl == dtl_end) 220 dtl = local_paca->dispatch_log; 221 } 222 local_paca->dtl_ridx = i; 223 local_paca->dtl_curr = dtl; 224 return stolen; 225 } 226 227 /* 228 * Accumulate stolen time by scanning the dispatch trace log. 229 * Called on entry from user mode. 230 */ 231 void notrace accumulate_stolen_time(void) 232 { 233 u64 sst, ust; 234 unsigned long save_irq_soft_mask = irq_soft_mask_return(); 235 struct cpu_accounting_data *acct = &local_paca->accounting; 236 237 /* We are called early in the exception entry, before 238 * soft/hard_enabled are sync'ed to the expected state 239 * for the exception. We are hard disabled but the PACA 240 * needs to reflect that so various debug stuff doesn't 241 * complain 242 */ 243 irq_soft_mask_set(IRQS_DISABLED); 244 245 sst = scan_dispatch_log(acct->starttime_user); 246 ust = scan_dispatch_log(acct->starttime); 247 acct->stime -= sst; 248 acct->utime -= ust; 249 acct->steal_time += ust + sst; 250 251 irq_soft_mask_set(save_irq_soft_mask); 252 } 253 254 static inline u64 calculate_stolen_time(u64 stop_tb) 255 { 256 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 257 return 0; 258 259 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 260 return scan_dispatch_log(stop_tb); 261 262 return 0; 263 } 264 265 #else /* CONFIG_PPC_SPLPAR */ 266 static inline u64 calculate_stolen_time(u64 stop_tb) 267 { 268 return 0; 269 } 270 271 #endif /* CONFIG_PPC_SPLPAR */ 272 273 /* 274 * Account time for a transition between system, hard irq 275 * or soft irq state. 276 */ 277 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 278 unsigned long now, unsigned long stime) 279 { 280 unsigned long stime_scaled = 0; 281 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 282 unsigned long nowscaled, deltascaled; 283 unsigned long utime, utime_scaled; 284 285 nowscaled = read_spurr(now); 286 deltascaled = nowscaled - acct->startspurr; 287 acct->startspurr = nowscaled; 288 utime = acct->utime - acct->utime_sspurr; 289 acct->utime_sspurr = acct->utime; 290 291 /* 292 * Because we don't read the SPURR on every kernel entry/exit, 293 * deltascaled includes both user and system SPURR ticks. 294 * Apportion these ticks to system SPURR ticks and user 295 * SPURR ticks in the same ratio as the system time (delta) 296 * and user time (udelta) values obtained from the timebase 297 * over the same interval. The system ticks get accounted here; 298 * the user ticks get saved up in paca->user_time_scaled to be 299 * used by account_process_tick. 300 */ 301 stime_scaled = stime; 302 utime_scaled = utime; 303 if (deltascaled != stime + utime) { 304 if (utime) { 305 stime_scaled = deltascaled * stime / (stime + utime); 306 utime_scaled = deltascaled - stime_scaled; 307 } else { 308 stime_scaled = deltascaled; 309 } 310 } 311 acct->utime_scaled += utime_scaled; 312 #endif 313 314 return stime_scaled; 315 } 316 317 static unsigned long vtime_delta(struct cpu_accounting_data *acct, 318 unsigned long *stime_scaled, 319 unsigned long *steal_time) 320 { 321 unsigned long now, stime; 322 323 WARN_ON_ONCE(!irqs_disabled()); 324 325 now = mftb(); 326 stime = now - acct->starttime; 327 acct->starttime = now; 328 329 *stime_scaled = vtime_delta_scaled(acct, now, stime); 330 331 *steal_time = calculate_stolen_time(now); 332 333 return stime; 334 } 335 336 static void vtime_delta_kernel(struct cpu_accounting_data *acct, 337 unsigned long *stime, unsigned long *stime_scaled) 338 { 339 unsigned long steal_time; 340 341 *stime = vtime_delta(acct, stime_scaled, &steal_time); 342 *stime -= min(*stime, steal_time); 343 acct->steal_time += steal_time; 344 } 345 346 void vtime_account_kernel(struct task_struct *tsk) 347 { 348 struct cpu_accounting_data *acct = get_accounting(tsk); 349 unsigned long stime, stime_scaled; 350 351 vtime_delta_kernel(acct, &stime, &stime_scaled); 352 353 if (tsk->flags & PF_VCPU) { 354 acct->gtime += stime; 355 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 356 acct->utime_scaled += stime_scaled; 357 #endif 358 } else { 359 acct->stime += stime; 360 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 361 acct->stime_scaled += stime_scaled; 362 #endif 363 } 364 } 365 EXPORT_SYMBOL_GPL(vtime_account_kernel); 366 367 void vtime_account_idle(struct task_struct *tsk) 368 { 369 unsigned long stime, stime_scaled, steal_time; 370 struct cpu_accounting_data *acct = get_accounting(tsk); 371 372 stime = vtime_delta(acct, &stime_scaled, &steal_time); 373 acct->idle_time += stime + steal_time; 374 } 375 376 static void vtime_account_irq_field(struct cpu_accounting_data *acct, 377 unsigned long *field) 378 { 379 unsigned long stime, stime_scaled; 380 381 vtime_delta_kernel(acct, &stime, &stime_scaled); 382 *field += stime; 383 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 384 acct->stime_scaled += stime_scaled; 385 #endif 386 } 387 388 void vtime_account_softirq(struct task_struct *tsk) 389 { 390 struct cpu_accounting_data *acct = get_accounting(tsk); 391 vtime_account_irq_field(acct, &acct->softirq_time); 392 } 393 394 void vtime_account_hardirq(struct task_struct *tsk) 395 { 396 struct cpu_accounting_data *acct = get_accounting(tsk); 397 vtime_account_irq_field(acct, &acct->hardirq_time); 398 } 399 400 static void vtime_flush_scaled(struct task_struct *tsk, 401 struct cpu_accounting_data *acct) 402 { 403 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 404 if (acct->utime_scaled) 405 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 406 if (acct->stime_scaled) 407 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 408 409 acct->utime_scaled = 0; 410 acct->utime_sspurr = 0; 411 acct->stime_scaled = 0; 412 #endif 413 } 414 415 /* 416 * Account the whole cputime accumulated in the paca 417 * Must be called with interrupts disabled. 418 * Assumes that vtime_account_kernel/idle() has been called 419 * recently (i.e. since the last entry from usermode) so that 420 * get_paca()->user_time_scaled is up to date. 421 */ 422 void vtime_flush(struct task_struct *tsk) 423 { 424 struct cpu_accounting_data *acct = get_accounting(tsk); 425 426 if (acct->utime) 427 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 428 429 if (acct->gtime) 430 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 431 432 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 433 account_steal_time(cputime_to_nsecs(acct->steal_time)); 434 acct->steal_time = 0; 435 } 436 437 if (acct->idle_time) 438 account_idle_time(cputime_to_nsecs(acct->idle_time)); 439 440 if (acct->stime) 441 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 442 CPUTIME_SYSTEM); 443 444 if (acct->hardirq_time) 445 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 446 CPUTIME_IRQ); 447 if (acct->softirq_time) 448 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 449 CPUTIME_SOFTIRQ); 450 451 vtime_flush_scaled(tsk, acct); 452 453 acct->utime = 0; 454 acct->gtime = 0; 455 acct->idle_time = 0; 456 acct->stime = 0; 457 acct->hardirq_time = 0; 458 acct->softirq_time = 0; 459 } 460 461 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 462 #define calc_cputime_factors() 463 #endif 464 465 void __delay(unsigned long loops) 466 { 467 unsigned long start; 468 469 spin_begin(); 470 if (tb_invalid) { 471 /* 472 * TB is in error state and isn't ticking anymore. 473 * HMI handler was unable to recover from TB error. 474 * Return immediately, so that kernel won't get stuck here. 475 */ 476 spin_cpu_relax(); 477 } else { 478 start = mftb(); 479 while (mftb() - start < loops) 480 spin_cpu_relax(); 481 } 482 spin_end(); 483 } 484 EXPORT_SYMBOL(__delay); 485 486 void udelay(unsigned long usecs) 487 { 488 __delay(tb_ticks_per_usec * usecs); 489 } 490 EXPORT_SYMBOL(udelay); 491 492 #ifdef CONFIG_SMP 493 unsigned long profile_pc(struct pt_regs *regs) 494 { 495 unsigned long pc = instruction_pointer(regs); 496 497 if (in_lock_functions(pc)) 498 return regs->link; 499 500 return pc; 501 } 502 EXPORT_SYMBOL(profile_pc); 503 #endif 504 505 #ifdef CONFIG_IRQ_WORK 506 507 /* 508 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 509 */ 510 #ifdef CONFIG_PPC64 511 static inline unsigned long test_irq_work_pending(void) 512 { 513 unsigned long x; 514 515 asm volatile("lbz %0,%1(13)" 516 : "=r" (x) 517 : "i" (offsetof(struct paca_struct, irq_work_pending))); 518 return x; 519 } 520 521 static inline void set_irq_work_pending_flag(void) 522 { 523 asm volatile("stb %0,%1(13)" : : 524 "r" (1), 525 "i" (offsetof(struct paca_struct, irq_work_pending))); 526 } 527 528 static inline void clear_irq_work_pending(void) 529 { 530 asm volatile("stb %0,%1(13)" : : 531 "r" (0), 532 "i" (offsetof(struct paca_struct, irq_work_pending))); 533 } 534 535 #else /* 32-bit */ 536 537 DEFINE_PER_CPU(u8, irq_work_pending); 538 539 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 540 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 541 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 542 543 #endif /* 32 vs 64 bit */ 544 545 void arch_irq_work_raise(void) 546 { 547 /* 548 * 64-bit code that uses irq soft-mask can just cause an immediate 549 * interrupt here that gets soft masked, if this is called under 550 * local_irq_disable(). It might be possible to prevent that happening 551 * by noticing interrupts are disabled and setting decrementer pending 552 * to be replayed when irqs are enabled. The problem there is that 553 * tracing can call irq_work_raise, including in code that does low 554 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 555 * which could get tangled up if we're messing with the same state 556 * here. 557 */ 558 preempt_disable(); 559 set_irq_work_pending_flag(); 560 set_dec(1); 561 preempt_enable(); 562 } 563 564 #else /* CONFIG_IRQ_WORK */ 565 566 #define test_irq_work_pending() 0 567 #define clear_irq_work_pending() 568 569 #endif /* CONFIG_IRQ_WORK */ 570 571 /* 572 * timer_interrupt - gets called when the decrementer overflows, 573 * with interrupts disabled. 574 */ 575 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt) 576 { 577 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 578 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 579 struct pt_regs *old_regs; 580 u64 now; 581 582 /* 583 * Some implementations of hotplug will get timer interrupts while 584 * offline, just ignore these. 585 */ 586 if (unlikely(!cpu_online(smp_processor_id()))) { 587 set_dec(decrementer_max); 588 return; 589 } 590 591 /* Ensure a positive value is written to the decrementer, or else 592 * some CPUs will continue to take decrementer exceptions. When the 593 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 594 * 31 bits, which is about 4 seconds on most systems, which gives 595 * the watchdog a chance of catching timer interrupt hard lockups. 596 */ 597 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 598 set_dec(0x7fffffff); 599 else 600 set_dec(decrementer_max); 601 602 /* Conditionally hard-enable interrupts now that the DEC has been 603 * bumped to its maximum value 604 */ 605 may_hard_irq_enable(); 606 607 608 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 609 if (atomic_read(&ppc_n_lost_interrupts) != 0) 610 do_IRQ(regs); 611 #endif 612 613 old_regs = set_irq_regs(regs); 614 615 trace_timer_interrupt_entry(regs); 616 617 if (test_irq_work_pending()) { 618 clear_irq_work_pending(); 619 irq_work_run(); 620 } 621 622 now = get_tb(); 623 if (now >= *next_tb) { 624 *next_tb = ~(u64)0; 625 if (evt->event_handler) 626 evt->event_handler(evt); 627 __this_cpu_inc(irq_stat.timer_irqs_event); 628 } else { 629 now = *next_tb - now; 630 if (now <= decrementer_max) 631 set_dec(now); 632 /* We may have raced with new irq work */ 633 if (test_irq_work_pending()) 634 set_dec(1); 635 __this_cpu_inc(irq_stat.timer_irqs_others); 636 } 637 638 trace_timer_interrupt_exit(regs); 639 640 set_irq_regs(old_regs); 641 } 642 EXPORT_SYMBOL(timer_interrupt); 643 644 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 645 void timer_broadcast_interrupt(void) 646 { 647 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 648 649 *next_tb = ~(u64)0; 650 tick_receive_broadcast(); 651 __this_cpu_inc(irq_stat.broadcast_irqs_event); 652 } 653 #endif 654 655 #ifdef CONFIG_SUSPEND 656 static void generic_suspend_disable_irqs(void) 657 { 658 /* Disable the decrementer, so that it doesn't interfere 659 * with suspending. 660 */ 661 662 set_dec(decrementer_max); 663 local_irq_disable(); 664 set_dec(decrementer_max); 665 } 666 667 static void generic_suspend_enable_irqs(void) 668 { 669 local_irq_enable(); 670 } 671 672 /* Overrides the weak version in kernel/power/main.c */ 673 void arch_suspend_disable_irqs(void) 674 { 675 if (ppc_md.suspend_disable_irqs) 676 ppc_md.suspend_disable_irqs(); 677 generic_suspend_disable_irqs(); 678 } 679 680 /* Overrides the weak version in kernel/power/main.c */ 681 void arch_suspend_enable_irqs(void) 682 { 683 generic_suspend_enable_irqs(); 684 if (ppc_md.suspend_enable_irqs) 685 ppc_md.suspend_enable_irqs(); 686 } 687 #endif 688 689 unsigned long long tb_to_ns(unsigned long long ticks) 690 { 691 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 692 } 693 EXPORT_SYMBOL_GPL(tb_to_ns); 694 695 /* 696 * Scheduler clock - returns current time in nanosec units. 697 * 698 * Note: mulhdu(a, b) (multiply high double unsigned) returns 699 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 700 * are 64-bit unsigned numbers. 701 */ 702 notrace unsigned long long sched_clock(void) 703 { 704 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 705 } 706 707 708 #ifdef CONFIG_PPC_PSERIES 709 710 /* 711 * Running clock - attempts to give a view of time passing for a virtualised 712 * kernels. 713 * Uses the VTB register if available otherwise a next best guess. 714 */ 715 unsigned long long running_clock(void) 716 { 717 /* 718 * Don't read the VTB as a host since KVM does not switch in host 719 * timebase into the VTB when it takes a guest off the CPU, reading the 720 * VTB would result in reading 'last switched out' guest VTB. 721 * 722 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 723 * would be unsafe to rely only on the #ifdef above. 724 */ 725 if (firmware_has_feature(FW_FEATURE_LPAR) && 726 cpu_has_feature(CPU_FTR_ARCH_207S)) 727 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 728 729 /* 730 * This is a next best approximation without a VTB. 731 * On a host which is running bare metal there should never be any stolen 732 * time and on a host which doesn't do any virtualisation TB *should* equal 733 * VTB so it makes no difference anyway. 734 */ 735 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 736 } 737 #endif 738 739 static int __init get_freq(char *name, int cells, unsigned long *val) 740 { 741 struct device_node *cpu; 742 const __be32 *fp; 743 int found = 0; 744 745 /* The cpu node should have timebase and clock frequency properties */ 746 cpu = of_find_node_by_type(NULL, "cpu"); 747 748 if (cpu) { 749 fp = of_get_property(cpu, name, NULL); 750 if (fp) { 751 found = 1; 752 *val = of_read_ulong(fp, cells); 753 } 754 755 of_node_put(cpu); 756 } 757 758 return found; 759 } 760 761 static void start_cpu_decrementer(void) 762 { 763 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 764 unsigned int tcr; 765 766 /* Clear any pending timer interrupts */ 767 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 768 769 tcr = mfspr(SPRN_TCR); 770 /* 771 * The watchdog may have already been enabled by u-boot. So leave 772 * TRC[WP] (Watchdog Period) alone. 773 */ 774 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 775 tcr |= TCR_DIE; /* Enable decrementer */ 776 mtspr(SPRN_TCR, tcr); 777 #endif 778 } 779 780 void __init generic_calibrate_decr(void) 781 { 782 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 783 784 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 785 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 786 787 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 788 "(not found)\n"); 789 } 790 791 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 792 793 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 794 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 795 796 printk(KERN_ERR "WARNING: Estimating processor frequency " 797 "(not found)\n"); 798 } 799 } 800 801 int update_persistent_clock64(struct timespec64 now) 802 { 803 struct rtc_time tm; 804 805 if (!ppc_md.set_rtc_time) 806 return -ENODEV; 807 808 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 809 810 return ppc_md.set_rtc_time(&tm); 811 } 812 813 static void __read_persistent_clock(struct timespec64 *ts) 814 { 815 struct rtc_time tm; 816 static int first = 1; 817 818 ts->tv_nsec = 0; 819 /* XXX this is a litle fragile but will work okay in the short term */ 820 if (first) { 821 first = 0; 822 if (ppc_md.time_init) 823 timezone_offset = ppc_md.time_init(); 824 825 /* get_boot_time() isn't guaranteed to be safe to call late */ 826 if (ppc_md.get_boot_time) { 827 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 828 return; 829 } 830 } 831 if (!ppc_md.get_rtc_time) { 832 ts->tv_sec = 0; 833 return; 834 } 835 ppc_md.get_rtc_time(&tm); 836 837 ts->tv_sec = rtc_tm_to_time64(&tm); 838 } 839 840 void read_persistent_clock64(struct timespec64 *ts) 841 { 842 __read_persistent_clock(ts); 843 844 /* Sanitize it in case real time clock is set below EPOCH */ 845 if (ts->tv_sec < 0) { 846 ts->tv_sec = 0; 847 ts->tv_nsec = 0; 848 } 849 850 } 851 852 /* clocksource code */ 853 static notrace u64 timebase_read(struct clocksource *cs) 854 { 855 return (u64)get_tb(); 856 } 857 858 static void __init clocksource_init(void) 859 { 860 struct clocksource *clock = &clocksource_timebase; 861 862 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 863 printk(KERN_ERR "clocksource: %s is already registered\n", 864 clock->name); 865 return; 866 } 867 868 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 869 clock->name, clock->mult, clock->shift); 870 } 871 872 static int decrementer_set_next_event(unsigned long evt, 873 struct clock_event_device *dev) 874 { 875 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 876 set_dec(evt); 877 878 /* We may have raced with new irq work */ 879 if (test_irq_work_pending()) 880 set_dec(1); 881 882 return 0; 883 } 884 885 static int decrementer_shutdown(struct clock_event_device *dev) 886 { 887 decrementer_set_next_event(decrementer_max, dev); 888 return 0; 889 } 890 891 static void register_decrementer_clockevent(int cpu) 892 { 893 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 894 895 *dec = decrementer_clockevent; 896 dec->cpumask = cpumask_of(cpu); 897 898 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 899 900 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 901 dec->name, dec->mult, dec->shift, cpu); 902 903 /* Set values for KVM, see kvm_emulate_dec() */ 904 decrementer_clockevent.mult = dec->mult; 905 decrementer_clockevent.shift = dec->shift; 906 } 907 908 static void enable_large_decrementer(void) 909 { 910 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 911 return; 912 913 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 914 return; 915 916 /* 917 * If we're running as the hypervisor we need to enable the LD manually 918 * otherwise firmware should have done it for us. 919 */ 920 if (cpu_has_feature(CPU_FTR_HVMODE)) 921 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 922 } 923 924 static void __init set_decrementer_max(void) 925 { 926 struct device_node *cpu; 927 u32 bits = 32; 928 929 /* Prior to ISAv3 the decrementer is always 32 bit */ 930 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 931 return; 932 933 cpu = of_find_node_by_type(NULL, "cpu"); 934 935 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 936 if (bits > 64 || bits < 32) { 937 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 938 bits = 32; 939 } 940 941 /* calculate the signed maximum given this many bits */ 942 decrementer_max = (1ul << (bits - 1)) - 1; 943 } 944 945 of_node_put(cpu); 946 947 pr_info("time_init: %u bit decrementer (max: %llx)\n", 948 bits, decrementer_max); 949 } 950 951 static void __init init_decrementer_clockevent(void) 952 { 953 register_decrementer_clockevent(smp_processor_id()); 954 } 955 956 void secondary_cpu_time_init(void) 957 { 958 /* Enable and test the large decrementer for this cpu */ 959 enable_large_decrementer(); 960 961 /* Start the decrementer on CPUs that have manual control 962 * such as BookE 963 */ 964 start_cpu_decrementer(); 965 966 /* FIME: Should make unrelatred change to move snapshot_timebase 967 * call here ! */ 968 register_decrementer_clockevent(smp_processor_id()); 969 } 970 971 /* This function is only called on the boot processor */ 972 void __init time_init(void) 973 { 974 struct div_result res; 975 u64 scale; 976 unsigned shift; 977 978 /* Normal PowerPC with timebase register */ 979 ppc_md.calibrate_decr(); 980 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 981 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 982 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 983 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 984 985 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 986 tb_ticks_per_sec = ppc_tb_freq; 987 tb_ticks_per_usec = ppc_tb_freq / 1000000; 988 calc_cputime_factors(); 989 990 /* 991 * Compute scale factor for sched_clock. 992 * The calibrate_decr() function has set tb_ticks_per_sec, 993 * which is the timebase frequency. 994 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 995 * the 128-bit result as a 64.64 fixed-point number. 996 * We then shift that number right until it is less than 1.0, 997 * giving us the scale factor and shift count to use in 998 * sched_clock(). 999 */ 1000 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1001 scale = res.result_low; 1002 for (shift = 0; res.result_high != 0; ++shift) { 1003 scale = (scale >> 1) | (res.result_high << 63); 1004 res.result_high >>= 1; 1005 } 1006 tb_to_ns_scale = scale; 1007 tb_to_ns_shift = shift; 1008 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1009 boot_tb = get_tb(); 1010 1011 /* If platform provided a timezone (pmac), we correct the time */ 1012 if (timezone_offset) { 1013 sys_tz.tz_minuteswest = -timezone_offset / 60; 1014 sys_tz.tz_dsttime = 0; 1015 } 1016 1017 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1018 1019 /* initialise and enable the large decrementer (if we have one) */ 1020 set_decrementer_max(); 1021 enable_large_decrementer(); 1022 1023 /* Start the decrementer on CPUs that have manual control 1024 * such as BookE 1025 */ 1026 start_cpu_decrementer(); 1027 1028 /* Register the clocksource */ 1029 clocksource_init(); 1030 1031 init_decrementer_clockevent(); 1032 tick_setup_hrtimer_broadcast(); 1033 1034 of_clk_init(NULL); 1035 enable_sched_clock_irqtime(); 1036 } 1037 1038 /* 1039 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1040 * result. 1041 */ 1042 void div128_by_32(u64 dividend_high, u64 dividend_low, 1043 unsigned divisor, struct div_result *dr) 1044 { 1045 unsigned long a, b, c, d; 1046 unsigned long w, x, y, z; 1047 u64 ra, rb, rc; 1048 1049 a = dividend_high >> 32; 1050 b = dividend_high & 0xffffffff; 1051 c = dividend_low >> 32; 1052 d = dividend_low & 0xffffffff; 1053 1054 w = a / divisor; 1055 ra = ((u64)(a - (w * divisor)) << 32) + b; 1056 1057 rb = ((u64) do_div(ra, divisor) << 32) + c; 1058 x = ra; 1059 1060 rc = ((u64) do_div(rb, divisor) << 32) + d; 1061 y = rb; 1062 1063 do_div(rc, divisor); 1064 z = rc; 1065 1066 dr->result_high = ((u64)w << 32) + x; 1067 dr->result_low = ((u64)y << 32) + z; 1068 1069 } 1070 1071 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1072 void calibrate_delay(void) 1073 { 1074 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1075 * as the number of __delay(1) in a jiffy, so make it so 1076 */ 1077 loops_per_jiffy = tb_ticks_per_jiffy; 1078 } 1079 1080 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1081 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1082 { 1083 ppc_md.get_rtc_time(tm); 1084 return 0; 1085 } 1086 1087 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1088 { 1089 if (!ppc_md.set_rtc_time) 1090 return -EOPNOTSUPP; 1091 1092 if (ppc_md.set_rtc_time(tm) < 0) 1093 return -EOPNOTSUPP; 1094 1095 return 0; 1096 } 1097 1098 static const struct rtc_class_ops rtc_generic_ops = { 1099 .read_time = rtc_generic_get_time, 1100 .set_time = rtc_generic_set_time, 1101 }; 1102 1103 static int __init rtc_init(void) 1104 { 1105 struct platform_device *pdev; 1106 1107 if (!ppc_md.get_rtc_time) 1108 return -ENODEV; 1109 1110 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1111 &rtc_generic_ops, 1112 sizeof(rtc_generic_ops)); 1113 1114 return PTR_ERR_OR_ZERO(pdev); 1115 } 1116 1117 device_initcall(rtc_init); 1118 #endif 1119