1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. 21 * - for astronomical applications: add a new function to get 22 * non ambiguous timestamps even around leap seconds. This needs 23 * a new timestamp format and a good name. 24 * 25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 26 * "A Kernel Model for Precision Timekeeping" by Dave Mills 27 * 28 * This program is free software; you can redistribute it and/or 29 * modify it under the terms of the GNU General Public License 30 * as published by the Free Software Foundation; either version 31 * 2 of the License, or (at your option) any later version. 32 */ 33 34 #include <linux/errno.h> 35 #include <linux/export.h> 36 #include <linux/sched.h> 37 #include <linux/kernel.h> 38 #include <linux/param.h> 39 #include <linux/string.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/timex.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/time.h> 45 #include <linux/init.h> 46 #include <linux/profile.h> 47 #include <linux/cpu.h> 48 #include <linux/security.h> 49 #include <linux/percpu.h> 50 #include <linux/rtc.h> 51 #include <linux/jiffies.h> 52 #include <linux/posix-timers.h> 53 #include <linux/irq.h> 54 #include <linux/delay.h> 55 #include <linux/irq_work.h> 56 #include <asm/trace.h> 57 58 #include <asm/io.h> 59 #include <asm/processor.h> 60 #include <asm/nvram.h> 61 #include <asm/cache.h> 62 #include <asm/machdep.h> 63 #include <asm/uaccess.h> 64 #include <asm/time.h> 65 #include <asm/prom.h> 66 #include <asm/irq.h> 67 #include <asm/div64.h> 68 #include <asm/smp.h> 69 #include <asm/vdso_datapage.h> 70 #include <asm/firmware.h> 71 #include <asm/cputime.h> 72 73 /* powerpc clocksource/clockevent code */ 74 75 #include <linux/clockchips.h> 76 #include <linux/clocksource.h> 77 78 static cycle_t rtc_read(struct clocksource *); 79 static struct clocksource clocksource_rtc = { 80 .name = "rtc", 81 .rating = 400, 82 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 83 .mask = CLOCKSOURCE_MASK(64), 84 .read = rtc_read, 85 }; 86 87 static cycle_t timebase_read(struct clocksource *); 88 static struct clocksource clocksource_timebase = { 89 .name = "timebase", 90 .rating = 400, 91 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 92 .mask = CLOCKSOURCE_MASK(64), 93 .read = timebase_read, 94 }; 95 96 #define DECREMENTER_MAX 0x7fffffff 97 98 static int decrementer_set_next_event(unsigned long evt, 99 struct clock_event_device *dev); 100 static void decrementer_set_mode(enum clock_event_mode mode, 101 struct clock_event_device *dev); 102 103 struct clock_event_device decrementer_clockevent = { 104 .name = "decrementer", 105 .rating = 200, 106 .irq = 0, 107 .set_next_event = decrementer_set_next_event, 108 .set_mode = decrementer_set_mode, 109 .features = CLOCK_EVT_FEAT_ONESHOT, 110 }; 111 EXPORT_SYMBOL(decrementer_clockevent); 112 113 DEFINE_PER_CPU(u64, decrementers_next_tb); 114 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 115 116 #define XSEC_PER_SEC (1024*1024) 117 118 #ifdef CONFIG_PPC64 119 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 120 #else 121 /* compute ((xsec << 12) * max) >> 32 */ 122 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 123 #endif 124 125 unsigned long tb_ticks_per_jiffy; 126 unsigned long tb_ticks_per_usec = 100; /* sane default */ 127 EXPORT_SYMBOL(tb_ticks_per_usec); 128 unsigned long tb_ticks_per_sec; 129 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 130 131 DEFINE_SPINLOCK(rtc_lock); 132 EXPORT_SYMBOL_GPL(rtc_lock); 133 134 static u64 tb_to_ns_scale __read_mostly; 135 static unsigned tb_to_ns_shift __read_mostly; 136 static u64 boot_tb __read_mostly; 137 138 extern struct timezone sys_tz; 139 static long timezone_offset; 140 141 unsigned long ppc_proc_freq; 142 EXPORT_SYMBOL_GPL(ppc_proc_freq); 143 unsigned long ppc_tb_freq; 144 EXPORT_SYMBOL_GPL(ppc_tb_freq); 145 146 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 147 /* 148 * Factors for converting from cputime_t (timebase ticks) to 149 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds). 150 * These are all stored as 0.64 fixed-point binary fractions. 151 */ 152 u64 __cputime_jiffies_factor; 153 EXPORT_SYMBOL(__cputime_jiffies_factor); 154 u64 __cputime_usec_factor; 155 EXPORT_SYMBOL(__cputime_usec_factor); 156 u64 __cputime_sec_factor; 157 EXPORT_SYMBOL(__cputime_sec_factor); 158 u64 __cputime_clockt_factor; 159 EXPORT_SYMBOL(__cputime_clockt_factor); 160 DEFINE_PER_CPU(unsigned long, cputime_last_delta); 161 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); 162 163 cputime_t cputime_one_jiffy; 164 165 void (*dtl_consumer)(struct dtl_entry *, u64); 166 167 static void calc_cputime_factors(void) 168 { 169 struct div_result res; 170 171 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 172 __cputime_jiffies_factor = res.result_low; 173 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 174 __cputime_usec_factor = res.result_low; 175 div128_by_32(1, 0, tb_ticks_per_sec, &res); 176 __cputime_sec_factor = res.result_low; 177 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 178 __cputime_clockt_factor = res.result_low; 179 } 180 181 /* 182 * Read the SPURR on systems that have it, otherwise the PURR, 183 * or if that doesn't exist return the timebase value passed in. 184 */ 185 static u64 read_spurr(u64 tb) 186 { 187 if (cpu_has_feature(CPU_FTR_SPURR)) 188 return mfspr(SPRN_SPURR); 189 if (cpu_has_feature(CPU_FTR_PURR)) 190 return mfspr(SPRN_PURR); 191 return tb; 192 } 193 194 #ifdef CONFIG_PPC_SPLPAR 195 196 /* 197 * Scan the dispatch trace log and count up the stolen time. 198 * Should be called with interrupts disabled. 199 */ 200 static u64 scan_dispatch_log(u64 stop_tb) 201 { 202 u64 i = local_paca->dtl_ridx; 203 struct dtl_entry *dtl = local_paca->dtl_curr; 204 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 205 struct lppaca *vpa = local_paca->lppaca_ptr; 206 u64 tb_delta; 207 u64 stolen = 0; 208 u64 dtb; 209 210 if (!dtl) 211 return 0; 212 213 if (i == vpa->dtl_idx) 214 return 0; 215 while (i < vpa->dtl_idx) { 216 if (dtl_consumer) 217 dtl_consumer(dtl, i); 218 dtb = dtl->timebase; 219 tb_delta = dtl->enqueue_to_dispatch_time + 220 dtl->ready_to_enqueue_time; 221 barrier(); 222 if (i + N_DISPATCH_LOG < vpa->dtl_idx) { 223 /* buffer has overflowed */ 224 i = vpa->dtl_idx - N_DISPATCH_LOG; 225 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 226 continue; 227 } 228 if (dtb > stop_tb) 229 break; 230 stolen += tb_delta; 231 ++i; 232 ++dtl; 233 if (dtl == dtl_end) 234 dtl = local_paca->dispatch_log; 235 } 236 local_paca->dtl_ridx = i; 237 local_paca->dtl_curr = dtl; 238 return stolen; 239 } 240 241 /* 242 * Accumulate stolen time by scanning the dispatch trace log. 243 * Called on entry from user mode. 244 */ 245 void accumulate_stolen_time(void) 246 { 247 u64 sst, ust; 248 249 u8 save_soft_enabled = local_paca->soft_enabled; 250 251 /* We are called early in the exception entry, before 252 * soft/hard_enabled are sync'ed to the expected state 253 * for the exception. We are hard disabled but the PACA 254 * needs to reflect that so various debug stuff doesn't 255 * complain 256 */ 257 local_paca->soft_enabled = 0; 258 259 sst = scan_dispatch_log(local_paca->starttime_user); 260 ust = scan_dispatch_log(local_paca->starttime); 261 local_paca->system_time -= sst; 262 local_paca->user_time -= ust; 263 local_paca->stolen_time += ust + sst; 264 265 local_paca->soft_enabled = save_soft_enabled; 266 } 267 268 static inline u64 calculate_stolen_time(u64 stop_tb) 269 { 270 u64 stolen = 0; 271 272 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) { 273 stolen = scan_dispatch_log(stop_tb); 274 get_paca()->system_time -= stolen; 275 } 276 277 stolen += get_paca()->stolen_time; 278 get_paca()->stolen_time = 0; 279 return stolen; 280 } 281 282 #else /* CONFIG_PPC_SPLPAR */ 283 static inline u64 calculate_stolen_time(u64 stop_tb) 284 { 285 return 0; 286 } 287 288 #endif /* CONFIG_PPC_SPLPAR */ 289 290 /* 291 * Account time for a transition between system, hard irq 292 * or soft irq state. 293 */ 294 void account_system_vtime(struct task_struct *tsk) 295 { 296 u64 now, nowscaled, delta, deltascaled; 297 unsigned long flags; 298 u64 stolen, udelta, sys_scaled, user_scaled; 299 300 local_irq_save(flags); 301 now = mftb(); 302 nowscaled = read_spurr(now); 303 get_paca()->system_time += now - get_paca()->starttime; 304 get_paca()->starttime = now; 305 deltascaled = nowscaled - get_paca()->startspurr; 306 get_paca()->startspurr = nowscaled; 307 308 stolen = calculate_stolen_time(now); 309 310 delta = get_paca()->system_time; 311 get_paca()->system_time = 0; 312 udelta = get_paca()->user_time - get_paca()->utime_sspurr; 313 get_paca()->utime_sspurr = get_paca()->user_time; 314 315 /* 316 * Because we don't read the SPURR on every kernel entry/exit, 317 * deltascaled includes both user and system SPURR ticks. 318 * Apportion these ticks to system SPURR ticks and user 319 * SPURR ticks in the same ratio as the system time (delta) 320 * and user time (udelta) values obtained from the timebase 321 * over the same interval. The system ticks get accounted here; 322 * the user ticks get saved up in paca->user_time_scaled to be 323 * used by account_process_tick. 324 */ 325 sys_scaled = delta; 326 user_scaled = udelta; 327 if (deltascaled != delta + udelta) { 328 if (udelta) { 329 sys_scaled = deltascaled * delta / (delta + udelta); 330 user_scaled = deltascaled - sys_scaled; 331 } else { 332 sys_scaled = deltascaled; 333 } 334 } 335 get_paca()->user_time_scaled += user_scaled; 336 337 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) { 338 account_system_time(tsk, 0, delta, sys_scaled); 339 if (stolen) 340 account_steal_time(stolen); 341 } else { 342 account_idle_time(delta + stolen); 343 } 344 local_irq_restore(flags); 345 } 346 EXPORT_SYMBOL_GPL(account_system_vtime); 347 348 /* 349 * Transfer the user and system times accumulated in the paca 350 * by the exception entry and exit code to the generic process 351 * user and system time records. 352 * Must be called with interrupts disabled. 353 * Assumes that account_system_vtime() has been called recently 354 * (i.e. since the last entry from usermode) so that 355 * get_paca()->user_time_scaled is up to date. 356 */ 357 void account_process_tick(struct task_struct *tsk, int user_tick) 358 { 359 cputime_t utime, utimescaled; 360 361 utime = get_paca()->user_time; 362 utimescaled = get_paca()->user_time_scaled; 363 get_paca()->user_time = 0; 364 get_paca()->user_time_scaled = 0; 365 get_paca()->utime_sspurr = 0; 366 account_user_time(tsk, utime, utimescaled); 367 } 368 369 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 370 #define calc_cputime_factors() 371 #endif 372 373 void __delay(unsigned long loops) 374 { 375 unsigned long start; 376 int diff; 377 378 if (__USE_RTC()) { 379 start = get_rtcl(); 380 do { 381 /* the RTCL register wraps at 1000000000 */ 382 diff = get_rtcl() - start; 383 if (diff < 0) 384 diff += 1000000000; 385 } while (diff < loops); 386 } else { 387 start = get_tbl(); 388 while (get_tbl() - start < loops) 389 HMT_low(); 390 HMT_medium(); 391 } 392 } 393 EXPORT_SYMBOL(__delay); 394 395 void udelay(unsigned long usecs) 396 { 397 __delay(tb_ticks_per_usec * usecs); 398 } 399 EXPORT_SYMBOL(udelay); 400 401 #ifdef CONFIG_SMP 402 unsigned long profile_pc(struct pt_regs *regs) 403 { 404 unsigned long pc = instruction_pointer(regs); 405 406 if (in_lock_functions(pc)) 407 return regs->link; 408 409 return pc; 410 } 411 EXPORT_SYMBOL(profile_pc); 412 #endif 413 414 #ifdef CONFIG_IRQ_WORK 415 416 /* 417 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 418 */ 419 #ifdef CONFIG_PPC64 420 static inline unsigned long test_irq_work_pending(void) 421 { 422 unsigned long x; 423 424 asm volatile("lbz %0,%1(13)" 425 : "=r" (x) 426 : "i" (offsetof(struct paca_struct, irq_work_pending))); 427 return x; 428 } 429 430 static inline void set_irq_work_pending_flag(void) 431 { 432 asm volatile("stb %0,%1(13)" : : 433 "r" (1), 434 "i" (offsetof(struct paca_struct, irq_work_pending))); 435 } 436 437 static inline void clear_irq_work_pending(void) 438 { 439 asm volatile("stb %0,%1(13)" : : 440 "r" (0), 441 "i" (offsetof(struct paca_struct, irq_work_pending))); 442 } 443 444 #else /* 32-bit */ 445 446 DEFINE_PER_CPU(u8, irq_work_pending); 447 448 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 449 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) 450 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 451 452 #endif /* 32 vs 64 bit */ 453 454 void arch_irq_work_raise(void) 455 { 456 preempt_disable(); 457 set_irq_work_pending_flag(); 458 set_dec(1); 459 preempt_enable(); 460 } 461 462 #else /* CONFIG_IRQ_WORK */ 463 464 #define test_irq_work_pending() 0 465 #define clear_irq_work_pending() 466 467 #endif /* CONFIG_IRQ_WORK */ 468 469 /* 470 * timer_interrupt - gets called when the decrementer overflows, 471 * with interrupts disabled. 472 */ 473 void timer_interrupt(struct pt_regs * regs) 474 { 475 struct pt_regs *old_regs; 476 u64 *next_tb = &__get_cpu_var(decrementers_next_tb); 477 struct clock_event_device *evt = &__get_cpu_var(decrementers); 478 u64 now; 479 480 /* Ensure a positive value is written to the decrementer, or else 481 * some CPUs will continue to take decrementer exceptions. 482 */ 483 set_dec(DECREMENTER_MAX); 484 485 /* Some implementations of hotplug will get timer interrupts while 486 * offline, just ignore these 487 */ 488 if (!cpu_online(smp_processor_id())) 489 return; 490 491 /* Conditionally hard-enable interrupts now that the DEC has been 492 * bumped to its maximum value 493 */ 494 may_hard_irq_enable(); 495 496 trace_timer_interrupt_entry(regs); 497 498 __get_cpu_var(irq_stat).timer_irqs++; 499 500 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC) 501 if (atomic_read(&ppc_n_lost_interrupts) != 0) 502 do_IRQ(regs); 503 #endif 504 505 old_regs = set_irq_regs(regs); 506 irq_enter(); 507 508 if (test_irq_work_pending()) { 509 clear_irq_work_pending(); 510 irq_work_run(); 511 } 512 513 now = get_tb_or_rtc(); 514 if (now >= *next_tb) { 515 *next_tb = ~(u64)0; 516 if (evt->event_handler) 517 evt->event_handler(evt); 518 } else { 519 now = *next_tb - now; 520 if (now <= DECREMENTER_MAX) 521 set_dec((int)now); 522 } 523 524 #ifdef CONFIG_PPC64 525 /* collect purr register values often, for accurate calculations */ 526 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 527 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 528 cu->current_tb = mfspr(SPRN_PURR); 529 } 530 #endif 531 532 irq_exit(); 533 set_irq_regs(old_regs); 534 535 trace_timer_interrupt_exit(regs); 536 } 537 538 /* 539 * Hypervisor decrementer interrupts shouldn't occur but are sometimes 540 * left pending on exit from a KVM guest. We don't need to do anything 541 * to clear them, as they are edge-triggered. 542 */ 543 void hdec_interrupt(struct pt_regs *regs) 544 { 545 } 546 547 #ifdef CONFIG_SUSPEND 548 static void generic_suspend_disable_irqs(void) 549 { 550 /* Disable the decrementer, so that it doesn't interfere 551 * with suspending. 552 */ 553 554 set_dec(DECREMENTER_MAX); 555 local_irq_disable(); 556 set_dec(DECREMENTER_MAX); 557 } 558 559 static void generic_suspend_enable_irqs(void) 560 { 561 local_irq_enable(); 562 } 563 564 /* Overrides the weak version in kernel/power/main.c */ 565 void arch_suspend_disable_irqs(void) 566 { 567 if (ppc_md.suspend_disable_irqs) 568 ppc_md.suspend_disable_irqs(); 569 generic_suspend_disable_irqs(); 570 } 571 572 /* Overrides the weak version in kernel/power/main.c */ 573 void arch_suspend_enable_irqs(void) 574 { 575 generic_suspend_enable_irqs(); 576 if (ppc_md.suspend_enable_irqs) 577 ppc_md.suspend_enable_irqs(); 578 } 579 #endif 580 581 /* 582 * Scheduler clock - returns current time in nanosec units. 583 * 584 * Note: mulhdu(a, b) (multiply high double unsigned) returns 585 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 586 * are 64-bit unsigned numbers. 587 */ 588 unsigned long long sched_clock(void) 589 { 590 if (__USE_RTC()) 591 return get_rtc(); 592 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 593 } 594 595 static int __init get_freq(char *name, int cells, unsigned long *val) 596 { 597 struct device_node *cpu; 598 const unsigned int *fp; 599 int found = 0; 600 601 /* The cpu node should have timebase and clock frequency properties */ 602 cpu = of_find_node_by_type(NULL, "cpu"); 603 604 if (cpu) { 605 fp = of_get_property(cpu, name, NULL); 606 if (fp) { 607 found = 1; 608 *val = of_read_ulong(fp, cells); 609 } 610 611 of_node_put(cpu); 612 } 613 614 return found; 615 } 616 617 /* should become __cpuinit when secondary_cpu_time_init also is */ 618 void start_cpu_decrementer(void) 619 { 620 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 621 /* Clear any pending timer interrupts */ 622 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 623 624 /* Enable decrementer interrupt */ 625 mtspr(SPRN_TCR, TCR_DIE); 626 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */ 627 } 628 629 void __init generic_calibrate_decr(void) 630 { 631 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 632 633 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 634 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 635 636 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 637 "(not found)\n"); 638 } 639 640 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 641 642 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 643 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 644 645 printk(KERN_ERR "WARNING: Estimating processor frequency " 646 "(not found)\n"); 647 } 648 } 649 650 int update_persistent_clock(struct timespec now) 651 { 652 struct rtc_time tm; 653 654 if (!ppc_md.set_rtc_time) 655 return 0; 656 657 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 658 tm.tm_year -= 1900; 659 tm.tm_mon -= 1; 660 661 return ppc_md.set_rtc_time(&tm); 662 } 663 664 static void __read_persistent_clock(struct timespec *ts) 665 { 666 struct rtc_time tm; 667 static int first = 1; 668 669 ts->tv_nsec = 0; 670 /* XXX this is a litle fragile but will work okay in the short term */ 671 if (first) { 672 first = 0; 673 if (ppc_md.time_init) 674 timezone_offset = ppc_md.time_init(); 675 676 /* get_boot_time() isn't guaranteed to be safe to call late */ 677 if (ppc_md.get_boot_time) { 678 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 679 return; 680 } 681 } 682 if (!ppc_md.get_rtc_time) { 683 ts->tv_sec = 0; 684 return; 685 } 686 ppc_md.get_rtc_time(&tm); 687 688 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 689 tm.tm_hour, tm.tm_min, tm.tm_sec); 690 } 691 692 void read_persistent_clock(struct timespec *ts) 693 { 694 __read_persistent_clock(ts); 695 696 /* Sanitize it in case real time clock is set below EPOCH */ 697 if (ts->tv_sec < 0) { 698 ts->tv_sec = 0; 699 ts->tv_nsec = 0; 700 } 701 702 } 703 704 /* clocksource code */ 705 static cycle_t rtc_read(struct clocksource *cs) 706 { 707 return (cycle_t)get_rtc(); 708 } 709 710 static cycle_t timebase_read(struct clocksource *cs) 711 { 712 return (cycle_t)get_tb(); 713 } 714 715 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm, 716 struct clocksource *clock, u32 mult) 717 { 718 u64 new_tb_to_xs, new_stamp_xsec; 719 u32 frac_sec; 720 721 if (clock != &clocksource_timebase) 722 return; 723 724 /* Make userspace gettimeofday spin until we're done. */ 725 ++vdso_data->tb_update_count; 726 smp_mb(); 727 728 /* 19342813113834067 ~= 2^(20+64) / 1e9 */ 729 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); 730 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC; 731 do_div(new_stamp_xsec, 1000000000); 732 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC; 733 734 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC); 735 /* this is tv_nsec / 1e9 as a 0.32 fraction */ 736 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32; 737 738 /* 739 * tb_update_count is used to allow the userspace gettimeofday code 740 * to assure itself that it sees a consistent view of the tb_to_xs and 741 * stamp_xsec variables. It reads the tb_update_count, then reads 742 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 743 * the two values of tb_update_count match and are even then the 744 * tb_to_xs and stamp_xsec values are consistent. If not, then it 745 * loops back and reads them again until this criteria is met. 746 * We expect the caller to have done the first increment of 747 * vdso_data->tb_update_count already. 748 */ 749 vdso_data->tb_orig_stamp = clock->cycle_last; 750 vdso_data->stamp_xsec = new_stamp_xsec; 751 vdso_data->tb_to_xs = new_tb_to_xs; 752 vdso_data->wtom_clock_sec = wtm->tv_sec; 753 vdso_data->wtom_clock_nsec = wtm->tv_nsec; 754 vdso_data->stamp_xtime = *wall_time; 755 vdso_data->stamp_sec_fraction = frac_sec; 756 smp_wmb(); 757 ++(vdso_data->tb_update_count); 758 } 759 760 void update_vsyscall_tz(void) 761 { 762 /* Make userspace gettimeofday spin until we're done. */ 763 ++vdso_data->tb_update_count; 764 smp_mb(); 765 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 766 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 767 smp_mb(); 768 ++vdso_data->tb_update_count; 769 } 770 771 static void __init clocksource_init(void) 772 { 773 struct clocksource *clock; 774 775 if (__USE_RTC()) 776 clock = &clocksource_rtc; 777 else 778 clock = &clocksource_timebase; 779 780 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 781 printk(KERN_ERR "clocksource: %s is already registered\n", 782 clock->name); 783 return; 784 } 785 786 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 787 clock->name, clock->mult, clock->shift); 788 } 789 790 static int decrementer_set_next_event(unsigned long evt, 791 struct clock_event_device *dev) 792 { 793 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt; 794 set_dec(evt); 795 return 0; 796 } 797 798 static void decrementer_set_mode(enum clock_event_mode mode, 799 struct clock_event_device *dev) 800 { 801 if (mode != CLOCK_EVT_MODE_ONESHOT) 802 decrementer_set_next_event(DECREMENTER_MAX, dev); 803 } 804 805 static void register_decrementer_clockevent(int cpu) 806 { 807 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 808 809 *dec = decrementer_clockevent; 810 dec->cpumask = cpumask_of(cpu); 811 812 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 813 dec->name, dec->mult, dec->shift, cpu); 814 815 clockevents_register_device(dec); 816 } 817 818 static void __init init_decrementer_clockevent(void) 819 { 820 int cpu = smp_processor_id(); 821 822 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4); 823 824 decrementer_clockevent.max_delta_ns = 825 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); 826 decrementer_clockevent.min_delta_ns = 827 clockevent_delta2ns(2, &decrementer_clockevent); 828 829 register_decrementer_clockevent(cpu); 830 } 831 832 void secondary_cpu_time_init(void) 833 { 834 /* Start the decrementer on CPUs that have manual control 835 * such as BookE 836 */ 837 start_cpu_decrementer(); 838 839 /* FIME: Should make unrelatred change to move snapshot_timebase 840 * call here ! */ 841 register_decrementer_clockevent(smp_processor_id()); 842 } 843 844 /* This function is only called on the boot processor */ 845 void __init time_init(void) 846 { 847 struct div_result res; 848 u64 scale; 849 unsigned shift; 850 851 if (__USE_RTC()) { 852 /* 601 processor: dec counts down by 128 every 128ns */ 853 ppc_tb_freq = 1000000000; 854 } else { 855 /* Normal PowerPC with timebase register */ 856 ppc_md.calibrate_decr(); 857 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 858 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 859 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 860 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 861 } 862 863 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 864 tb_ticks_per_sec = ppc_tb_freq; 865 tb_ticks_per_usec = ppc_tb_freq / 1000000; 866 calc_cputime_factors(); 867 setup_cputime_one_jiffy(); 868 869 /* 870 * Compute scale factor for sched_clock. 871 * The calibrate_decr() function has set tb_ticks_per_sec, 872 * which is the timebase frequency. 873 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 874 * the 128-bit result as a 64.64 fixed-point number. 875 * We then shift that number right until it is less than 1.0, 876 * giving us the scale factor and shift count to use in 877 * sched_clock(). 878 */ 879 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 880 scale = res.result_low; 881 for (shift = 0; res.result_high != 0; ++shift) { 882 scale = (scale >> 1) | (res.result_high << 63); 883 res.result_high >>= 1; 884 } 885 tb_to_ns_scale = scale; 886 tb_to_ns_shift = shift; 887 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 888 boot_tb = get_tb_or_rtc(); 889 890 /* If platform provided a timezone (pmac), we correct the time */ 891 if (timezone_offset) { 892 sys_tz.tz_minuteswest = -timezone_offset / 60; 893 sys_tz.tz_dsttime = 0; 894 } 895 896 vdso_data->tb_update_count = 0; 897 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 898 899 /* Start the decrementer on CPUs that have manual control 900 * such as BookE 901 */ 902 start_cpu_decrementer(); 903 904 /* Register the clocksource */ 905 clocksource_init(); 906 907 init_decrementer_clockevent(); 908 } 909 910 911 #define FEBRUARY 2 912 #define STARTOFTIME 1970 913 #define SECDAY 86400L 914 #define SECYR (SECDAY * 365) 915 #define leapyear(year) ((year) % 4 == 0 && \ 916 ((year) % 100 != 0 || (year) % 400 == 0)) 917 #define days_in_year(a) (leapyear(a) ? 366 : 365) 918 #define days_in_month(a) (month_days[(a) - 1]) 919 920 static int month_days[12] = { 921 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 922 }; 923 924 /* 925 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 926 */ 927 void GregorianDay(struct rtc_time * tm) 928 { 929 int leapsToDate; 930 int lastYear; 931 int day; 932 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 933 934 lastYear = tm->tm_year - 1; 935 936 /* 937 * Number of leap corrections to apply up to end of last year 938 */ 939 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 940 941 /* 942 * This year is a leap year if it is divisible by 4 except when it is 943 * divisible by 100 unless it is divisible by 400 944 * 945 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 946 */ 947 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 948 949 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 950 tm->tm_mday; 951 952 tm->tm_wday = day % 7; 953 } 954 955 void to_tm(int tim, struct rtc_time * tm) 956 { 957 register int i; 958 register long hms, day; 959 960 day = tim / SECDAY; 961 hms = tim % SECDAY; 962 963 /* Hours, minutes, seconds are easy */ 964 tm->tm_hour = hms / 3600; 965 tm->tm_min = (hms % 3600) / 60; 966 tm->tm_sec = (hms % 3600) % 60; 967 968 /* Number of years in days */ 969 for (i = STARTOFTIME; day >= days_in_year(i); i++) 970 day -= days_in_year(i); 971 tm->tm_year = i; 972 973 /* Number of months in days left */ 974 if (leapyear(tm->tm_year)) 975 days_in_month(FEBRUARY) = 29; 976 for (i = 1; day >= days_in_month(i); i++) 977 day -= days_in_month(i); 978 days_in_month(FEBRUARY) = 28; 979 tm->tm_mon = i; 980 981 /* Days are what is left over (+1) from all that. */ 982 tm->tm_mday = day + 1; 983 984 /* 985 * Determine the day of week 986 */ 987 GregorianDay(tm); 988 } 989 990 /* 991 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 992 * result. 993 */ 994 void div128_by_32(u64 dividend_high, u64 dividend_low, 995 unsigned divisor, struct div_result *dr) 996 { 997 unsigned long a, b, c, d; 998 unsigned long w, x, y, z; 999 u64 ra, rb, rc; 1000 1001 a = dividend_high >> 32; 1002 b = dividend_high & 0xffffffff; 1003 c = dividend_low >> 32; 1004 d = dividend_low & 0xffffffff; 1005 1006 w = a / divisor; 1007 ra = ((u64)(a - (w * divisor)) << 32) + b; 1008 1009 rb = ((u64) do_div(ra, divisor) << 32) + c; 1010 x = ra; 1011 1012 rc = ((u64) do_div(rb, divisor) << 32) + d; 1013 y = rb; 1014 1015 do_div(rc, divisor); 1016 z = rc; 1017 1018 dr->result_high = ((u64)w << 32) + x; 1019 dr->result_low = ((u64)y << 32) + z; 1020 1021 } 1022 1023 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1024 void calibrate_delay(void) 1025 { 1026 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1027 * as the number of __delay(1) in a jiffy, so make it so 1028 */ 1029 loops_per_jiffy = tb_ticks_per_jiffy; 1030 } 1031 1032 static int __init rtc_init(void) 1033 { 1034 struct platform_device *pdev; 1035 1036 if (!ppc_md.get_rtc_time) 1037 return -ENODEV; 1038 1039 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); 1040 if (IS_ERR(pdev)) 1041 return PTR_ERR(pdev); 1042 1043 return 0; 1044 } 1045 1046 module_init(rtc_init); 1047