xref: /linux/arch/powerpc/kernel/time.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #ifdef CONFIG_PPC64
69 #include <asm/firmware.h>
70 #endif
71 #ifdef CONFIG_PPC_ISERIES
72 #include <asm/iseries/it_lp_queue.h>
73 #include <asm/iseries/hv_call_xm.h>
74 #endif
75 #include <asm/smp.h>
76 
77 /* keep track of when we need to update the rtc */
78 time_t last_rtc_update;
79 #ifdef CONFIG_PPC_ISERIES
80 static unsigned long __initdata iSeries_recal_titan;
81 static signed long __initdata iSeries_recal_tb;
82 #endif
83 
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
86 
87 #define XSEC_PER_SEC (1024*1024)
88 
89 #ifdef CONFIG_PPC64
90 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
91 #else
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
94 #endif
95 
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
100 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
101 u64 tb_to_xs;
102 unsigned tb_to_us;
103 
104 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
105 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
106 u64 ticklen_to_xs;	/* 0.64 fraction */
107 
108 /* If last_tick_len corresponds to about 1/HZ seconds, then
109    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
111 
112 DEFINE_SPINLOCK(rtc_lock);
113 EXPORT_SYMBOL_GPL(rtc_lock);
114 
115 static u64 tb_to_ns_scale __read_mostly;
116 static unsigned tb_to_ns_shift __read_mostly;
117 static unsigned long boot_tb __read_mostly;
118 
119 struct gettimeofday_struct do_gtod;
120 
121 extern struct timezone sys_tz;
122 static long timezone_offset;
123 
124 unsigned long ppc_proc_freq;
125 unsigned long ppc_tb_freq;
126 
127 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
128 static DEFINE_PER_CPU(u64, last_jiffy);
129 
130 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
131 /*
132  * Factors for converting from cputime_t (timebase ticks) to
133  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
134  * These are all stored as 0.64 fixed-point binary fractions.
135  */
136 u64 __cputime_jiffies_factor;
137 EXPORT_SYMBOL(__cputime_jiffies_factor);
138 u64 __cputime_msec_factor;
139 EXPORT_SYMBOL(__cputime_msec_factor);
140 u64 __cputime_sec_factor;
141 EXPORT_SYMBOL(__cputime_sec_factor);
142 u64 __cputime_clockt_factor;
143 EXPORT_SYMBOL(__cputime_clockt_factor);
144 
145 static void calc_cputime_factors(void)
146 {
147 	struct div_result res;
148 
149 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
150 	__cputime_jiffies_factor = res.result_low;
151 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
152 	__cputime_msec_factor = res.result_low;
153 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
154 	__cputime_sec_factor = res.result_low;
155 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
156 	__cputime_clockt_factor = res.result_low;
157 }
158 
159 /*
160  * Read the PURR on systems that have it, otherwise the timebase.
161  */
162 static u64 read_purr(void)
163 {
164 	if (cpu_has_feature(CPU_FTR_PURR))
165 		return mfspr(SPRN_PURR);
166 	return mftb();
167 }
168 
169 /*
170  * Account time for a transition between system, hard irq
171  * or soft irq state.
172  */
173 void account_system_vtime(struct task_struct *tsk)
174 {
175 	u64 now, delta;
176 	unsigned long flags;
177 
178 	local_irq_save(flags);
179 	now = read_purr();
180 	delta = now - get_paca()->startpurr;
181 	get_paca()->startpurr = now;
182 	if (!in_interrupt()) {
183 		delta += get_paca()->system_time;
184 		get_paca()->system_time = 0;
185 	}
186 	account_system_time(tsk, 0, delta);
187 	local_irq_restore(flags);
188 }
189 
190 /*
191  * Transfer the user and system times accumulated in the paca
192  * by the exception entry and exit code to the generic process
193  * user and system time records.
194  * Must be called with interrupts disabled.
195  */
196 void account_process_vtime(struct task_struct *tsk)
197 {
198 	cputime_t utime;
199 
200 	utime = get_paca()->user_time;
201 	get_paca()->user_time = 0;
202 	account_user_time(tsk, utime);
203 }
204 
205 static void account_process_time(struct pt_regs *regs)
206 {
207 	int cpu = smp_processor_id();
208 
209 	account_process_vtime(current);
210 	run_local_timers();
211 	if (rcu_pending(cpu))
212 		rcu_check_callbacks(cpu, user_mode(regs));
213 	scheduler_tick();
214  	run_posix_cpu_timers(current);
215 }
216 
217 /*
218  * Stuff for accounting stolen time.
219  */
220 struct cpu_purr_data {
221 	int	initialized;			/* thread is running */
222 	u64	tb;			/* last TB value read */
223 	u64	purr;			/* last PURR value read */
224 };
225 
226 /*
227  * Each entry in the cpu_purr_data array is manipulated only by its
228  * "owner" cpu -- usually in the timer interrupt but also occasionally
229  * in process context for cpu online.  As long as cpus do not touch
230  * each others' cpu_purr_data, disabling local interrupts is
231  * sufficient to serialize accesses.
232  */
233 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
234 
235 static void snapshot_tb_and_purr(void *data)
236 {
237 	unsigned long flags;
238 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
239 
240 	local_irq_save(flags);
241 	p->tb = mftb();
242 	p->purr = mfspr(SPRN_PURR);
243 	wmb();
244 	p->initialized = 1;
245 	local_irq_restore(flags);
246 }
247 
248 /*
249  * Called during boot when all cpus have come up.
250  */
251 void snapshot_timebases(void)
252 {
253 	if (!cpu_has_feature(CPU_FTR_PURR))
254 		return;
255 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
256 }
257 
258 /*
259  * Must be called with interrupts disabled.
260  */
261 void calculate_steal_time(void)
262 {
263 	u64 tb, purr;
264 	s64 stolen;
265 	struct cpu_purr_data *pme;
266 
267 	if (!cpu_has_feature(CPU_FTR_PURR))
268 		return;
269 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
270 	if (!pme->initialized)
271 		return;		/* this can happen in early boot */
272 	tb = mftb();
273 	purr = mfspr(SPRN_PURR);
274 	stolen = (tb - pme->tb) - (purr - pme->purr);
275 	if (stolen > 0)
276 		account_steal_time(current, stolen);
277 	pme->tb = tb;
278 	pme->purr = purr;
279 }
280 
281 #ifdef CONFIG_PPC_SPLPAR
282 /*
283  * Must be called before the cpu is added to the online map when
284  * a cpu is being brought up at runtime.
285  */
286 static void snapshot_purr(void)
287 {
288 	struct cpu_purr_data *pme;
289 	unsigned long flags;
290 
291 	if (!cpu_has_feature(CPU_FTR_PURR))
292 		return;
293 	local_irq_save(flags);
294 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
295 	pme->tb = mftb();
296 	pme->purr = mfspr(SPRN_PURR);
297 	pme->initialized = 1;
298 	local_irq_restore(flags);
299 }
300 
301 #endif /* CONFIG_PPC_SPLPAR */
302 
303 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
304 #define calc_cputime_factors()
305 #define account_process_time(regs)	update_process_times(user_mode(regs))
306 #define calculate_steal_time()		do { } while (0)
307 #endif
308 
309 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
310 #define snapshot_purr()			do { } while (0)
311 #endif
312 
313 /*
314  * Called when a cpu comes up after the system has finished booting,
315  * i.e. as a result of a hotplug cpu action.
316  */
317 void snapshot_timebase(void)
318 {
319 	__get_cpu_var(last_jiffy) = get_tb();
320 	snapshot_purr();
321 }
322 
323 void __delay(unsigned long loops)
324 {
325 	unsigned long start;
326 	int diff;
327 
328 	if (__USE_RTC()) {
329 		start = get_rtcl();
330 		do {
331 			/* the RTCL register wraps at 1000000000 */
332 			diff = get_rtcl() - start;
333 			if (diff < 0)
334 				diff += 1000000000;
335 		} while (diff < loops);
336 	} else {
337 		start = get_tbl();
338 		while (get_tbl() - start < loops)
339 			HMT_low();
340 		HMT_medium();
341 	}
342 }
343 EXPORT_SYMBOL(__delay);
344 
345 void udelay(unsigned long usecs)
346 {
347 	__delay(tb_ticks_per_usec * usecs);
348 }
349 EXPORT_SYMBOL(udelay);
350 
351 static __inline__ void timer_check_rtc(void)
352 {
353         /*
354          * update the rtc when needed, this should be performed on the
355          * right fraction of a second. Half or full second ?
356          * Full second works on mk48t59 clocks, others need testing.
357          * Note that this update is basically only used through
358          * the adjtimex system calls. Setting the HW clock in
359          * any other way is a /dev/rtc and userland business.
360          * This is still wrong by -0.5/+1.5 jiffies because of the
361          * timer interrupt resolution and possible delay, but here we
362          * hit a quantization limit which can only be solved by higher
363          * resolution timers and decoupling time management from timer
364          * interrupts. This is also wrong on the clocks
365          * which require being written at the half second boundary.
366          * We should have an rtc call that only sets the minutes and
367          * seconds like on Intel to avoid problems with non UTC clocks.
368          */
369         if (ppc_md.set_rtc_time && ntp_synced() &&
370 	    xtime.tv_sec - last_rtc_update >= 659 &&
371 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
372 		struct rtc_time tm;
373 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
374 		tm.tm_year -= 1900;
375 		tm.tm_mon -= 1;
376 		if (ppc_md.set_rtc_time(&tm) == 0)
377 			last_rtc_update = xtime.tv_sec + 1;
378 		else
379 			/* Try again one minute later */
380 			last_rtc_update += 60;
381         }
382 }
383 
384 /*
385  * This version of gettimeofday has microsecond resolution.
386  */
387 static inline void __do_gettimeofday(struct timeval *tv)
388 {
389 	unsigned long sec, usec;
390 	u64 tb_ticks, xsec;
391 	struct gettimeofday_vars *temp_varp;
392 	u64 temp_tb_to_xs, temp_stamp_xsec;
393 
394 	/*
395 	 * These calculations are faster (gets rid of divides)
396 	 * if done in units of 1/2^20 rather than microseconds.
397 	 * The conversion to microseconds at the end is done
398 	 * without a divide (and in fact, without a multiply)
399 	 */
400 	temp_varp = do_gtod.varp;
401 
402 	/* Sampling the time base must be done after loading
403 	 * do_gtod.varp in order to avoid racing with update_gtod.
404 	 */
405 	data_barrier(temp_varp);
406 	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
407 	temp_tb_to_xs = temp_varp->tb_to_xs;
408 	temp_stamp_xsec = temp_varp->stamp_xsec;
409 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
410 	sec = xsec / XSEC_PER_SEC;
411 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
412 	usec = SCALE_XSEC(usec, 1000000);
413 
414 	tv->tv_sec = sec;
415 	tv->tv_usec = usec;
416 }
417 
418 void do_gettimeofday(struct timeval *tv)
419 {
420 	if (__USE_RTC()) {
421 		/* do this the old way */
422 		unsigned long flags, seq;
423 		unsigned int sec, nsec, usec;
424 
425 		do {
426 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
427 			sec = xtime.tv_sec;
428 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
429 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
430 		usec = nsec / 1000;
431 		while (usec >= 1000000) {
432 			usec -= 1000000;
433 			++sec;
434 		}
435 		tv->tv_sec = sec;
436 		tv->tv_usec = usec;
437 		return;
438 	}
439 	__do_gettimeofday(tv);
440 }
441 
442 EXPORT_SYMBOL(do_gettimeofday);
443 
444 /*
445  * There are two copies of tb_to_xs and stamp_xsec so that no
446  * lock is needed to access and use these values in
447  * do_gettimeofday.  We alternate the copies and as long as a
448  * reasonable time elapses between changes, there will never
449  * be inconsistent values.  ntpd has a minimum of one minute
450  * between updates.
451  */
452 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
453 			       u64 new_tb_to_xs)
454 {
455 	unsigned temp_idx;
456 	struct gettimeofday_vars *temp_varp;
457 
458 	temp_idx = (do_gtod.var_idx == 0);
459 	temp_varp = &do_gtod.vars[temp_idx];
460 
461 	temp_varp->tb_to_xs = new_tb_to_xs;
462 	temp_varp->tb_orig_stamp = new_tb_stamp;
463 	temp_varp->stamp_xsec = new_stamp_xsec;
464 	smp_mb();
465 	do_gtod.varp = temp_varp;
466 	do_gtod.var_idx = temp_idx;
467 
468 	/*
469 	 * tb_update_count is used to allow the userspace gettimeofday code
470 	 * to assure itself that it sees a consistent view of the tb_to_xs and
471 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
472 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
473 	 * the two values of tb_update_count match and are even then the
474 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
475 	 * loops back and reads them again until this criteria is met.
476 	 * We expect the caller to have done the first increment of
477 	 * vdso_data->tb_update_count already.
478 	 */
479 	vdso_data->tb_orig_stamp = new_tb_stamp;
480 	vdso_data->stamp_xsec = new_stamp_xsec;
481 	vdso_data->tb_to_xs = new_tb_to_xs;
482 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
483 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
484 	smp_wmb();
485 	++(vdso_data->tb_update_count);
486 }
487 
488 /*
489  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
490  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
491  * difference tb - tb_orig_stamp small enough to always fit inside a
492  * 32 bits number. This is a requirement of our fast 32 bits userland
493  * implementation in the vdso. If we "miss" a call to this function
494  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
495  * with a too big difference, then the vdso will fallback to calling
496  * the syscall
497  */
498 static __inline__ void timer_recalc_offset(u64 cur_tb)
499 {
500 	unsigned long offset;
501 	u64 new_stamp_xsec;
502 	u64 tlen, t2x;
503 	u64 tb, xsec_old, xsec_new;
504 	struct gettimeofday_vars *varp;
505 
506 	if (__USE_RTC())
507 		return;
508 	tlen = current_tick_length();
509 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
510 	if (tlen == last_tick_len && offset < 0x80000000u)
511 		return;
512 	if (tlen != last_tick_len) {
513 		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
514 		last_tick_len = tlen;
515 	} else
516 		t2x = do_gtod.varp->tb_to_xs;
517 	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
518 	do_div(new_stamp_xsec, 1000000000);
519 	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
520 
521 	++vdso_data->tb_update_count;
522 	smp_mb();
523 
524 	/*
525 	 * Make sure time doesn't go backwards for userspace gettimeofday.
526 	 */
527 	tb = get_tb();
528 	varp = do_gtod.varp;
529 	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
530 		+ varp->stamp_xsec;
531 	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
532 	if (xsec_new < xsec_old)
533 		new_stamp_xsec += xsec_old - xsec_new;
534 
535 	update_gtod(cur_tb, new_stamp_xsec, t2x);
536 }
537 
538 #ifdef CONFIG_SMP
539 unsigned long profile_pc(struct pt_regs *regs)
540 {
541 	unsigned long pc = instruction_pointer(regs);
542 
543 	if (in_lock_functions(pc))
544 		return regs->link;
545 
546 	return pc;
547 }
548 EXPORT_SYMBOL(profile_pc);
549 #endif
550 
551 #ifdef CONFIG_PPC_ISERIES
552 
553 /*
554  * This function recalibrates the timebase based on the 49-bit time-of-day
555  * value in the Titan chip.  The Titan is much more accurate than the value
556  * returned by the service processor for the timebase frequency.
557  */
558 
559 static int __init iSeries_tb_recal(void)
560 {
561 	struct div_result divres;
562 	unsigned long titan, tb;
563 
564 	/* Make sure we only run on iSeries */
565 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
566 		return -ENODEV;
567 
568 	tb = get_tb();
569 	titan = HvCallXm_loadTod();
570 	if ( iSeries_recal_titan ) {
571 		unsigned long tb_ticks = tb - iSeries_recal_tb;
572 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
573 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
574 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
575 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
576 		char sign = '+';
577 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
578 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
579 
580 		if ( tick_diff < 0 ) {
581 			tick_diff = -tick_diff;
582 			sign = '-';
583 		}
584 		if ( tick_diff ) {
585 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
586 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
587 						new_tb_ticks_per_jiffy, sign, tick_diff );
588 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
589 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
590 				calc_cputime_factors();
591 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
592 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
593 				tb_to_xs = divres.result_low;
594 				do_gtod.varp->tb_to_xs = tb_to_xs;
595 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
596 				vdso_data->tb_to_xs = tb_to_xs;
597 			}
598 			else {
599 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
600 					"                   new tb_ticks_per_jiffy = %lu\n"
601 					"                   old tb_ticks_per_jiffy = %lu\n",
602 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
603 			}
604 		}
605 	}
606 	iSeries_recal_titan = titan;
607 	iSeries_recal_tb = tb;
608 
609 	return 0;
610 }
611 late_initcall(iSeries_tb_recal);
612 
613 /* Called from platform early init */
614 void __init iSeries_time_init_early(void)
615 {
616 	iSeries_recal_tb = get_tb();
617 	iSeries_recal_titan = HvCallXm_loadTod();
618 }
619 #endif /* CONFIG_PPC_ISERIES */
620 
621 /*
622  * For iSeries shared processors, we have to let the hypervisor
623  * set the hardware decrementer.  We set a virtual decrementer
624  * in the lppaca and call the hypervisor if the virtual
625  * decrementer is less than the current value in the hardware
626  * decrementer. (almost always the new decrementer value will
627  * be greater than the current hardware decementer so the hypervisor
628  * call will not be needed)
629  */
630 
631 /*
632  * timer_interrupt - gets called when the decrementer overflows,
633  * with interrupts disabled.
634  */
635 void timer_interrupt(struct pt_regs * regs)
636 {
637 	struct pt_regs *old_regs;
638 	int next_dec;
639 	int cpu = smp_processor_id();
640 	unsigned long ticks;
641 	u64 tb_next_jiffy;
642 
643 #ifdef CONFIG_PPC32
644 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
645 		do_IRQ(regs);
646 #endif
647 
648 	old_regs = set_irq_regs(regs);
649 	irq_enter();
650 
651 	profile_tick(CPU_PROFILING);
652 	calculate_steal_time();
653 
654 #ifdef CONFIG_PPC_ISERIES
655 	if (firmware_has_feature(FW_FEATURE_ISERIES))
656 		get_lppaca()->int_dword.fields.decr_int = 0;
657 #endif
658 
659 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
660 	       >= tb_ticks_per_jiffy) {
661 		/* Update last_jiffy */
662 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
663 		/* Handle RTCL overflow on 601 */
664 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
665 			per_cpu(last_jiffy, cpu) -= 1000000000;
666 
667 		/*
668 		 * We cannot disable the decrementer, so in the period
669 		 * between this cpu's being marked offline in cpu_online_map
670 		 * and calling stop-self, it is taking timer interrupts.
671 		 * Avoid calling into the scheduler rebalancing code if this
672 		 * is the case.
673 		 */
674 		if (!cpu_is_offline(cpu))
675 			account_process_time(regs);
676 
677 		/*
678 		 * No need to check whether cpu is offline here; boot_cpuid
679 		 * should have been fixed up by now.
680 		 */
681 		if (cpu != boot_cpuid)
682 			continue;
683 
684 		write_seqlock(&xtime_lock);
685 		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
686 		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
687 			tb_last_jiffy = tb_next_jiffy;
688 			do_timer(1);
689 			timer_recalc_offset(tb_last_jiffy);
690 			timer_check_rtc();
691 		}
692 		write_sequnlock(&xtime_lock);
693 	}
694 
695 	next_dec = tb_ticks_per_jiffy - ticks;
696 	set_dec(next_dec);
697 
698 #ifdef CONFIG_PPC_ISERIES
699 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
700 		process_hvlpevents();
701 #endif
702 
703 #ifdef CONFIG_PPC64
704 	/* collect purr register values often, for accurate calculations */
705 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
706 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
707 		cu->current_tb = mfspr(SPRN_PURR);
708 	}
709 #endif
710 
711 	irq_exit();
712 	set_irq_regs(old_regs);
713 }
714 
715 void wakeup_decrementer(void)
716 {
717 	unsigned long ticks;
718 
719 	/*
720 	 * The timebase gets saved on sleep and restored on wakeup,
721 	 * so all we need to do is to reset the decrementer.
722 	 */
723 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
724 	if (ticks < tb_ticks_per_jiffy)
725 		ticks = tb_ticks_per_jiffy - ticks;
726 	else
727 		ticks = 1;
728 	set_dec(ticks);
729 }
730 
731 #ifdef CONFIG_SMP
732 void __init smp_space_timers(unsigned int max_cpus)
733 {
734 	int i;
735 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
736 
737 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
738 	previous_tb -= tb_ticks_per_jiffy;
739 
740 	for_each_possible_cpu(i) {
741 		if (i == boot_cpuid)
742 			continue;
743 		per_cpu(last_jiffy, i) = previous_tb;
744 	}
745 }
746 #endif
747 
748 /*
749  * Scheduler clock - returns current time in nanosec units.
750  *
751  * Note: mulhdu(a, b) (multiply high double unsigned) returns
752  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
753  * are 64-bit unsigned numbers.
754  */
755 unsigned long long sched_clock(void)
756 {
757 	if (__USE_RTC())
758 		return get_rtc();
759 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
760 }
761 
762 int do_settimeofday(struct timespec *tv)
763 {
764 	time_t wtm_sec, new_sec = tv->tv_sec;
765 	long wtm_nsec, new_nsec = tv->tv_nsec;
766 	unsigned long flags;
767 	u64 new_xsec;
768 	unsigned long tb_delta;
769 
770 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
771 		return -EINVAL;
772 
773 	write_seqlock_irqsave(&xtime_lock, flags);
774 
775 	/*
776 	 * Updating the RTC is not the job of this code. If the time is
777 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
778 	 * is cleared.  Tools like clock/hwclock either copy the RTC
779 	 * to the system time, in which case there is no point in writing
780 	 * to the RTC again, or write to the RTC but then they don't call
781 	 * settimeofday to perform this operation.
782 	 */
783 
784 	/* Make userspace gettimeofday spin until we're done. */
785 	++vdso_data->tb_update_count;
786 	smp_mb();
787 
788 	/*
789 	 * Subtract off the number of nanoseconds since the
790 	 * beginning of the last tick.
791 	 */
792 	tb_delta = tb_ticks_since(tb_last_jiffy);
793 	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
794 	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
795 
796 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
797 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
798 
799  	set_normalized_timespec(&xtime, new_sec, new_nsec);
800 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
801 
802 	/* In case of a large backwards jump in time with NTP, we want the
803 	 * clock to be updated as soon as the PLL is again in lock.
804 	 */
805 	last_rtc_update = new_sec - 658;
806 
807 	ntp_clear();
808 
809 	new_xsec = xtime.tv_nsec;
810 	if (new_xsec != 0) {
811 		new_xsec *= XSEC_PER_SEC;
812 		do_div(new_xsec, NSEC_PER_SEC);
813 	}
814 	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
815 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
816 
817 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
818 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
819 
820 	write_sequnlock_irqrestore(&xtime_lock, flags);
821 	clock_was_set();
822 	return 0;
823 }
824 
825 EXPORT_SYMBOL(do_settimeofday);
826 
827 static int __init get_freq(char *name, int cells, unsigned long *val)
828 {
829 	struct device_node *cpu;
830 	const unsigned int *fp;
831 	int found = 0;
832 
833 	/* The cpu node should have timebase and clock frequency properties */
834 	cpu = of_find_node_by_type(NULL, "cpu");
835 
836 	if (cpu) {
837 		fp = of_get_property(cpu, name, NULL);
838 		if (fp) {
839 			found = 1;
840 			*val = of_read_ulong(fp, cells);
841 		}
842 
843 		of_node_put(cpu);
844 	}
845 
846 	return found;
847 }
848 
849 void __init generic_calibrate_decr(void)
850 {
851 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
852 
853 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
854 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
855 
856 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
857 				"(not found)\n");
858 	}
859 
860 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
861 
862 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
863 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
864 
865 		printk(KERN_ERR "WARNING: Estimating processor frequency "
866 				"(not found)\n");
867 	}
868 
869 #ifdef CONFIG_BOOKE
870 	/* Set the time base to zero */
871 	mtspr(SPRN_TBWL, 0);
872 	mtspr(SPRN_TBWU, 0);
873 
874 	/* Clear any pending timer interrupts */
875 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
876 
877 	/* Enable decrementer interrupt */
878 	mtspr(SPRN_TCR, TCR_DIE);
879 #endif
880 }
881 
882 unsigned long get_boot_time(void)
883 {
884 	struct rtc_time tm;
885 
886 	if (ppc_md.get_boot_time)
887 		return ppc_md.get_boot_time();
888 	if (!ppc_md.get_rtc_time)
889 		return 0;
890 	ppc_md.get_rtc_time(&tm);
891 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
892 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
893 }
894 
895 /* This function is only called on the boot processor */
896 void __init time_init(void)
897 {
898 	unsigned long flags;
899 	unsigned long tm = 0;
900 	struct div_result res;
901 	u64 scale, x;
902 	unsigned shift;
903 
904         if (ppc_md.time_init != NULL)
905                 timezone_offset = ppc_md.time_init();
906 
907 	if (__USE_RTC()) {
908 		/* 601 processor: dec counts down by 128 every 128ns */
909 		ppc_tb_freq = 1000000000;
910 		tb_last_jiffy = get_rtcl();
911 	} else {
912 		/* Normal PowerPC with timebase register */
913 		ppc_md.calibrate_decr();
914 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
915 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
916 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
917 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
918 		tb_last_jiffy = get_tb();
919 	}
920 
921 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
922 	tb_ticks_per_sec = ppc_tb_freq;
923 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
924 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
925 	calc_cputime_factors();
926 
927 	/*
928 	 * Calculate the length of each tick in ns.  It will not be
929 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
930 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
931 	 * rounded up.
932 	 */
933 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
934 	do_div(x, ppc_tb_freq);
935 	tick_nsec = x;
936 	last_tick_len = x << TICKLEN_SCALE;
937 
938 	/*
939 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
940 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
941 	 * It is computed as:
942 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
943 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
944 	 * which turns out to be N = 51 - SHIFT_HZ.
945 	 * This gives the result as a 0.64 fixed-point fraction.
946 	 * That value is reduced by an offset amounting to 1 xsec per
947 	 * 2^31 timebase ticks to avoid problems with time going backwards
948 	 * by 1 xsec when we do timer_recalc_offset due to losing the
949 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
950 	 * since there are 2^20 xsec in a second.
951 	 */
952 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
953 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
954 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
955 	ticklen_to_xs = res.result_low;
956 
957 	/* Compute tb_to_xs from tick_nsec */
958 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
959 
960 	/*
961 	 * Compute scale factor for sched_clock.
962 	 * The calibrate_decr() function has set tb_ticks_per_sec,
963 	 * which is the timebase frequency.
964 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
965 	 * the 128-bit result as a 64.64 fixed-point number.
966 	 * We then shift that number right until it is less than 1.0,
967 	 * giving us the scale factor and shift count to use in
968 	 * sched_clock().
969 	 */
970 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
971 	scale = res.result_low;
972 	for (shift = 0; res.result_high != 0; ++shift) {
973 		scale = (scale >> 1) | (res.result_high << 63);
974 		res.result_high >>= 1;
975 	}
976 	tb_to_ns_scale = scale;
977 	tb_to_ns_shift = shift;
978 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
979 	boot_tb = get_tb();
980 
981 	tm = get_boot_time();
982 
983 	write_seqlock_irqsave(&xtime_lock, flags);
984 
985 	/* If platform provided a timezone (pmac), we correct the time */
986         if (timezone_offset) {
987 		sys_tz.tz_minuteswest = -timezone_offset / 60;
988 		sys_tz.tz_dsttime = 0;
989 		tm -= timezone_offset;
990         }
991 
992 	xtime.tv_sec = tm;
993 	xtime.tv_nsec = 0;
994 	do_gtod.varp = &do_gtod.vars[0];
995 	do_gtod.var_idx = 0;
996 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
997 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
998 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
999 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1000 	do_gtod.varp->tb_to_xs = tb_to_xs;
1001 	do_gtod.tb_to_us = tb_to_us;
1002 
1003 	vdso_data->tb_orig_stamp = tb_last_jiffy;
1004 	vdso_data->tb_update_count = 0;
1005 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1006 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1007 	vdso_data->tb_to_xs = tb_to_xs;
1008 
1009 	time_freq = 0;
1010 
1011 	last_rtc_update = xtime.tv_sec;
1012 	set_normalized_timespec(&wall_to_monotonic,
1013 	                        -xtime.tv_sec, -xtime.tv_nsec);
1014 	write_sequnlock_irqrestore(&xtime_lock, flags);
1015 
1016 	/* Not exact, but the timer interrupt takes care of this */
1017 	set_dec(tb_ticks_per_jiffy);
1018 }
1019 
1020 
1021 #define FEBRUARY	2
1022 #define	STARTOFTIME	1970
1023 #define SECDAY		86400L
1024 #define SECYR		(SECDAY * 365)
1025 #define	leapyear(year)		((year) % 4 == 0 && \
1026 				 ((year) % 100 != 0 || (year) % 400 == 0))
1027 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1028 #define	days_in_month(a) 	(month_days[(a) - 1])
1029 
1030 static int month_days[12] = {
1031 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1032 };
1033 
1034 /*
1035  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1036  */
1037 void GregorianDay(struct rtc_time * tm)
1038 {
1039 	int leapsToDate;
1040 	int lastYear;
1041 	int day;
1042 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1043 
1044 	lastYear = tm->tm_year - 1;
1045 
1046 	/*
1047 	 * Number of leap corrections to apply up to end of last year
1048 	 */
1049 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1050 
1051 	/*
1052 	 * This year is a leap year if it is divisible by 4 except when it is
1053 	 * divisible by 100 unless it is divisible by 400
1054 	 *
1055 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1056 	 */
1057 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1058 
1059 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1060 		   tm->tm_mday;
1061 
1062 	tm->tm_wday = day % 7;
1063 }
1064 
1065 void to_tm(int tim, struct rtc_time * tm)
1066 {
1067 	register int    i;
1068 	register long   hms, day;
1069 
1070 	day = tim / SECDAY;
1071 	hms = tim % SECDAY;
1072 
1073 	/* Hours, minutes, seconds are easy */
1074 	tm->tm_hour = hms / 3600;
1075 	tm->tm_min = (hms % 3600) / 60;
1076 	tm->tm_sec = (hms % 3600) % 60;
1077 
1078 	/* Number of years in days */
1079 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1080 		day -= days_in_year(i);
1081 	tm->tm_year = i;
1082 
1083 	/* Number of months in days left */
1084 	if (leapyear(tm->tm_year))
1085 		days_in_month(FEBRUARY) = 29;
1086 	for (i = 1; day >= days_in_month(i); i++)
1087 		day -= days_in_month(i);
1088 	days_in_month(FEBRUARY) = 28;
1089 	tm->tm_mon = i;
1090 
1091 	/* Days are what is left over (+1) from all that. */
1092 	tm->tm_mday = day + 1;
1093 
1094 	/*
1095 	 * Determine the day of week
1096 	 */
1097 	GregorianDay(tm);
1098 }
1099 
1100 /* Auxiliary function to compute scaling factors */
1101 /* Actually the choice of a timebase running at 1/4 the of the bus
1102  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1103  * It makes this computation very precise (27-28 bits typically) which
1104  * is optimistic considering the stability of most processor clock
1105  * oscillators and the precision with which the timebase frequency
1106  * is measured but does not harm.
1107  */
1108 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1109 {
1110         unsigned mlt=0, tmp, err;
1111         /* No concern for performance, it's done once: use a stupid
1112          * but safe and compact method to find the multiplier.
1113          */
1114 
1115         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1116                 if (mulhwu(inscale, mlt|tmp) < outscale)
1117 			mlt |= tmp;
1118         }
1119 
1120         /* We might still be off by 1 for the best approximation.
1121          * A side effect of this is that if outscale is too large
1122          * the returned value will be zero.
1123          * Many corner cases have been checked and seem to work,
1124          * some might have been forgotten in the test however.
1125          */
1126 
1127         err = inscale * (mlt+1);
1128         if (err <= inscale/2)
1129 		mlt++;
1130         return mlt;
1131 }
1132 
1133 /*
1134  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1135  * result.
1136  */
1137 void div128_by_32(u64 dividend_high, u64 dividend_low,
1138 		  unsigned divisor, struct div_result *dr)
1139 {
1140 	unsigned long a, b, c, d;
1141 	unsigned long w, x, y, z;
1142 	u64 ra, rb, rc;
1143 
1144 	a = dividend_high >> 32;
1145 	b = dividend_high & 0xffffffff;
1146 	c = dividend_low >> 32;
1147 	d = dividend_low & 0xffffffff;
1148 
1149 	w = a / divisor;
1150 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1151 
1152 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1153 	x = ra;
1154 
1155 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1156 	y = rb;
1157 
1158 	do_div(rc, divisor);
1159 	z = rc;
1160 
1161 	dr->result_high = ((u64)w << 32) + x;
1162 	dr->result_low  = ((u64)y << 32) + z;
1163 
1164 }
1165