1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/sched/cputime.h> 35 #include <linux/kernel.h> 36 #include <linux/param.h> 37 #include <linux/string.h> 38 #include <linux/mm.h> 39 #include <linux/interrupt.h> 40 #include <linux/timex.h> 41 #include <linux/kernel_stat.h> 42 #include <linux/time.h> 43 #include <linux/init.h> 44 #include <linux/profile.h> 45 #include <linux/cpu.h> 46 #include <linux/security.h> 47 #include <linux/percpu.h> 48 #include <linux/rtc.h> 49 #include <linux/jiffies.h> 50 #include <linux/posix-timers.h> 51 #include <linux/irq.h> 52 #include <linux/delay.h> 53 #include <linux/irq_work.h> 54 #include <linux/of_clk.h> 55 #include <linux/suspend.h> 56 #include <linux/processor.h> 57 #include <asm/trace.h> 58 59 #include <asm/interrupt.h> 60 #include <asm/io.h> 61 #include <asm/nvram.h> 62 #include <asm/cache.h> 63 #include <asm/machdep.h> 64 #include <linux/uaccess.h> 65 #include <asm/time.h> 66 #include <asm/prom.h> 67 #include <asm/irq.h> 68 #include <asm/div64.h> 69 #include <asm/smp.h> 70 #include <asm/vdso_datapage.h> 71 #include <asm/firmware.h> 72 #include <asm/asm-prototypes.h> 73 74 /* powerpc clocksource/clockevent code */ 75 76 #include <linux/clockchips.h> 77 #include <linux/timekeeper_internal.h> 78 79 static u64 timebase_read(struct clocksource *); 80 static struct clocksource clocksource_timebase = { 81 .name = "timebase", 82 .rating = 400, 83 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 84 .mask = CLOCKSOURCE_MASK(64), 85 .read = timebase_read, 86 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER, 87 }; 88 89 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 90 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 91 92 static int decrementer_set_next_event(unsigned long evt, 93 struct clock_event_device *dev); 94 static int decrementer_shutdown(struct clock_event_device *evt); 95 96 struct clock_event_device decrementer_clockevent = { 97 .name = "decrementer", 98 .rating = 200, 99 .irq = 0, 100 .set_next_event = decrementer_set_next_event, 101 .set_state_oneshot_stopped = decrementer_shutdown, 102 .set_state_shutdown = decrementer_shutdown, 103 .tick_resume = decrementer_shutdown, 104 .features = CLOCK_EVT_FEAT_ONESHOT | 105 CLOCK_EVT_FEAT_C3STOP, 106 }; 107 EXPORT_SYMBOL(decrementer_clockevent); 108 109 DEFINE_PER_CPU(u64, decrementers_next_tb); 110 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 111 112 #define XSEC_PER_SEC (1024*1024) 113 114 #ifdef CONFIG_PPC64 115 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 116 #else 117 /* compute ((xsec << 12) * max) >> 32 */ 118 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 119 #endif 120 121 unsigned long tb_ticks_per_jiffy; 122 unsigned long tb_ticks_per_usec = 100; /* sane default */ 123 EXPORT_SYMBOL(tb_ticks_per_usec); 124 unsigned long tb_ticks_per_sec; 125 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 126 127 DEFINE_SPINLOCK(rtc_lock); 128 EXPORT_SYMBOL_GPL(rtc_lock); 129 130 static u64 tb_to_ns_scale __read_mostly; 131 static unsigned tb_to_ns_shift __read_mostly; 132 static u64 boot_tb __read_mostly; 133 134 extern struct timezone sys_tz; 135 static long timezone_offset; 136 137 unsigned long ppc_proc_freq; 138 EXPORT_SYMBOL_GPL(ppc_proc_freq); 139 unsigned long ppc_tb_freq; 140 EXPORT_SYMBOL_GPL(ppc_tb_freq); 141 142 bool tb_invalid; 143 144 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 145 /* 146 * Factor for converting from cputime_t (timebase ticks) to 147 * microseconds. This is stored as 0.64 fixed-point binary fraction. 148 */ 149 u64 __cputime_usec_factor; 150 EXPORT_SYMBOL(__cputime_usec_factor); 151 152 #ifdef CONFIG_PPC_SPLPAR 153 void (*dtl_consumer)(struct dtl_entry *, u64); 154 #endif 155 156 static void calc_cputime_factors(void) 157 { 158 struct div_result res; 159 160 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 161 __cputime_usec_factor = res.result_low; 162 } 163 164 /* 165 * Read the SPURR on systems that have it, otherwise the PURR, 166 * or if that doesn't exist return the timebase value passed in. 167 */ 168 static inline unsigned long read_spurr(unsigned long tb) 169 { 170 if (cpu_has_feature(CPU_FTR_SPURR)) 171 return mfspr(SPRN_SPURR); 172 if (cpu_has_feature(CPU_FTR_PURR)) 173 return mfspr(SPRN_PURR); 174 return tb; 175 } 176 177 #ifdef CONFIG_PPC_SPLPAR 178 179 #include <asm/dtl.h> 180 181 /* 182 * Scan the dispatch trace log and count up the stolen time. 183 * Should be called with interrupts disabled. 184 */ 185 static u64 scan_dispatch_log(u64 stop_tb) 186 { 187 u64 i = local_paca->dtl_ridx; 188 struct dtl_entry *dtl = local_paca->dtl_curr; 189 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 190 struct lppaca *vpa = local_paca->lppaca_ptr; 191 u64 tb_delta; 192 u64 stolen = 0; 193 u64 dtb; 194 195 if (!dtl) 196 return 0; 197 198 if (i == be64_to_cpu(vpa->dtl_idx)) 199 return 0; 200 while (i < be64_to_cpu(vpa->dtl_idx)) { 201 dtb = be64_to_cpu(dtl->timebase); 202 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 203 be32_to_cpu(dtl->ready_to_enqueue_time); 204 barrier(); 205 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 206 /* buffer has overflowed */ 207 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 208 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 209 continue; 210 } 211 if (dtb > stop_tb) 212 break; 213 if (dtl_consumer) 214 dtl_consumer(dtl, i); 215 stolen += tb_delta; 216 ++i; 217 ++dtl; 218 if (dtl == dtl_end) 219 dtl = local_paca->dispatch_log; 220 } 221 local_paca->dtl_ridx = i; 222 local_paca->dtl_curr = dtl; 223 return stolen; 224 } 225 226 /* 227 * Accumulate stolen time by scanning the dispatch trace log. 228 * Called on entry from user mode. 229 */ 230 void notrace accumulate_stolen_time(void) 231 { 232 u64 sst, ust; 233 struct cpu_accounting_data *acct = &local_paca->accounting; 234 235 sst = scan_dispatch_log(acct->starttime_user); 236 ust = scan_dispatch_log(acct->starttime); 237 acct->stime -= sst; 238 acct->utime -= ust; 239 acct->steal_time += ust + sst; 240 } 241 242 static inline u64 calculate_stolen_time(u64 stop_tb) 243 { 244 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 245 return 0; 246 247 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 248 return scan_dispatch_log(stop_tb); 249 250 return 0; 251 } 252 253 #else /* CONFIG_PPC_SPLPAR */ 254 static inline u64 calculate_stolen_time(u64 stop_tb) 255 { 256 return 0; 257 } 258 259 #endif /* CONFIG_PPC_SPLPAR */ 260 261 /* 262 * Account time for a transition between system, hard irq 263 * or soft irq state. 264 */ 265 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 266 unsigned long now, unsigned long stime) 267 { 268 unsigned long stime_scaled = 0; 269 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 270 unsigned long nowscaled, deltascaled; 271 unsigned long utime, utime_scaled; 272 273 nowscaled = read_spurr(now); 274 deltascaled = nowscaled - acct->startspurr; 275 acct->startspurr = nowscaled; 276 utime = acct->utime - acct->utime_sspurr; 277 acct->utime_sspurr = acct->utime; 278 279 /* 280 * Because we don't read the SPURR on every kernel entry/exit, 281 * deltascaled includes both user and system SPURR ticks. 282 * Apportion these ticks to system SPURR ticks and user 283 * SPURR ticks in the same ratio as the system time (delta) 284 * and user time (udelta) values obtained from the timebase 285 * over the same interval. The system ticks get accounted here; 286 * the user ticks get saved up in paca->user_time_scaled to be 287 * used by account_process_tick. 288 */ 289 stime_scaled = stime; 290 utime_scaled = utime; 291 if (deltascaled != stime + utime) { 292 if (utime) { 293 stime_scaled = deltascaled * stime / (stime + utime); 294 utime_scaled = deltascaled - stime_scaled; 295 } else { 296 stime_scaled = deltascaled; 297 } 298 } 299 acct->utime_scaled += utime_scaled; 300 #endif 301 302 return stime_scaled; 303 } 304 305 static unsigned long vtime_delta(struct cpu_accounting_data *acct, 306 unsigned long *stime_scaled, 307 unsigned long *steal_time) 308 { 309 unsigned long now, stime; 310 311 WARN_ON_ONCE(!irqs_disabled()); 312 313 now = mftb(); 314 stime = now - acct->starttime; 315 acct->starttime = now; 316 317 *stime_scaled = vtime_delta_scaled(acct, now, stime); 318 319 *steal_time = calculate_stolen_time(now); 320 321 return stime; 322 } 323 324 static void vtime_delta_kernel(struct cpu_accounting_data *acct, 325 unsigned long *stime, unsigned long *stime_scaled) 326 { 327 unsigned long steal_time; 328 329 *stime = vtime_delta(acct, stime_scaled, &steal_time); 330 *stime -= min(*stime, steal_time); 331 acct->steal_time += steal_time; 332 } 333 334 void vtime_account_kernel(struct task_struct *tsk) 335 { 336 struct cpu_accounting_data *acct = get_accounting(tsk); 337 unsigned long stime, stime_scaled; 338 339 vtime_delta_kernel(acct, &stime, &stime_scaled); 340 341 if (tsk->flags & PF_VCPU) { 342 acct->gtime += stime; 343 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 344 acct->utime_scaled += stime_scaled; 345 #endif 346 } else { 347 acct->stime += stime; 348 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 349 acct->stime_scaled += stime_scaled; 350 #endif 351 } 352 } 353 EXPORT_SYMBOL_GPL(vtime_account_kernel); 354 355 void vtime_account_idle(struct task_struct *tsk) 356 { 357 unsigned long stime, stime_scaled, steal_time; 358 struct cpu_accounting_data *acct = get_accounting(tsk); 359 360 stime = vtime_delta(acct, &stime_scaled, &steal_time); 361 acct->idle_time += stime + steal_time; 362 } 363 364 static void vtime_account_irq_field(struct cpu_accounting_data *acct, 365 unsigned long *field) 366 { 367 unsigned long stime, stime_scaled; 368 369 vtime_delta_kernel(acct, &stime, &stime_scaled); 370 *field += stime; 371 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 372 acct->stime_scaled += stime_scaled; 373 #endif 374 } 375 376 void vtime_account_softirq(struct task_struct *tsk) 377 { 378 struct cpu_accounting_data *acct = get_accounting(tsk); 379 vtime_account_irq_field(acct, &acct->softirq_time); 380 } 381 382 void vtime_account_hardirq(struct task_struct *tsk) 383 { 384 struct cpu_accounting_data *acct = get_accounting(tsk); 385 vtime_account_irq_field(acct, &acct->hardirq_time); 386 } 387 388 static void vtime_flush_scaled(struct task_struct *tsk, 389 struct cpu_accounting_data *acct) 390 { 391 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 392 if (acct->utime_scaled) 393 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 394 if (acct->stime_scaled) 395 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 396 397 acct->utime_scaled = 0; 398 acct->utime_sspurr = 0; 399 acct->stime_scaled = 0; 400 #endif 401 } 402 403 /* 404 * Account the whole cputime accumulated in the paca 405 * Must be called with interrupts disabled. 406 * Assumes that vtime_account_kernel/idle() has been called 407 * recently (i.e. since the last entry from usermode) so that 408 * get_paca()->user_time_scaled is up to date. 409 */ 410 void vtime_flush(struct task_struct *tsk) 411 { 412 struct cpu_accounting_data *acct = get_accounting(tsk); 413 414 if (acct->utime) 415 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 416 417 if (acct->gtime) 418 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 419 420 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 421 account_steal_time(cputime_to_nsecs(acct->steal_time)); 422 acct->steal_time = 0; 423 } 424 425 if (acct->idle_time) 426 account_idle_time(cputime_to_nsecs(acct->idle_time)); 427 428 if (acct->stime) 429 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 430 CPUTIME_SYSTEM); 431 432 if (acct->hardirq_time) 433 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 434 CPUTIME_IRQ); 435 if (acct->softirq_time) 436 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 437 CPUTIME_SOFTIRQ); 438 439 vtime_flush_scaled(tsk, acct); 440 441 acct->utime = 0; 442 acct->gtime = 0; 443 acct->idle_time = 0; 444 acct->stime = 0; 445 acct->hardirq_time = 0; 446 acct->softirq_time = 0; 447 } 448 449 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 450 #define calc_cputime_factors() 451 #endif 452 453 void __delay(unsigned long loops) 454 { 455 unsigned long start; 456 457 spin_begin(); 458 if (tb_invalid) { 459 /* 460 * TB is in error state and isn't ticking anymore. 461 * HMI handler was unable to recover from TB error. 462 * Return immediately, so that kernel won't get stuck here. 463 */ 464 spin_cpu_relax(); 465 } else { 466 start = mftb(); 467 while (mftb() - start < loops) 468 spin_cpu_relax(); 469 } 470 spin_end(); 471 } 472 EXPORT_SYMBOL(__delay); 473 474 void udelay(unsigned long usecs) 475 { 476 __delay(tb_ticks_per_usec * usecs); 477 } 478 EXPORT_SYMBOL(udelay); 479 480 #ifdef CONFIG_SMP 481 unsigned long profile_pc(struct pt_regs *regs) 482 { 483 unsigned long pc = instruction_pointer(regs); 484 485 if (in_lock_functions(pc)) 486 return regs->link; 487 488 return pc; 489 } 490 EXPORT_SYMBOL(profile_pc); 491 #endif 492 493 #ifdef CONFIG_IRQ_WORK 494 495 /* 496 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 497 */ 498 #ifdef CONFIG_PPC64 499 static inline void set_irq_work_pending_flag(void) 500 { 501 asm volatile("stb %0,%1(13)" : : 502 "r" (1), 503 "i" (offsetof(struct paca_struct, irq_work_pending))); 504 } 505 506 static inline void clear_irq_work_pending(void) 507 { 508 asm volatile("stb %0,%1(13)" : : 509 "r" (0), 510 "i" (offsetof(struct paca_struct, irq_work_pending))); 511 } 512 513 #else /* 32-bit */ 514 515 DEFINE_PER_CPU(u8, irq_work_pending); 516 517 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 518 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 519 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 520 521 #endif /* 32 vs 64 bit */ 522 523 void arch_irq_work_raise(void) 524 { 525 /* 526 * 64-bit code that uses irq soft-mask can just cause an immediate 527 * interrupt here that gets soft masked, if this is called under 528 * local_irq_disable(). It might be possible to prevent that happening 529 * by noticing interrupts are disabled and setting decrementer pending 530 * to be replayed when irqs are enabled. The problem there is that 531 * tracing can call irq_work_raise, including in code that does low 532 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 533 * which could get tangled up if we're messing with the same state 534 * here. 535 */ 536 preempt_disable(); 537 set_irq_work_pending_flag(); 538 set_dec(1); 539 preempt_enable(); 540 } 541 542 #else /* CONFIG_IRQ_WORK */ 543 544 #define test_irq_work_pending() 0 545 #define clear_irq_work_pending() 546 547 #endif /* CONFIG_IRQ_WORK */ 548 549 /* 550 * timer_interrupt - gets called when the decrementer overflows, 551 * with interrupts disabled. 552 */ 553 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt) 554 { 555 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 556 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 557 struct pt_regs *old_regs; 558 u64 now; 559 560 /* 561 * Some implementations of hotplug will get timer interrupts while 562 * offline, just ignore these. 563 */ 564 if (unlikely(!cpu_online(smp_processor_id()))) { 565 set_dec(decrementer_max); 566 return; 567 } 568 569 /* Ensure a positive value is written to the decrementer, or else 570 * some CPUs will continue to take decrementer exceptions. When the 571 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 572 * 31 bits, which is about 4 seconds on most systems, which gives 573 * the watchdog a chance of catching timer interrupt hard lockups. 574 */ 575 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 576 set_dec(0x7fffffff); 577 else 578 set_dec(decrementer_max); 579 580 /* Conditionally hard-enable interrupts now that the DEC has been 581 * bumped to its maximum value 582 */ 583 may_hard_irq_enable(); 584 585 586 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 587 if (atomic_read(&ppc_n_lost_interrupts) != 0) 588 __do_IRQ(regs); 589 #endif 590 591 old_regs = set_irq_regs(regs); 592 593 trace_timer_interrupt_entry(regs); 594 595 if (test_irq_work_pending()) { 596 clear_irq_work_pending(); 597 irq_work_run(); 598 } 599 600 now = get_tb(); 601 if (now >= *next_tb) { 602 *next_tb = ~(u64)0; 603 if (evt->event_handler) 604 evt->event_handler(evt); 605 __this_cpu_inc(irq_stat.timer_irqs_event); 606 } else { 607 now = *next_tb - now; 608 if (now <= decrementer_max) 609 set_dec(now); 610 /* We may have raced with new irq work */ 611 if (test_irq_work_pending()) 612 set_dec(1); 613 __this_cpu_inc(irq_stat.timer_irqs_others); 614 } 615 616 trace_timer_interrupt_exit(regs); 617 618 set_irq_regs(old_regs); 619 } 620 EXPORT_SYMBOL(timer_interrupt); 621 622 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 623 void timer_broadcast_interrupt(void) 624 { 625 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 626 627 *next_tb = ~(u64)0; 628 tick_receive_broadcast(); 629 __this_cpu_inc(irq_stat.broadcast_irqs_event); 630 } 631 #endif 632 633 #ifdef CONFIG_SUSPEND 634 /* Overrides the weak version in kernel/power/main.c */ 635 void arch_suspend_disable_irqs(void) 636 { 637 if (ppc_md.suspend_disable_irqs) 638 ppc_md.suspend_disable_irqs(); 639 640 /* Disable the decrementer, so that it doesn't interfere 641 * with suspending. 642 */ 643 644 set_dec(decrementer_max); 645 local_irq_disable(); 646 set_dec(decrementer_max); 647 } 648 649 /* Overrides the weak version in kernel/power/main.c */ 650 void arch_suspend_enable_irqs(void) 651 { 652 local_irq_enable(); 653 654 if (ppc_md.suspend_enable_irqs) 655 ppc_md.suspend_enable_irqs(); 656 } 657 #endif 658 659 unsigned long long tb_to_ns(unsigned long long ticks) 660 { 661 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 662 } 663 EXPORT_SYMBOL_GPL(tb_to_ns); 664 665 /* 666 * Scheduler clock - returns current time in nanosec units. 667 * 668 * Note: mulhdu(a, b) (multiply high double unsigned) returns 669 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 670 * are 64-bit unsigned numbers. 671 */ 672 notrace unsigned long long sched_clock(void) 673 { 674 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 675 } 676 677 678 #ifdef CONFIG_PPC_PSERIES 679 680 /* 681 * Running clock - attempts to give a view of time passing for a virtualised 682 * kernels. 683 * Uses the VTB register if available otherwise a next best guess. 684 */ 685 unsigned long long running_clock(void) 686 { 687 /* 688 * Don't read the VTB as a host since KVM does not switch in host 689 * timebase into the VTB when it takes a guest off the CPU, reading the 690 * VTB would result in reading 'last switched out' guest VTB. 691 * 692 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 693 * would be unsafe to rely only on the #ifdef above. 694 */ 695 if (firmware_has_feature(FW_FEATURE_LPAR) && 696 cpu_has_feature(CPU_FTR_ARCH_207S)) 697 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 698 699 /* 700 * This is a next best approximation without a VTB. 701 * On a host which is running bare metal there should never be any stolen 702 * time and on a host which doesn't do any virtualisation TB *should* equal 703 * VTB so it makes no difference anyway. 704 */ 705 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 706 } 707 #endif 708 709 static int __init get_freq(char *name, int cells, unsigned long *val) 710 { 711 struct device_node *cpu; 712 const __be32 *fp; 713 int found = 0; 714 715 /* The cpu node should have timebase and clock frequency properties */ 716 cpu = of_find_node_by_type(NULL, "cpu"); 717 718 if (cpu) { 719 fp = of_get_property(cpu, name, NULL); 720 if (fp) { 721 found = 1; 722 *val = of_read_ulong(fp, cells); 723 } 724 725 of_node_put(cpu); 726 } 727 728 return found; 729 } 730 731 static void start_cpu_decrementer(void) 732 { 733 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 734 unsigned int tcr; 735 736 /* Clear any pending timer interrupts */ 737 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 738 739 tcr = mfspr(SPRN_TCR); 740 /* 741 * The watchdog may have already been enabled by u-boot. So leave 742 * TRC[WP] (Watchdog Period) alone. 743 */ 744 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 745 tcr |= TCR_DIE; /* Enable decrementer */ 746 mtspr(SPRN_TCR, tcr); 747 #endif 748 } 749 750 void __init generic_calibrate_decr(void) 751 { 752 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 753 754 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 755 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 756 757 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 758 "(not found)\n"); 759 } 760 761 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 762 763 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 764 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 765 766 printk(KERN_ERR "WARNING: Estimating processor frequency " 767 "(not found)\n"); 768 } 769 } 770 771 int update_persistent_clock64(struct timespec64 now) 772 { 773 struct rtc_time tm; 774 775 if (!ppc_md.set_rtc_time) 776 return -ENODEV; 777 778 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 779 780 return ppc_md.set_rtc_time(&tm); 781 } 782 783 static void __read_persistent_clock(struct timespec64 *ts) 784 { 785 struct rtc_time tm; 786 static int first = 1; 787 788 ts->tv_nsec = 0; 789 /* XXX this is a litle fragile but will work okay in the short term */ 790 if (first) { 791 first = 0; 792 if (ppc_md.time_init) 793 timezone_offset = ppc_md.time_init(); 794 795 /* get_boot_time() isn't guaranteed to be safe to call late */ 796 if (ppc_md.get_boot_time) { 797 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 798 return; 799 } 800 } 801 if (!ppc_md.get_rtc_time) { 802 ts->tv_sec = 0; 803 return; 804 } 805 ppc_md.get_rtc_time(&tm); 806 807 ts->tv_sec = rtc_tm_to_time64(&tm); 808 } 809 810 void read_persistent_clock64(struct timespec64 *ts) 811 { 812 __read_persistent_clock(ts); 813 814 /* Sanitize it in case real time clock is set below EPOCH */ 815 if (ts->tv_sec < 0) { 816 ts->tv_sec = 0; 817 ts->tv_nsec = 0; 818 } 819 820 } 821 822 /* clocksource code */ 823 static notrace u64 timebase_read(struct clocksource *cs) 824 { 825 return (u64)get_tb(); 826 } 827 828 static void __init clocksource_init(void) 829 { 830 struct clocksource *clock = &clocksource_timebase; 831 832 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 833 printk(KERN_ERR "clocksource: %s is already registered\n", 834 clock->name); 835 return; 836 } 837 838 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 839 clock->name, clock->mult, clock->shift); 840 } 841 842 static int decrementer_set_next_event(unsigned long evt, 843 struct clock_event_device *dev) 844 { 845 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 846 set_dec(evt); 847 848 /* We may have raced with new irq work */ 849 if (test_irq_work_pending()) 850 set_dec(1); 851 852 return 0; 853 } 854 855 static int decrementer_shutdown(struct clock_event_device *dev) 856 { 857 decrementer_set_next_event(decrementer_max, dev); 858 return 0; 859 } 860 861 static void register_decrementer_clockevent(int cpu) 862 { 863 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 864 865 *dec = decrementer_clockevent; 866 dec->cpumask = cpumask_of(cpu); 867 868 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 869 870 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 871 dec->name, dec->mult, dec->shift, cpu); 872 873 /* Set values for KVM, see kvm_emulate_dec() */ 874 decrementer_clockevent.mult = dec->mult; 875 decrementer_clockevent.shift = dec->shift; 876 } 877 878 static void enable_large_decrementer(void) 879 { 880 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 881 return; 882 883 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 884 return; 885 886 /* 887 * If we're running as the hypervisor we need to enable the LD manually 888 * otherwise firmware should have done it for us. 889 */ 890 if (cpu_has_feature(CPU_FTR_HVMODE)) 891 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 892 } 893 894 static void __init set_decrementer_max(void) 895 { 896 struct device_node *cpu; 897 u32 bits = 32; 898 899 /* Prior to ISAv3 the decrementer is always 32 bit */ 900 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 901 return; 902 903 cpu = of_find_node_by_type(NULL, "cpu"); 904 905 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 906 if (bits > 64 || bits < 32) { 907 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 908 bits = 32; 909 } 910 911 /* calculate the signed maximum given this many bits */ 912 decrementer_max = (1ul << (bits - 1)) - 1; 913 } 914 915 of_node_put(cpu); 916 917 pr_info("time_init: %u bit decrementer (max: %llx)\n", 918 bits, decrementer_max); 919 } 920 921 static void __init init_decrementer_clockevent(void) 922 { 923 register_decrementer_clockevent(smp_processor_id()); 924 } 925 926 void secondary_cpu_time_init(void) 927 { 928 /* Enable and test the large decrementer for this cpu */ 929 enable_large_decrementer(); 930 931 /* Start the decrementer on CPUs that have manual control 932 * such as BookE 933 */ 934 start_cpu_decrementer(); 935 936 /* FIME: Should make unrelatred change to move snapshot_timebase 937 * call here ! */ 938 register_decrementer_clockevent(smp_processor_id()); 939 } 940 941 /* This function is only called on the boot processor */ 942 void __init time_init(void) 943 { 944 struct div_result res; 945 u64 scale; 946 unsigned shift; 947 948 /* Normal PowerPC with timebase register */ 949 ppc_md.calibrate_decr(); 950 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 951 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 952 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 953 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 954 955 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 956 tb_ticks_per_sec = ppc_tb_freq; 957 tb_ticks_per_usec = ppc_tb_freq / 1000000; 958 calc_cputime_factors(); 959 960 /* 961 * Compute scale factor for sched_clock. 962 * The calibrate_decr() function has set tb_ticks_per_sec, 963 * which is the timebase frequency. 964 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 965 * the 128-bit result as a 64.64 fixed-point number. 966 * We then shift that number right until it is less than 1.0, 967 * giving us the scale factor and shift count to use in 968 * sched_clock(). 969 */ 970 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 971 scale = res.result_low; 972 for (shift = 0; res.result_high != 0; ++shift) { 973 scale = (scale >> 1) | (res.result_high << 63); 974 res.result_high >>= 1; 975 } 976 tb_to_ns_scale = scale; 977 tb_to_ns_shift = shift; 978 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 979 boot_tb = get_tb(); 980 981 /* If platform provided a timezone (pmac), we correct the time */ 982 if (timezone_offset) { 983 sys_tz.tz_minuteswest = -timezone_offset / 60; 984 sys_tz.tz_dsttime = 0; 985 } 986 987 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 988 989 /* initialise and enable the large decrementer (if we have one) */ 990 set_decrementer_max(); 991 enable_large_decrementer(); 992 993 /* Start the decrementer on CPUs that have manual control 994 * such as BookE 995 */ 996 start_cpu_decrementer(); 997 998 /* Register the clocksource */ 999 clocksource_init(); 1000 1001 init_decrementer_clockevent(); 1002 tick_setup_hrtimer_broadcast(); 1003 1004 of_clk_init(NULL); 1005 enable_sched_clock_irqtime(); 1006 } 1007 1008 /* 1009 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1010 * result. 1011 */ 1012 void div128_by_32(u64 dividend_high, u64 dividend_low, 1013 unsigned divisor, struct div_result *dr) 1014 { 1015 unsigned long a, b, c, d; 1016 unsigned long w, x, y, z; 1017 u64 ra, rb, rc; 1018 1019 a = dividend_high >> 32; 1020 b = dividend_high & 0xffffffff; 1021 c = dividend_low >> 32; 1022 d = dividend_low & 0xffffffff; 1023 1024 w = a / divisor; 1025 ra = ((u64)(a - (w * divisor)) << 32) + b; 1026 1027 rb = ((u64) do_div(ra, divisor) << 32) + c; 1028 x = ra; 1029 1030 rc = ((u64) do_div(rb, divisor) << 32) + d; 1031 y = rb; 1032 1033 do_div(rc, divisor); 1034 z = rc; 1035 1036 dr->result_high = ((u64)w << 32) + x; 1037 dr->result_low = ((u64)y << 32) + z; 1038 1039 } 1040 1041 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1042 void calibrate_delay(void) 1043 { 1044 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1045 * as the number of __delay(1) in a jiffy, so make it so 1046 */ 1047 loops_per_jiffy = tb_ticks_per_jiffy; 1048 } 1049 1050 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1051 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1052 { 1053 ppc_md.get_rtc_time(tm); 1054 return 0; 1055 } 1056 1057 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1058 { 1059 if (!ppc_md.set_rtc_time) 1060 return -EOPNOTSUPP; 1061 1062 if (ppc_md.set_rtc_time(tm) < 0) 1063 return -EOPNOTSUPP; 1064 1065 return 0; 1066 } 1067 1068 static const struct rtc_class_ops rtc_generic_ops = { 1069 .read_time = rtc_generic_get_time, 1070 .set_time = rtc_generic_set_time, 1071 }; 1072 1073 static int __init rtc_init(void) 1074 { 1075 struct platform_device *pdev; 1076 1077 if (!ppc_md.get_rtc_time) 1078 return -ENODEV; 1079 1080 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1081 &rtc_generic_ops, 1082 sizeof(rtc_generic_ops)); 1083 1084 return PTR_ERR_OR_ZERO(pdev); 1085 } 1086 1087 device_initcall(rtc_init); 1088 #endif 1089