1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/config.h> 36 #include <linux/errno.h> 37 #include <linux/module.h> 38 #include <linux/sched.h> 39 #include <linux/kernel.h> 40 #include <linux/param.h> 41 #include <linux/string.h> 42 #include <linux/mm.h> 43 #include <linux/interrupt.h> 44 #include <linux/timex.h> 45 #include <linux/kernel_stat.h> 46 #include <linux/time.h> 47 #include <linux/init.h> 48 #include <linux/profile.h> 49 #include <linux/cpu.h> 50 #include <linux/security.h> 51 #include <linux/percpu.h> 52 #include <linux/rtc.h> 53 54 #include <asm/io.h> 55 #include <asm/processor.h> 56 #include <asm/nvram.h> 57 #include <asm/cache.h> 58 #include <asm/machdep.h> 59 #include <asm/uaccess.h> 60 #include <asm/time.h> 61 #include <asm/prom.h> 62 #include <asm/irq.h> 63 #include <asm/div64.h> 64 #ifdef CONFIG_PPC64 65 #include <asm/systemcfg.h> 66 #include <asm/firmware.h> 67 #endif 68 #ifdef CONFIG_PPC_ISERIES 69 #include <asm/iseries/it_lp_queue.h> 70 #include <asm/iseries/hv_call_xm.h> 71 #endif 72 #include <asm/smp.h> 73 74 /* keep track of when we need to update the rtc */ 75 time_t last_rtc_update; 76 extern int piranha_simulator; 77 #ifdef CONFIG_PPC_ISERIES 78 unsigned long iSeries_recal_titan = 0; 79 unsigned long iSeries_recal_tb = 0; 80 static unsigned long first_settimeofday = 1; 81 #endif 82 83 /* The decrementer counts down by 128 every 128ns on a 601. */ 84 #define DECREMENTER_COUNT_601 (1000000000 / HZ) 85 86 #define XSEC_PER_SEC (1024*1024) 87 88 #ifdef CONFIG_PPC64 89 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 90 #else 91 /* compute ((xsec << 12) * max) >> 32 */ 92 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 93 #endif 94 95 unsigned long tb_ticks_per_jiffy; 96 unsigned long tb_ticks_per_usec = 100; /* sane default */ 97 EXPORT_SYMBOL(tb_ticks_per_usec); 98 unsigned long tb_ticks_per_sec; 99 u64 tb_to_xs; 100 unsigned tb_to_us; 101 unsigned long processor_freq; 102 DEFINE_SPINLOCK(rtc_lock); 103 EXPORT_SYMBOL_GPL(rtc_lock); 104 105 u64 tb_to_ns_scale; 106 unsigned tb_to_ns_shift; 107 108 struct gettimeofday_struct do_gtod; 109 110 extern unsigned long wall_jiffies; 111 112 extern struct timezone sys_tz; 113 static long timezone_offset; 114 115 void ppc_adjtimex(void); 116 117 static unsigned adjusting_time = 0; 118 119 unsigned long ppc_proc_freq; 120 unsigned long ppc_tb_freq; 121 122 #ifdef CONFIG_PPC32 /* XXX for now */ 123 #define boot_cpuid 0 124 #endif 125 126 u64 tb_last_jiffy __cacheline_aligned_in_smp; 127 unsigned long tb_last_stamp; 128 129 /* 130 * Note that on ppc32 this only stores the bottom 32 bits of 131 * the timebase value, but that's enough to tell when a jiffy 132 * has passed. 133 */ 134 DEFINE_PER_CPU(unsigned long, last_jiffy); 135 136 static __inline__ void timer_check_rtc(void) 137 { 138 /* 139 * update the rtc when needed, this should be performed on the 140 * right fraction of a second. Half or full second ? 141 * Full second works on mk48t59 clocks, others need testing. 142 * Note that this update is basically only used through 143 * the adjtimex system calls. Setting the HW clock in 144 * any other way is a /dev/rtc and userland business. 145 * This is still wrong by -0.5/+1.5 jiffies because of the 146 * timer interrupt resolution and possible delay, but here we 147 * hit a quantization limit which can only be solved by higher 148 * resolution timers and decoupling time management from timer 149 * interrupts. This is also wrong on the clocks 150 * which require being written at the half second boundary. 151 * We should have an rtc call that only sets the minutes and 152 * seconds like on Intel to avoid problems with non UTC clocks. 153 */ 154 if (ppc_md.set_rtc_time && ntp_synced() && 155 xtime.tv_sec - last_rtc_update >= 659 && 156 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && 157 jiffies - wall_jiffies == 1) { 158 struct rtc_time tm; 159 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); 160 tm.tm_year -= 1900; 161 tm.tm_mon -= 1; 162 if (ppc_md.set_rtc_time(&tm) == 0) 163 last_rtc_update = xtime.tv_sec + 1; 164 else 165 /* Try again one minute later */ 166 last_rtc_update += 60; 167 } 168 } 169 170 /* 171 * This version of gettimeofday has microsecond resolution. 172 */ 173 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) 174 { 175 unsigned long sec, usec; 176 u64 tb_ticks, xsec; 177 struct gettimeofday_vars *temp_varp; 178 u64 temp_tb_to_xs, temp_stamp_xsec; 179 180 /* 181 * These calculations are faster (gets rid of divides) 182 * if done in units of 1/2^20 rather than microseconds. 183 * The conversion to microseconds at the end is done 184 * without a divide (and in fact, without a multiply) 185 */ 186 temp_varp = do_gtod.varp; 187 tb_ticks = tb_val - temp_varp->tb_orig_stamp; 188 temp_tb_to_xs = temp_varp->tb_to_xs; 189 temp_stamp_xsec = temp_varp->stamp_xsec; 190 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); 191 sec = xsec / XSEC_PER_SEC; 192 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); 193 usec = SCALE_XSEC(usec, 1000000); 194 195 tv->tv_sec = sec; 196 tv->tv_usec = usec; 197 } 198 199 void do_gettimeofday(struct timeval *tv) 200 { 201 if (__USE_RTC()) { 202 /* do this the old way */ 203 unsigned long flags, seq; 204 unsigned int sec, nsec, usec, lost; 205 206 do { 207 seq = read_seqbegin_irqsave(&xtime_lock, flags); 208 sec = xtime.tv_sec; 209 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp); 210 lost = jiffies - wall_jiffies; 211 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 212 usec = nsec / 1000 + lost * (1000000 / HZ); 213 while (usec >= 1000000) { 214 usec -= 1000000; 215 ++sec; 216 } 217 tv->tv_sec = sec; 218 tv->tv_usec = usec; 219 return; 220 } 221 __do_gettimeofday(tv, get_tb()); 222 } 223 224 EXPORT_SYMBOL(do_gettimeofday); 225 226 /* Synchronize xtime with do_gettimeofday */ 227 228 static inline void timer_sync_xtime(unsigned long cur_tb) 229 { 230 #ifdef CONFIG_PPC64 231 /* why do we do this? */ 232 struct timeval my_tv; 233 234 __do_gettimeofday(&my_tv, cur_tb); 235 236 if (xtime.tv_sec <= my_tv.tv_sec) { 237 xtime.tv_sec = my_tv.tv_sec; 238 xtime.tv_nsec = my_tv.tv_usec * 1000; 239 } 240 #endif 241 } 242 243 /* 244 * There are two copies of tb_to_xs and stamp_xsec so that no 245 * lock is needed to access and use these values in 246 * do_gettimeofday. We alternate the copies and as long as a 247 * reasonable time elapses between changes, there will never 248 * be inconsistent values. ntpd has a minimum of one minute 249 * between updates. 250 */ 251 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 252 u64 new_tb_to_xs) 253 { 254 unsigned temp_idx; 255 struct gettimeofday_vars *temp_varp; 256 257 temp_idx = (do_gtod.var_idx == 0); 258 temp_varp = &do_gtod.vars[temp_idx]; 259 260 temp_varp->tb_to_xs = new_tb_to_xs; 261 temp_varp->tb_orig_stamp = new_tb_stamp; 262 temp_varp->stamp_xsec = new_stamp_xsec; 263 smp_mb(); 264 do_gtod.varp = temp_varp; 265 do_gtod.var_idx = temp_idx; 266 267 #ifdef CONFIG_PPC64 268 /* 269 * tb_update_count is used to allow the userspace gettimeofday code 270 * to assure itself that it sees a consistent view of the tb_to_xs and 271 * stamp_xsec variables. It reads the tb_update_count, then reads 272 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 273 * the two values of tb_update_count match and are even then the 274 * tb_to_xs and stamp_xsec values are consistent. If not, then it 275 * loops back and reads them again until this criteria is met. 276 */ 277 ++(systemcfg->tb_update_count); 278 smp_wmb(); 279 systemcfg->tb_orig_stamp = new_tb_stamp; 280 systemcfg->stamp_xsec = new_stamp_xsec; 281 systemcfg->tb_to_xs = new_tb_to_xs; 282 smp_wmb(); 283 ++(systemcfg->tb_update_count); 284 #endif 285 } 286 287 /* 288 * When the timebase - tb_orig_stamp gets too big, we do a manipulation 289 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 290 * difference tb - tb_orig_stamp small enough to always fit inside a 291 * 32 bits number. This is a requirement of our fast 32 bits userland 292 * implementation in the vdso. If we "miss" a call to this function 293 * (interrupt latency, CPU locked in a spinlock, ...) and we end up 294 * with a too big difference, then the vdso will fallback to calling 295 * the syscall 296 */ 297 static __inline__ void timer_recalc_offset(u64 cur_tb) 298 { 299 unsigned long offset; 300 u64 new_stamp_xsec; 301 302 if (__USE_RTC()) 303 return; 304 offset = cur_tb - do_gtod.varp->tb_orig_stamp; 305 if ((offset & 0x80000000u) == 0) 306 return; 307 new_stamp_xsec = do_gtod.varp->stamp_xsec 308 + mulhdu(offset, do_gtod.varp->tb_to_xs); 309 update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs); 310 } 311 312 #ifdef CONFIG_SMP 313 unsigned long profile_pc(struct pt_regs *regs) 314 { 315 unsigned long pc = instruction_pointer(regs); 316 317 if (in_lock_functions(pc)) 318 return regs->link; 319 320 return pc; 321 } 322 EXPORT_SYMBOL(profile_pc); 323 #endif 324 325 #ifdef CONFIG_PPC_ISERIES 326 327 /* 328 * This function recalibrates the timebase based on the 49-bit time-of-day 329 * value in the Titan chip. The Titan is much more accurate than the value 330 * returned by the service processor for the timebase frequency. 331 */ 332 333 static void iSeries_tb_recal(void) 334 { 335 struct div_result divres; 336 unsigned long titan, tb; 337 tb = get_tb(); 338 titan = HvCallXm_loadTod(); 339 if ( iSeries_recal_titan ) { 340 unsigned long tb_ticks = tb - iSeries_recal_tb; 341 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 342 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 343 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 344 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 345 char sign = '+'; 346 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 347 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 348 349 if ( tick_diff < 0 ) { 350 tick_diff = -tick_diff; 351 sign = '-'; 352 } 353 if ( tick_diff ) { 354 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 355 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 356 new_tb_ticks_per_jiffy, sign, tick_diff ); 357 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 358 tb_ticks_per_sec = new_tb_ticks_per_sec; 359 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 360 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 361 tb_to_xs = divres.result_low; 362 do_gtod.varp->tb_to_xs = tb_to_xs; 363 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; 364 systemcfg->tb_to_xs = tb_to_xs; 365 } 366 else { 367 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 368 " new tb_ticks_per_jiffy = %lu\n" 369 " old tb_ticks_per_jiffy = %lu\n", 370 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 371 } 372 } 373 } 374 iSeries_recal_titan = titan; 375 iSeries_recal_tb = tb; 376 } 377 #endif 378 379 /* 380 * For iSeries shared processors, we have to let the hypervisor 381 * set the hardware decrementer. We set a virtual decrementer 382 * in the lppaca and call the hypervisor if the virtual 383 * decrementer is less than the current value in the hardware 384 * decrementer. (almost always the new decrementer value will 385 * be greater than the current hardware decementer so the hypervisor 386 * call will not be needed) 387 */ 388 389 /* 390 * timer_interrupt - gets called when the decrementer overflows, 391 * with interrupts disabled. 392 */ 393 void timer_interrupt(struct pt_regs * regs) 394 { 395 int next_dec; 396 int cpu = smp_processor_id(); 397 unsigned long ticks; 398 399 #ifdef CONFIG_PPC32 400 if (atomic_read(&ppc_n_lost_interrupts) != 0) 401 do_IRQ(regs); 402 #endif 403 404 irq_enter(); 405 406 profile_tick(CPU_PROFILING, regs); 407 408 #ifdef CONFIG_PPC_ISERIES 409 get_paca()->lppaca.int_dword.fields.decr_int = 0; 410 #endif 411 412 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) 413 >= tb_ticks_per_jiffy) { 414 /* Update last_jiffy */ 415 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; 416 /* Handle RTCL overflow on 601 */ 417 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) 418 per_cpu(last_jiffy, cpu) -= 1000000000; 419 420 /* 421 * We cannot disable the decrementer, so in the period 422 * between this cpu's being marked offline in cpu_online_map 423 * and calling stop-self, it is taking timer interrupts. 424 * Avoid calling into the scheduler rebalancing code if this 425 * is the case. 426 */ 427 if (!cpu_is_offline(cpu)) 428 update_process_times(user_mode(regs)); 429 430 /* 431 * No need to check whether cpu is offline here; boot_cpuid 432 * should have been fixed up by now. 433 */ 434 if (cpu != boot_cpuid) 435 continue; 436 437 write_seqlock(&xtime_lock); 438 tb_last_jiffy += tb_ticks_per_jiffy; 439 tb_last_stamp = per_cpu(last_jiffy, cpu); 440 timer_recalc_offset(tb_last_jiffy); 441 do_timer(regs); 442 timer_sync_xtime(tb_last_jiffy); 443 timer_check_rtc(); 444 write_sequnlock(&xtime_lock); 445 if (adjusting_time && (time_adjust == 0)) 446 ppc_adjtimex(); 447 } 448 449 next_dec = tb_ticks_per_jiffy - ticks; 450 set_dec(next_dec); 451 452 #ifdef CONFIG_PPC_ISERIES 453 if (hvlpevent_is_pending()) 454 process_hvlpevents(regs); 455 #endif 456 457 #ifdef CONFIG_PPC64 458 /* collect purr register values often, for accurate calculations */ 459 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 460 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 461 cu->current_tb = mfspr(SPRN_PURR); 462 } 463 #endif 464 465 irq_exit(); 466 } 467 468 void wakeup_decrementer(void) 469 { 470 int i; 471 472 set_dec(tb_ticks_per_jiffy); 473 /* 474 * We don't expect this to be called on a machine with a 601, 475 * so using get_tbl is fine. 476 */ 477 tb_last_stamp = tb_last_jiffy = get_tb(); 478 for_each_cpu(i) 479 per_cpu(last_jiffy, i) = tb_last_stamp; 480 } 481 482 #ifdef CONFIG_SMP 483 void __init smp_space_timers(unsigned int max_cpus) 484 { 485 int i; 486 unsigned long offset = tb_ticks_per_jiffy / max_cpus; 487 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); 488 489 for_each_cpu(i) { 490 if (i != boot_cpuid) { 491 previous_tb += offset; 492 per_cpu(last_jiffy, i) = previous_tb; 493 } 494 } 495 } 496 #endif 497 498 /* 499 * Scheduler clock - returns current time in nanosec units. 500 * 501 * Note: mulhdu(a, b) (multiply high double unsigned) returns 502 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 503 * are 64-bit unsigned numbers. 504 */ 505 unsigned long long sched_clock(void) 506 { 507 if (__USE_RTC()) 508 return get_rtc(); 509 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 510 } 511 512 int do_settimeofday(struct timespec *tv) 513 { 514 time_t wtm_sec, new_sec = tv->tv_sec; 515 long wtm_nsec, new_nsec = tv->tv_nsec; 516 unsigned long flags; 517 long int tb_delta; 518 u64 new_xsec, tb_delta_xs; 519 520 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 521 return -EINVAL; 522 523 write_seqlock_irqsave(&xtime_lock, flags); 524 525 /* 526 * Updating the RTC is not the job of this code. If the time is 527 * stepped under NTP, the RTC will be updated after STA_UNSYNC 528 * is cleared. Tools like clock/hwclock either copy the RTC 529 * to the system time, in which case there is no point in writing 530 * to the RTC again, or write to the RTC but then they don't call 531 * settimeofday to perform this operation. 532 */ 533 #ifdef CONFIG_PPC_ISERIES 534 if (first_settimeofday) { 535 iSeries_tb_recal(); 536 first_settimeofday = 0; 537 } 538 #endif 539 tb_delta = tb_ticks_since(tb_last_stamp); 540 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; 541 tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); 542 543 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 544 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 545 546 set_normalized_timespec(&xtime, new_sec, new_nsec); 547 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 548 549 /* In case of a large backwards jump in time with NTP, we want the 550 * clock to be updated as soon as the PLL is again in lock. 551 */ 552 last_rtc_update = new_sec - 658; 553 554 ntp_clear(); 555 556 new_xsec = 0; 557 if (new_nsec != 0) { 558 new_xsec = (u64)new_nsec * XSEC_PER_SEC; 559 do_div(new_xsec, NSEC_PER_SEC); 560 } 561 new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs; 562 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); 563 564 #ifdef CONFIG_PPC64 565 systemcfg->tz_minuteswest = sys_tz.tz_minuteswest; 566 systemcfg->tz_dsttime = sys_tz.tz_dsttime; 567 #endif 568 569 write_sequnlock_irqrestore(&xtime_lock, flags); 570 clock_was_set(); 571 return 0; 572 } 573 574 EXPORT_SYMBOL(do_settimeofday); 575 576 void __init generic_calibrate_decr(void) 577 { 578 struct device_node *cpu; 579 unsigned int *fp; 580 int node_found; 581 582 /* 583 * The cpu node should have a timebase-frequency property 584 * to tell us the rate at which the decrementer counts. 585 */ 586 cpu = of_find_node_by_type(NULL, "cpu"); 587 588 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 589 node_found = 0; 590 if (cpu != 0) { 591 fp = (unsigned int *)get_property(cpu, "timebase-frequency", 592 NULL); 593 if (fp != 0) { 594 node_found = 1; 595 ppc_tb_freq = *fp; 596 } 597 } 598 if (!node_found) 599 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 600 "(not found)\n"); 601 602 ppc_proc_freq = DEFAULT_PROC_FREQ; 603 node_found = 0; 604 if (cpu != 0) { 605 fp = (unsigned int *)get_property(cpu, "clock-frequency", 606 NULL); 607 if (fp != 0) { 608 node_found = 1; 609 ppc_proc_freq = *fp; 610 } 611 } 612 #ifdef CONFIG_BOOKE 613 /* Set the time base to zero */ 614 mtspr(SPRN_TBWL, 0); 615 mtspr(SPRN_TBWU, 0); 616 617 /* Clear any pending timer interrupts */ 618 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 619 620 /* Enable decrementer interrupt */ 621 mtspr(SPRN_TCR, TCR_DIE); 622 #endif 623 if (!node_found) 624 printk(KERN_ERR "WARNING: Estimating processor frequency " 625 "(not found)\n"); 626 627 of_node_put(cpu); 628 } 629 630 unsigned long get_boot_time(void) 631 { 632 struct rtc_time tm; 633 634 if (ppc_md.get_boot_time) 635 return ppc_md.get_boot_time(); 636 if (!ppc_md.get_rtc_time) 637 return 0; 638 ppc_md.get_rtc_time(&tm); 639 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 640 tm.tm_hour, tm.tm_min, tm.tm_sec); 641 } 642 643 /* This function is only called on the boot processor */ 644 void __init time_init(void) 645 { 646 unsigned long flags; 647 unsigned long tm = 0; 648 struct div_result res; 649 u64 scale; 650 unsigned shift; 651 652 if (ppc_md.time_init != NULL) 653 timezone_offset = ppc_md.time_init(); 654 655 if (__USE_RTC()) { 656 /* 601 processor: dec counts down by 128 every 128ns */ 657 ppc_tb_freq = 1000000000; 658 tb_last_stamp = get_rtcl(); 659 tb_last_jiffy = tb_last_stamp; 660 } else { 661 /* Normal PowerPC with timebase register */ 662 ppc_md.calibrate_decr(); 663 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", 664 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 665 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n", 666 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 667 tb_last_stamp = tb_last_jiffy = get_tb(); 668 } 669 670 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 671 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; 672 tb_ticks_per_usec = ppc_tb_freq / 1000000; 673 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 674 div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res); 675 tb_to_xs = res.result_low; 676 677 #ifdef CONFIG_PPC64 678 get_paca()->default_decr = tb_ticks_per_jiffy; 679 #endif 680 681 /* 682 * Compute scale factor for sched_clock. 683 * The calibrate_decr() function has set tb_ticks_per_sec, 684 * which is the timebase frequency. 685 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 686 * the 128-bit result as a 64.64 fixed-point number. 687 * We then shift that number right until it is less than 1.0, 688 * giving us the scale factor and shift count to use in 689 * sched_clock(). 690 */ 691 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 692 scale = res.result_low; 693 for (shift = 0; res.result_high != 0; ++shift) { 694 scale = (scale >> 1) | (res.result_high << 63); 695 res.result_high >>= 1; 696 } 697 tb_to_ns_scale = scale; 698 tb_to_ns_shift = shift; 699 700 #ifdef CONFIG_PPC_ISERIES 701 if (!piranha_simulator) 702 #endif 703 tm = get_boot_time(); 704 705 write_seqlock_irqsave(&xtime_lock, flags); 706 xtime.tv_sec = tm; 707 xtime.tv_nsec = 0; 708 do_gtod.varp = &do_gtod.vars[0]; 709 do_gtod.var_idx = 0; 710 do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 711 __get_cpu_var(last_jiffy) = tb_last_stamp; 712 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 713 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 714 do_gtod.varp->tb_to_xs = tb_to_xs; 715 do_gtod.tb_to_us = tb_to_us; 716 #ifdef CONFIG_PPC64 717 systemcfg->tb_orig_stamp = tb_last_jiffy; 718 systemcfg->tb_update_count = 0; 719 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; 720 systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; 721 systemcfg->tb_to_xs = tb_to_xs; 722 #endif 723 724 time_freq = 0; 725 726 /* If platform provided a timezone (pmac), we correct the time */ 727 if (timezone_offset) { 728 sys_tz.tz_minuteswest = -timezone_offset / 60; 729 sys_tz.tz_dsttime = 0; 730 xtime.tv_sec -= timezone_offset; 731 } 732 733 last_rtc_update = xtime.tv_sec; 734 set_normalized_timespec(&wall_to_monotonic, 735 -xtime.tv_sec, -xtime.tv_nsec); 736 write_sequnlock_irqrestore(&xtime_lock, flags); 737 738 /* Not exact, but the timer interrupt takes care of this */ 739 set_dec(tb_ticks_per_jiffy); 740 } 741 742 /* 743 * After adjtimex is called, adjust the conversion of tb ticks 744 * to microseconds to keep do_gettimeofday synchronized 745 * with ntpd. 746 * 747 * Use the time_adjust, time_freq and time_offset computed by adjtimex to 748 * adjust the frequency. 749 */ 750 751 /* #define DEBUG_PPC_ADJTIMEX 1 */ 752 753 void ppc_adjtimex(void) 754 { 755 #ifdef CONFIG_PPC64 756 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, 757 new_tb_to_xs, new_xsec, new_stamp_xsec; 758 unsigned long tb_ticks_per_sec_delta; 759 long delta_freq, ltemp; 760 struct div_result divres; 761 unsigned long flags; 762 long singleshot_ppm = 0; 763 764 /* 765 * Compute parts per million frequency adjustment to 766 * accomplish the time adjustment implied by time_offset to be 767 * applied over the elapsed time indicated by time_constant. 768 * Use SHIFT_USEC to get it into the same units as 769 * time_freq. 770 */ 771 if ( time_offset < 0 ) { 772 ltemp = -time_offset; 773 ltemp <<= SHIFT_USEC - SHIFT_UPDATE; 774 ltemp >>= SHIFT_KG + time_constant; 775 ltemp = -ltemp; 776 } else { 777 ltemp = time_offset; 778 ltemp <<= SHIFT_USEC - SHIFT_UPDATE; 779 ltemp >>= SHIFT_KG + time_constant; 780 } 781 782 /* If there is a single shot time adjustment in progress */ 783 if ( time_adjust ) { 784 #ifdef DEBUG_PPC_ADJTIMEX 785 printk("ppc_adjtimex: "); 786 if ( adjusting_time == 0 ) 787 printk("starting "); 788 printk("single shot time_adjust = %ld\n", time_adjust); 789 #endif 790 791 adjusting_time = 1; 792 793 /* 794 * Compute parts per million frequency adjustment 795 * to match time_adjust 796 */ 797 singleshot_ppm = tickadj * HZ; 798 /* 799 * The adjustment should be tickadj*HZ to match the code in 800 * linux/kernel/timer.c, but experiments show that this is too 801 * large. 3/4 of tickadj*HZ seems about right 802 */ 803 singleshot_ppm -= singleshot_ppm / 4; 804 /* Use SHIFT_USEC to get it into the same units as time_freq */ 805 singleshot_ppm <<= SHIFT_USEC; 806 if ( time_adjust < 0 ) 807 singleshot_ppm = -singleshot_ppm; 808 } 809 else { 810 #ifdef DEBUG_PPC_ADJTIMEX 811 if ( adjusting_time ) 812 printk("ppc_adjtimex: ending single shot time_adjust\n"); 813 #endif 814 adjusting_time = 0; 815 } 816 817 /* Add up all of the frequency adjustments */ 818 delta_freq = time_freq + ltemp + singleshot_ppm; 819 820 /* 821 * Compute a new value for tb_ticks_per_sec based on 822 * the frequency adjustment 823 */ 824 den = 1000000 * (1 << (SHIFT_USEC - 8)); 825 if ( delta_freq < 0 ) { 826 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; 827 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; 828 } 829 else { 830 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; 831 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; 832 } 833 834 #ifdef DEBUG_PPC_ADJTIMEX 835 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); 836 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); 837 #endif 838 839 /* 840 * Compute a new value of tb_to_xs (used to convert tb to 841 * microseconds) and a new value of stamp_xsec which is the 842 * time (in 1/2^20 second units) corresponding to 843 * tb_orig_stamp. This new value of stamp_xsec compensates 844 * for the change in frequency (implied by the new tb_to_xs) 845 * which guarantees that the current time remains the same. 846 */ 847 write_seqlock_irqsave( &xtime_lock, flags ); 848 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; 849 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres); 850 new_tb_to_xs = divres.result_low; 851 new_xsec = mulhdu(tb_ticks, new_tb_to_xs); 852 853 old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs); 854 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; 855 856 update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs); 857 858 write_sequnlock_irqrestore( &xtime_lock, flags ); 859 #endif /* CONFIG_PPC64 */ 860 } 861 862 863 #define FEBRUARY 2 864 #define STARTOFTIME 1970 865 #define SECDAY 86400L 866 #define SECYR (SECDAY * 365) 867 #define leapyear(year) ((year) % 4 == 0 && \ 868 ((year) % 100 != 0 || (year) % 400 == 0)) 869 #define days_in_year(a) (leapyear(a) ? 366 : 365) 870 #define days_in_month(a) (month_days[(a) - 1]) 871 872 static int month_days[12] = { 873 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 874 }; 875 876 /* 877 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 878 */ 879 void GregorianDay(struct rtc_time * tm) 880 { 881 int leapsToDate; 882 int lastYear; 883 int day; 884 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 885 886 lastYear = tm->tm_year - 1; 887 888 /* 889 * Number of leap corrections to apply up to end of last year 890 */ 891 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 892 893 /* 894 * This year is a leap year if it is divisible by 4 except when it is 895 * divisible by 100 unless it is divisible by 400 896 * 897 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 898 */ 899 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 900 901 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 902 tm->tm_mday; 903 904 tm->tm_wday = day % 7; 905 } 906 907 void to_tm(int tim, struct rtc_time * tm) 908 { 909 register int i; 910 register long hms, day; 911 912 day = tim / SECDAY; 913 hms = tim % SECDAY; 914 915 /* Hours, minutes, seconds are easy */ 916 tm->tm_hour = hms / 3600; 917 tm->tm_min = (hms % 3600) / 60; 918 tm->tm_sec = (hms % 3600) % 60; 919 920 /* Number of years in days */ 921 for (i = STARTOFTIME; day >= days_in_year(i); i++) 922 day -= days_in_year(i); 923 tm->tm_year = i; 924 925 /* Number of months in days left */ 926 if (leapyear(tm->tm_year)) 927 days_in_month(FEBRUARY) = 29; 928 for (i = 1; day >= days_in_month(i); i++) 929 day -= days_in_month(i); 930 days_in_month(FEBRUARY) = 28; 931 tm->tm_mon = i; 932 933 /* Days are what is left over (+1) from all that. */ 934 tm->tm_mday = day + 1; 935 936 /* 937 * Determine the day of week 938 */ 939 GregorianDay(tm); 940 } 941 942 /* Auxiliary function to compute scaling factors */ 943 /* Actually the choice of a timebase running at 1/4 the of the bus 944 * frequency giving resolution of a few tens of nanoseconds is quite nice. 945 * It makes this computation very precise (27-28 bits typically) which 946 * is optimistic considering the stability of most processor clock 947 * oscillators and the precision with which the timebase frequency 948 * is measured but does not harm. 949 */ 950 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 951 { 952 unsigned mlt=0, tmp, err; 953 /* No concern for performance, it's done once: use a stupid 954 * but safe and compact method to find the multiplier. 955 */ 956 957 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 958 if (mulhwu(inscale, mlt|tmp) < outscale) 959 mlt |= tmp; 960 } 961 962 /* We might still be off by 1 for the best approximation. 963 * A side effect of this is that if outscale is too large 964 * the returned value will be zero. 965 * Many corner cases have been checked and seem to work, 966 * some might have been forgotten in the test however. 967 */ 968 969 err = inscale * (mlt+1); 970 if (err <= inscale/2) 971 mlt++; 972 return mlt; 973 } 974 975 /* 976 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 977 * result. 978 */ 979 void div128_by_32(u64 dividend_high, u64 dividend_low, 980 unsigned divisor, struct div_result *dr) 981 { 982 unsigned long a, b, c, d; 983 unsigned long w, x, y, z; 984 u64 ra, rb, rc; 985 986 a = dividend_high >> 32; 987 b = dividend_high & 0xffffffff; 988 c = dividend_low >> 32; 989 d = dividend_low & 0xffffffff; 990 991 w = a / divisor; 992 ra = ((u64)(a - (w * divisor)) << 32) + b; 993 994 rb = ((u64) do_div(ra, divisor) << 32) + c; 995 x = ra; 996 997 rc = ((u64) do_div(rb, divisor) << 32) + d; 998 y = rb; 999 1000 do_div(rc, divisor); 1001 z = rc; 1002 1003 dr->result_high = ((u64)w << 32) + x; 1004 dr->result_low = ((u64)y << 32) + z; 1005 1006 } 1007