xref: /linux/arch/powerpc/kernel/time.c (revision 6e5a0c30b616bfff6926ecca5d88e3d06e6bf79a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/sched/cputime.h>
35 #include <linux/kernel.h>
36 #include <linux/param.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/timex.h>
41 #include <linux/kernel_stat.h>
42 #include <linux/time.h>
43 #include <linux/init.h>
44 #include <linux/profile.h>
45 #include <linux/cpu.h>
46 #include <linux/security.h>
47 #include <linux/percpu.h>
48 #include <linux/rtc.h>
49 #include <linux/jiffies.h>
50 #include <linux/posix-timers.h>
51 #include <linux/irq.h>
52 #include <linux/delay.h>
53 #include <linux/irq_work.h>
54 #include <linux/of_clk.h>
55 #include <linux/suspend.h>
56 #include <linux/processor.h>
57 #include <linux/mc146818rtc.h>
58 #include <linux/platform_device.h>
59 
60 #include <asm/trace.h>
61 #include <asm/interrupt.h>
62 #include <asm/io.h>
63 #include <asm/nvram.h>
64 #include <asm/cache.h>
65 #include <asm/machdep.h>
66 #include <linux/uaccess.h>
67 #include <asm/time.h>
68 #include <asm/irq.h>
69 #include <asm/div64.h>
70 #include <asm/smp.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/mce.h>
74 
75 /* powerpc clocksource/clockevent code */
76 
77 #include <linux/clockchips.h>
78 #include <linux/timekeeper_internal.h>
79 
80 static u64 timebase_read(struct clocksource *);
81 static struct clocksource clocksource_timebase = {
82 	.name         = "timebase",
83 	.rating       = 400,
84 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
85 	.mask         = CLOCKSOURCE_MASK(64),
86 	.read         = timebase_read,
87 	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
88 };
89 
90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
92 EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */
93 
94 static int decrementer_set_next_event(unsigned long evt,
95 				      struct clock_event_device *dev);
96 static int decrementer_shutdown(struct clock_event_device *evt);
97 
98 struct clock_event_device decrementer_clockevent = {
99 	.name			= "decrementer",
100 	.rating			= 200,
101 	.irq			= 0,
102 	.set_next_event		= decrementer_set_next_event,
103 	.set_state_oneshot_stopped = decrementer_shutdown,
104 	.set_state_shutdown	= decrementer_shutdown,
105 	.tick_resume		= decrementer_shutdown,
106 	.features		= CLOCK_EVT_FEAT_ONESHOT |
107 				  CLOCK_EVT_FEAT_C3STOP,
108 };
109 EXPORT_SYMBOL(decrementer_clockevent);
110 
111 /*
112  * This always puts next_tb beyond now, so the clock event will never fire
113  * with the usual comparison, no need for a separate test for stopped.
114  */
115 #define DEC_CLOCKEVENT_STOPPED ~0ULL
116 DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED;
117 EXPORT_SYMBOL_GPL(decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119 
120 #define XSEC_PER_SEC (1024*1024)
121 
122 #ifdef CONFIG_PPC64
123 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
124 #else
125 /* compute ((xsec << 12) * max) >> 32 */
126 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
127 #endif
128 
129 unsigned long tb_ticks_per_jiffy;
130 unsigned long tb_ticks_per_usec = 100; /* sane default */
131 EXPORT_SYMBOL(tb_ticks_per_usec);
132 unsigned long tb_ticks_per_sec;
133 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime conversions */
134 
135 DEFINE_SPINLOCK(rtc_lock);
136 EXPORT_SYMBOL_GPL(rtc_lock);
137 
138 static u64 tb_to_ns_scale __read_mostly;
139 static unsigned tb_to_ns_shift __read_mostly;
140 static u64 boot_tb __read_mostly;
141 
142 extern struct timezone sys_tz;
143 static long timezone_offset;
144 
145 unsigned long ppc_proc_freq;
146 EXPORT_SYMBOL_GPL(ppc_proc_freq);
147 unsigned long ppc_tb_freq;
148 EXPORT_SYMBOL_GPL(ppc_tb_freq);
149 
150 bool tb_invalid;
151 
152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
153 /*
154  * Read the SPURR on systems that have it, otherwise the PURR,
155  * or if that doesn't exist return the timebase value passed in.
156  */
157 static inline unsigned long read_spurr(unsigned long tb)
158 {
159 	if (cpu_has_feature(CPU_FTR_SPURR))
160 		return mfspr(SPRN_SPURR);
161 	if (cpu_has_feature(CPU_FTR_PURR))
162 		return mfspr(SPRN_PURR);
163 	return tb;
164 }
165 
166 /*
167  * Account time for a transition between system, hard irq
168  * or soft irq state.
169  */
170 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
171 					unsigned long now, unsigned long stime)
172 {
173 	unsigned long stime_scaled = 0;
174 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
175 	unsigned long nowscaled, deltascaled;
176 	unsigned long utime, utime_scaled;
177 
178 	nowscaled = read_spurr(now);
179 	deltascaled = nowscaled - acct->startspurr;
180 	acct->startspurr = nowscaled;
181 	utime = acct->utime - acct->utime_sspurr;
182 	acct->utime_sspurr = acct->utime;
183 
184 	/*
185 	 * Because we don't read the SPURR on every kernel entry/exit,
186 	 * deltascaled includes both user and system SPURR ticks.
187 	 * Apportion these ticks to system SPURR ticks and user
188 	 * SPURR ticks in the same ratio as the system time (delta)
189 	 * and user time (udelta) values obtained from the timebase
190 	 * over the same interval.  The system ticks get accounted here;
191 	 * the user ticks get saved up in paca->user_time_scaled to be
192 	 * used by account_process_tick.
193 	 */
194 	stime_scaled = stime;
195 	utime_scaled = utime;
196 	if (deltascaled != stime + utime) {
197 		if (utime) {
198 			stime_scaled = deltascaled * stime / (stime + utime);
199 			utime_scaled = deltascaled - stime_scaled;
200 		} else {
201 			stime_scaled = deltascaled;
202 		}
203 	}
204 	acct->utime_scaled += utime_scaled;
205 #endif
206 
207 	return stime_scaled;
208 }
209 
210 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
211 				 unsigned long *stime_scaled,
212 				 unsigned long *steal_time)
213 {
214 	unsigned long now, stime;
215 
216 	WARN_ON_ONCE(!irqs_disabled());
217 
218 	now = mftb();
219 	stime = now - acct->starttime;
220 	acct->starttime = now;
221 
222 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
223 
224 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) &&
225 			firmware_has_feature(FW_FEATURE_SPLPAR))
226 		*steal_time = pseries_calculate_stolen_time(now);
227 	else
228 		*steal_time = 0;
229 
230 	return stime;
231 }
232 
233 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
234 			       unsigned long *stime, unsigned long *stime_scaled)
235 {
236 	unsigned long steal_time;
237 
238 	*stime = vtime_delta(acct, stime_scaled, &steal_time);
239 	*stime -= min(*stime, steal_time);
240 	acct->steal_time += steal_time;
241 }
242 
243 void vtime_account_kernel(struct task_struct *tsk)
244 {
245 	struct cpu_accounting_data *acct = get_accounting(tsk);
246 	unsigned long stime, stime_scaled;
247 
248 	vtime_delta_kernel(acct, &stime, &stime_scaled);
249 
250 	if (tsk->flags & PF_VCPU) {
251 		acct->gtime += stime;
252 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
253 		acct->utime_scaled += stime_scaled;
254 #endif
255 	} else {
256 		acct->stime += stime;
257 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
258 		acct->stime_scaled += stime_scaled;
259 #endif
260 	}
261 }
262 EXPORT_SYMBOL_GPL(vtime_account_kernel);
263 
264 void vtime_account_idle(struct task_struct *tsk)
265 {
266 	unsigned long stime, stime_scaled, steal_time;
267 	struct cpu_accounting_data *acct = get_accounting(tsk);
268 
269 	stime = vtime_delta(acct, &stime_scaled, &steal_time);
270 	acct->idle_time += stime + steal_time;
271 }
272 
273 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
274 				    unsigned long *field)
275 {
276 	unsigned long stime, stime_scaled;
277 
278 	vtime_delta_kernel(acct, &stime, &stime_scaled);
279 	*field += stime;
280 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
281 	acct->stime_scaled += stime_scaled;
282 #endif
283 }
284 
285 void vtime_account_softirq(struct task_struct *tsk)
286 {
287 	struct cpu_accounting_data *acct = get_accounting(tsk);
288 	vtime_account_irq_field(acct, &acct->softirq_time);
289 }
290 
291 void vtime_account_hardirq(struct task_struct *tsk)
292 {
293 	struct cpu_accounting_data *acct = get_accounting(tsk);
294 	vtime_account_irq_field(acct, &acct->hardirq_time);
295 }
296 
297 static void vtime_flush_scaled(struct task_struct *tsk,
298 			       struct cpu_accounting_data *acct)
299 {
300 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
301 	if (acct->utime_scaled)
302 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
303 	if (acct->stime_scaled)
304 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
305 
306 	acct->utime_scaled = 0;
307 	acct->utime_sspurr = 0;
308 	acct->stime_scaled = 0;
309 #endif
310 }
311 
312 /*
313  * Account the whole cputime accumulated in the paca
314  * Must be called with interrupts disabled.
315  * Assumes that vtime_account_kernel/idle() has been called
316  * recently (i.e. since the last entry from usermode) so that
317  * get_paca()->user_time_scaled is up to date.
318  */
319 void vtime_flush(struct task_struct *tsk)
320 {
321 	struct cpu_accounting_data *acct = get_accounting(tsk);
322 
323 	if (acct->utime)
324 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
325 
326 	if (acct->gtime)
327 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
328 
329 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
330 		account_steal_time(cputime_to_nsecs(acct->steal_time));
331 		acct->steal_time = 0;
332 	}
333 
334 	if (acct->idle_time)
335 		account_idle_time(cputime_to_nsecs(acct->idle_time));
336 
337 	if (acct->stime)
338 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
339 					  CPUTIME_SYSTEM);
340 
341 	if (acct->hardirq_time)
342 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
343 					  CPUTIME_IRQ);
344 	if (acct->softirq_time)
345 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
346 					  CPUTIME_SOFTIRQ);
347 
348 	vtime_flush_scaled(tsk, acct);
349 
350 	acct->utime = 0;
351 	acct->gtime = 0;
352 	acct->idle_time = 0;
353 	acct->stime = 0;
354 	acct->hardirq_time = 0;
355 	acct->softirq_time = 0;
356 }
357 
358 /*
359  * Called from the context switch with interrupts disabled, to charge all
360  * accumulated times to the current process, and to prepare accounting on
361  * the next process.
362  */
363 void vtime_task_switch(struct task_struct *prev)
364 {
365 	if (is_idle_task(prev))
366 		vtime_account_idle(prev);
367 	else
368 		vtime_account_kernel(prev);
369 
370 	vtime_flush(prev);
371 
372 	if (!IS_ENABLED(CONFIG_PPC64)) {
373 		struct cpu_accounting_data *acct = get_accounting(current);
374 		struct cpu_accounting_data *acct0 = get_accounting(prev);
375 
376 		acct->starttime = acct0->starttime;
377 	}
378 }
379 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
380 
381 void __no_kcsan __delay(unsigned long loops)
382 {
383 	unsigned long start;
384 
385 	spin_begin();
386 	if (tb_invalid) {
387 		/*
388 		 * TB is in error state and isn't ticking anymore.
389 		 * HMI handler was unable to recover from TB error.
390 		 * Return immediately, so that kernel won't get stuck here.
391 		 */
392 		spin_cpu_relax();
393 	} else {
394 		start = mftb();
395 		while (mftb() - start < loops)
396 			spin_cpu_relax();
397 	}
398 	spin_end();
399 }
400 EXPORT_SYMBOL(__delay);
401 
402 void __no_kcsan udelay(unsigned long usecs)
403 {
404 	__delay(tb_ticks_per_usec * usecs);
405 }
406 EXPORT_SYMBOL(udelay);
407 
408 #ifdef CONFIG_SMP
409 unsigned long profile_pc(struct pt_regs *regs)
410 {
411 	unsigned long pc = instruction_pointer(regs);
412 
413 	if (in_lock_functions(pc))
414 		return regs->link;
415 
416 	return pc;
417 }
418 EXPORT_SYMBOL(profile_pc);
419 #endif
420 
421 #ifdef CONFIG_IRQ_WORK
422 
423 /*
424  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
425  */
426 #ifdef CONFIG_PPC64
427 static inline unsigned long test_irq_work_pending(void)
428 {
429 	unsigned long x;
430 
431 	asm volatile("lbz %0,%1(13)"
432 		: "=r" (x)
433 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
434 	return x;
435 }
436 
437 static inline void set_irq_work_pending_flag(void)
438 {
439 	asm volatile("stb %0,%1(13)" : :
440 		"r" (1),
441 		"i" (offsetof(struct paca_struct, irq_work_pending)));
442 }
443 
444 static inline void clear_irq_work_pending(void)
445 {
446 	asm volatile("stb %0,%1(13)" : :
447 		"r" (0),
448 		"i" (offsetof(struct paca_struct, irq_work_pending)));
449 }
450 
451 #else /* 32-bit */
452 
453 DEFINE_PER_CPU(u8, irq_work_pending);
454 
455 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
456 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
457 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
458 
459 #endif /* 32 vs 64 bit */
460 
461 void arch_irq_work_raise(void)
462 {
463 	/*
464 	 * 64-bit code that uses irq soft-mask can just cause an immediate
465 	 * interrupt here that gets soft masked, if this is called under
466 	 * local_irq_disable(). It might be possible to prevent that happening
467 	 * by noticing interrupts are disabled and setting decrementer pending
468 	 * to be replayed when irqs are enabled. The problem there is that
469 	 * tracing can call irq_work_raise, including in code that does low
470 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
471 	 * which could get tangled up if we're messing with the same state
472 	 * here.
473 	 */
474 	preempt_disable();
475 	set_irq_work_pending_flag();
476 	set_dec(1);
477 	preempt_enable();
478 }
479 
480 static void set_dec_or_work(u64 val)
481 {
482 	set_dec(val);
483 	/* We may have raced with new irq work */
484 	if (unlikely(test_irq_work_pending()))
485 		set_dec(1);
486 }
487 
488 #else  /* CONFIG_IRQ_WORK */
489 
490 #define test_irq_work_pending()	0
491 #define clear_irq_work_pending()
492 
493 static void set_dec_or_work(u64 val)
494 {
495 	set_dec(val);
496 }
497 #endif /* CONFIG_IRQ_WORK */
498 
499 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
500 void timer_rearm_host_dec(u64 now)
501 {
502 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
503 
504 	WARN_ON_ONCE(!arch_irqs_disabled());
505 	WARN_ON_ONCE(mfmsr() & MSR_EE);
506 
507 	if (now >= *next_tb) {
508 		local_paca->irq_happened |= PACA_IRQ_DEC;
509 	} else {
510 		now = *next_tb - now;
511 		if (now > decrementer_max)
512 			now = decrementer_max;
513 		set_dec_or_work(now);
514 	}
515 }
516 EXPORT_SYMBOL_GPL(timer_rearm_host_dec);
517 #endif
518 
519 /*
520  * timer_interrupt - gets called when the decrementer overflows,
521  * with interrupts disabled.
522  */
523 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
524 {
525 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
526 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
527 	struct pt_regs *old_regs;
528 	u64 now;
529 
530 	/*
531 	 * Some implementations of hotplug will get timer interrupts while
532 	 * offline, just ignore these.
533 	 */
534 	if (unlikely(!cpu_online(smp_processor_id()))) {
535 		set_dec(decrementer_max);
536 		return;
537 	}
538 
539 	/* Conditionally hard-enable interrupts. */
540 	if (should_hard_irq_enable(regs)) {
541 		/*
542 		 * Ensure a positive value is written to the decrementer, or
543 		 * else some CPUs will continue to take decrementer exceptions.
544 		 * When the PPC_WATCHDOG (decrementer based) is configured,
545 		 * keep this at most 31 bits, which is about 4 seconds on most
546 		 * systems, which gives the watchdog a chance of catching timer
547 		 * interrupt hard lockups.
548 		 */
549 		if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
550 			set_dec(0x7fffffff);
551 		else
552 			set_dec(decrementer_max);
553 
554 		do_hard_irq_enable();
555 	}
556 
557 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
558 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
559 		__do_IRQ(regs);
560 #endif
561 
562 	old_regs = set_irq_regs(regs);
563 
564 	trace_timer_interrupt_entry(regs);
565 
566 	if (test_irq_work_pending()) {
567 		clear_irq_work_pending();
568 		mce_run_irq_context_handlers();
569 		irq_work_run();
570 	}
571 
572 	now = get_tb();
573 	if (now >= *next_tb) {
574 		evt->event_handler(evt);
575 		__this_cpu_inc(irq_stat.timer_irqs_event);
576 	} else {
577 		now = *next_tb - now;
578 		if (now > decrementer_max)
579 			now = decrementer_max;
580 		set_dec_or_work(now);
581 		__this_cpu_inc(irq_stat.timer_irqs_others);
582 	}
583 
584 	trace_timer_interrupt_exit(regs);
585 
586 	set_irq_regs(old_regs);
587 }
588 EXPORT_SYMBOL(timer_interrupt);
589 
590 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
591 void timer_broadcast_interrupt(void)
592 {
593 	tick_receive_broadcast();
594 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
595 }
596 #endif
597 
598 #ifdef CONFIG_SUSPEND
599 /* Overrides the weak version in kernel/power/main.c */
600 void arch_suspend_disable_irqs(void)
601 {
602 	if (ppc_md.suspend_disable_irqs)
603 		ppc_md.suspend_disable_irqs();
604 
605 	/* Disable the decrementer, so that it doesn't interfere
606 	 * with suspending.
607 	 */
608 
609 	set_dec(decrementer_max);
610 	local_irq_disable();
611 	set_dec(decrementer_max);
612 }
613 
614 /* Overrides the weak version in kernel/power/main.c */
615 void arch_suspend_enable_irqs(void)
616 {
617 	local_irq_enable();
618 
619 	if (ppc_md.suspend_enable_irqs)
620 		ppc_md.suspend_enable_irqs();
621 }
622 #endif
623 
624 unsigned long long tb_to_ns(unsigned long long ticks)
625 {
626 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
627 }
628 EXPORT_SYMBOL_GPL(tb_to_ns);
629 
630 /*
631  * Scheduler clock - returns current time in nanosec units.
632  *
633  * Note: mulhdu(a, b) (multiply high double unsigned) returns
634  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
635  * are 64-bit unsigned numbers.
636  */
637 notrace unsigned long long sched_clock(void)
638 {
639 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
640 }
641 
642 
643 #ifdef CONFIG_PPC_PSERIES
644 
645 /*
646  * Running clock - attempts to give a view of time passing for a virtualised
647  * kernels.
648  * Uses the VTB register if available otherwise a next best guess.
649  */
650 unsigned long long running_clock(void)
651 {
652 	/*
653 	 * Don't read the VTB as a host since KVM does not switch in host
654 	 * timebase into the VTB when it takes a guest off the CPU, reading the
655 	 * VTB would result in reading 'last switched out' guest VTB.
656 	 *
657 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
658 	 * would be unsafe to rely only on the #ifdef above.
659 	 */
660 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
661 	    cpu_has_feature(CPU_FTR_ARCH_207S))
662 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
663 
664 	/*
665 	 * This is a next best approximation without a VTB.
666 	 * On a host which is running bare metal there should never be any stolen
667 	 * time and on a host which doesn't do any virtualisation TB *should* equal
668 	 * VTB so it makes no difference anyway.
669 	 */
670 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
671 }
672 #endif
673 
674 static int __init get_freq(char *name, int cells, unsigned long *val)
675 {
676 	struct device_node *cpu;
677 	const __be32 *fp;
678 	int found = 0;
679 
680 	/* The cpu node should have timebase and clock frequency properties */
681 	cpu = of_find_node_by_type(NULL, "cpu");
682 
683 	if (cpu) {
684 		fp = of_get_property(cpu, name, NULL);
685 		if (fp) {
686 			found = 1;
687 			*val = of_read_ulong(fp, cells);
688 		}
689 
690 		of_node_put(cpu);
691 	}
692 
693 	return found;
694 }
695 
696 static void start_cpu_decrementer(void)
697 {
698 #ifdef CONFIG_BOOKE_OR_40x
699 	unsigned int tcr;
700 
701 	/* Clear any pending timer interrupts */
702 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
703 
704 	tcr = mfspr(SPRN_TCR);
705 	/*
706 	 * The watchdog may have already been enabled by u-boot. So leave
707 	 * TRC[WP] (Watchdog Period) alone.
708 	 */
709 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
710 	tcr |= TCR_DIE;		/* Enable decrementer */
711 	mtspr(SPRN_TCR, tcr);
712 #endif
713 }
714 
715 void __init generic_calibrate_decr(void)
716 {
717 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
718 
719 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
720 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
721 
722 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
723 				"(not found)\n");
724 	}
725 
726 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
727 
728 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
729 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
730 
731 		printk(KERN_ERR "WARNING: Estimating processor frequency "
732 				"(not found)\n");
733 	}
734 }
735 
736 int update_persistent_clock64(struct timespec64 now)
737 {
738 	struct rtc_time tm;
739 
740 	if (!ppc_md.set_rtc_time)
741 		return -ENODEV;
742 
743 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
744 
745 	return ppc_md.set_rtc_time(&tm);
746 }
747 
748 static void __read_persistent_clock(struct timespec64 *ts)
749 {
750 	struct rtc_time tm;
751 	static int first = 1;
752 
753 	ts->tv_nsec = 0;
754 	/* XXX this is a little fragile but will work okay in the short term */
755 	if (first) {
756 		first = 0;
757 		if (ppc_md.time_init)
758 			timezone_offset = ppc_md.time_init();
759 
760 		/* get_boot_time() isn't guaranteed to be safe to call late */
761 		if (ppc_md.get_boot_time) {
762 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
763 			return;
764 		}
765 	}
766 	if (!ppc_md.get_rtc_time) {
767 		ts->tv_sec = 0;
768 		return;
769 	}
770 	ppc_md.get_rtc_time(&tm);
771 
772 	ts->tv_sec = rtc_tm_to_time64(&tm);
773 }
774 
775 void read_persistent_clock64(struct timespec64 *ts)
776 {
777 	__read_persistent_clock(ts);
778 
779 	/* Sanitize it in case real time clock is set below EPOCH */
780 	if (ts->tv_sec < 0) {
781 		ts->tv_sec = 0;
782 		ts->tv_nsec = 0;
783 	}
784 
785 }
786 
787 /* clocksource code */
788 static notrace u64 timebase_read(struct clocksource *cs)
789 {
790 	return (u64)get_tb();
791 }
792 
793 static void __init clocksource_init(void)
794 {
795 	struct clocksource *clock = &clocksource_timebase;
796 
797 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
798 		printk(KERN_ERR "clocksource: %s is already registered\n",
799 		       clock->name);
800 		return;
801 	}
802 
803 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
804 	       clock->name, clock->mult, clock->shift);
805 }
806 
807 static int decrementer_set_next_event(unsigned long evt,
808 				      struct clock_event_device *dev)
809 {
810 	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
811 	set_dec_or_work(evt);
812 
813 	return 0;
814 }
815 
816 static int decrementer_shutdown(struct clock_event_device *dev)
817 {
818 	__this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED);
819 	set_dec_or_work(decrementer_max);
820 
821 	return 0;
822 }
823 
824 static void register_decrementer_clockevent(int cpu)
825 {
826 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
827 
828 	*dec = decrementer_clockevent;
829 	dec->cpumask = cpumask_of(cpu);
830 
831 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
832 
833 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
834 		    dec->name, dec->mult, dec->shift, cpu);
835 
836 	/* Set values for KVM, see kvm_emulate_dec() */
837 	decrementer_clockevent.mult = dec->mult;
838 	decrementer_clockevent.shift = dec->shift;
839 }
840 
841 static void enable_large_decrementer(void)
842 {
843 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
844 		return;
845 
846 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
847 		return;
848 
849 	/*
850 	 * If we're running as the hypervisor we need to enable the LD manually
851 	 * otherwise firmware should have done it for us.
852 	 */
853 	if (cpu_has_feature(CPU_FTR_HVMODE))
854 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
855 }
856 
857 static void __init set_decrementer_max(void)
858 {
859 	struct device_node *cpu;
860 	u32 bits = 32;
861 
862 	/* Prior to ISAv3 the decrementer is always 32 bit */
863 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
864 		return;
865 
866 	cpu = of_find_node_by_type(NULL, "cpu");
867 
868 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
869 		if (bits > 64 || bits < 32) {
870 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
871 			bits = 32;
872 		}
873 
874 		/* calculate the signed maximum given this many bits */
875 		decrementer_max = (1ul << (bits - 1)) - 1;
876 	}
877 
878 	of_node_put(cpu);
879 
880 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
881 		bits, decrementer_max);
882 }
883 
884 static void __init init_decrementer_clockevent(void)
885 {
886 	register_decrementer_clockevent(smp_processor_id());
887 }
888 
889 void secondary_cpu_time_init(void)
890 {
891 	/* Enable and test the large decrementer for this cpu */
892 	enable_large_decrementer();
893 
894 	/* Start the decrementer on CPUs that have manual control
895 	 * such as BookE
896 	 */
897 	start_cpu_decrementer();
898 
899 	/* FIME: Should make unrelated change to move snapshot_timebase
900 	 * call here ! */
901 	register_decrementer_clockevent(smp_processor_id());
902 }
903 
904 /* This function is only called on the boot processor */
905 void __init time_init(void)
906 {
907 	struct div_result res;
908 	u64 scale;
909 	unsigned shift;
910 
911 	/* Normal PowerPC with timebase register */
912 	if (ppc_md.calibrate_decr)
913 		ppc_md.calibrate_decr();
914 	else
915 		generic_calibrate_decr();
916 
917 	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
918 	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
919 	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
920 	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
921 
922 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
923 	tb_ticks_per_sec = ppc_tb_freq;
924 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
925 
926 	/*
927 	 * Compute scale factor for sched_clock.
928 	 * The calibrate_decr() function has set tb_ticks_per_sec,
929 	 * which is the timebase frequency.
930 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
931 	 * the 128-bit result as a 64.64 fixed-point number.
932 	 * We then shift that number right until it is less than 1.0,
933 	 * giving us the scale factor and shift count to use in
934 	 * sched_clock().
935 	 */
936 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
937 	scale = res.result_low;
938 	for (shift = 0; res.result_high != 0; ++shift) {
939 		scale = (scale >> 1) | (res.result_high << 63);
940 		res.result_high >>= 1;
941 	}
942 	tb_to_ns_scale = scale;
943 	tb_to_ns_shift = shift;
944 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
945 	boot_tb = get_tb();
946 
947 	/* If platform provided a timezone (pmac), we correct the time */
948 	if (timezone_offset) {
949 		sys_tz.tz_minuteswest = -timezone_offset / 60;
950 		sys_tz.tz_dsttime = 0;
951 	}
952 
953 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
954 
955 	/* initialise and enable the large decrementer (if we have one) */
956 	set_decrementer_max();
957 	enable_large_decrementer();
958 
959 	/* Start the decrementer on CPUs that have manual control
960 	 * such as BookE
961 	 */
962 	start_cpu_decrementer();
963 
964 	/* Register the clocksource */
965 	clocksource_init();
966 
967 	init_decrementer_clockevent();
968 	tick_setup_hrtimer_broadcast();
969 
970 	of_clk_init(NULL);
971 	enable_sched_clock_irqtime();
972 }
973 
974 /*
975  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
976  * result.
977  */
978 void div128_by_32(u64 dividend_high, u64 dividend_low,
979 		  unsigned divisor, struct div_result *dr)
980 {
981 	unsigned long a, b, c, d;
982 	unsigned long w, x, y, z;
983 	u64 ra, rb, rc;
984 
985 	a = dividend_high >> 32;
986 	b = dividend_high & 0xffffffff;
987 	c = dividend_low >> 32;
988 	d = dividend_low & 0xffffffff;
989 
990 	w = a / divisor;
991 	ra = ((u64)(a - (w * divisor)) << 32) + b;
992 
993 	rb = ((u64) do_div(ra, divisor) << 32) + c;
994 	x = ra;
995 
996 	rc = ((u64) do_div(rb, divisor) << 32) + d;
997 	y = rb;
998 
999 	do_div(rc, divisor);
1000 	z = rc;
1001 
1002 	dr->result_high = ((u64)w << 32) + x;
1003 	dr->result_low  = ((u64)y << 32) + z;
1004 
1005 }
1006 
1007 /* We don't need to calibrate delay, we use the CPU timebase for that */
1008 void calibrate_delay(void)
1009 {
1010 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1011 	 * as the number of __delay(1) in a jiffy, so make it so
1012 	 */
1013 	loops_per_jiffy = tb_ticks_per_jiffy;
1014 }
1015 
1016 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1017 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1018 {
1019 	ppc_md.get_rtc_time(tm);
1020 	return 0;
1021 }
1022 
1023 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1024 {
1025 	if (!ppc_md.set_rtc_time)
1026 		return -EOPNOTSUPP;
1027 
1028 	if (ppc_md.set_rtc_time(tm) < 0)
1029 		return -EOPNOTSUPP;
1030 
1031 	return 0;
1032 }
1033 
1034 static const struct rtc_class_ops rtc_generic_ops = {
1035 	.read_time = rtc_generic_get_time,
1036 	.set_time = rtc_generic_set_time,
1037 };
1038 
1039 static int __init rtc_init(void)
1040 {
1041 	struct platform_device *pdev;
1042 
1043 	if (!ppc_md.get_rtc_time)
1044 		return -ENODEV;
1045 
1046 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1047 					     &rtc_generic_ops,
1048 					     sizeof(rtc_generic_ops));
1049 
1050 	return PTR_ERR_OR_ZERO(pdev);
1051 }
1052 
1053 device_initcall(rtc_init);
1054 #endif
1055