1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/errno.h> 36 #include <linux/module.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 #include <linux/irq.h> 55 #include <linux/delay.h> 56 #include <linux/perf_event.h> 57 #include <asm/trace.h> 58 59 #include <asm/io.h> 60 #include <asm/processor.h> 61 #include <asm/nvram.h> 62 #include <asm/cache.h> 63 #include <asm/machdep.h> 64 #include <asm/uaccess.h> 65 #include <asm/time.h> 66 #include <asm/prom.h> 67 #include <asm/irq.h> 68 #include <asm/div64.h> 69 #include <asm/smp.h> 70 #include <asm/vdso_datapage.h> 71 #include <asm/firmware.h> 72 #include <asm/cputime.h> 73 #ifdef CONFIG_PPC_ISERIES 74 #include <asm/iseries/it_lp_queue.h> 75 #include <asm/iseries/hv_call_xm.h> 76 #endif 77 78 /* powerpc clocksource/clockevent code */ 79 80 #include <linux/clockchips.h> 81 #include <linux/clocksource.h> 82 83 static cycle_t rtc_read(struct clocksource *); 84 static struct clocksource clocksource_rtc = { 85 .name = "rtc", 86 .rating = 400, 87 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 88 .mask = CLOCKSOURCE_MASK(64), 89 .shift = 22, 90 .mult = 0, /* To be filled in */ 91 .read = rtc_read, 92 }; 93 94 static cycle_t timebase_read(struct clocksource *); 95 static struct clocksource clocksource_timebase = { 96 .name = "timebase", 97 .rating = 400, 98 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 99 .mask = CLOCKSOURCE_MASK(64), 100 .shift = 22, 101 .mult = 0, /* To be filled in */ 102 .read = timebase_read, 103 }; 104 105 #define DECREMENTER_MAX 0x7fffffff 106 107 static int decrementer_set_next_event(unsigned long evt, 108 struct clock_event_device *dev); 109 static void decrementer_set_mode(enum clock_event_mode mode, 110 struct clock_event_device *dev); 111 112 static struct clock_event_device decrementer_clockevent = { 113 .name = "decrementer", 114 .rating = 200, 115 .shift = 0, /* To be filled in */ 116 .mult = 0, /* To be filled in */ 117 .irq = 0, 118 .set_next_event = decrementer_set_next_event, 119 .set_mode = decrementer_set_mode, 120 .features = CLOCK_EVT_FEAT_ONESHOT, 121 }; 122 123 struct decrementer_clock { 124 struct clock_event_device event; 125 u64 next_tb; 126 }; 127 128 static DEFINE_PER_CPU(struct decrementer_clock, decrementers); 129 130 #ifdef CONFIG_PPC_ISERIES 131 static unsigned long __initdata iSeries_recal_titan; 132 static signed long __initdata iSeries_recal_tb; 133 134 /* Forward declaration is only needed for iSereis compiles */ 135 static void __init clocksource_init(void); 136 #endif 137 138 #define XSEC_PER_SEC (1024*1024) 139 140 #ifdef CONFIG_PPC64 141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 142 #else 143 /* compute ((xsec << 12) * max) >> 32 */ 144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 145 #endif 146 147 unsigned long tb_ticks_per_jiffy; 148 unsigned long tb_ticks_per_usec = 100; /* sane default */ 149 EXPORT_SYMBOL(tb_ticks_per_usec); 150 unsigned long tb_ticks_per_sec; 151 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 152 u64 tb_to_xs; 153 unsigned tb_to_us; 154 155 #define TICKLEN_SCALE NTP_SCALE_SHIFT 156 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 157 static u64 ticklen_to_xs; /* 0.64 fraction */ 158 159 /* If last_tick_len corresponds to about 1/HZ seconds, then 160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 161 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 162 163 DEFINE_SPINLOCK(rtc_lock); 164 EXPORT_SYMBOL_GPL(rtc_lock); 165 166 static u64 tb_to_ns_scale __read_mostly; 167 static unsigned tb_to_ns_shift __read_mostly; 168 static unsigned long boot_tb __read_mostly; 169 170 extern struct timezone sys_tz; 171 static long timezone_offset; 172 173 unsigned long ppc_proc_freq; 174 EXPORT_SYMBOL(ppc_proc_freq); 175 unsigned long ppc_tb_freq; 176 177 static u64 tb_last_jiffy __cacheline_aligned_in_smp; 178 static DEFINE_PER_CPU(u64, last_jiffy); 179 180 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 181 /* 182 * Factors for converting from cputime_t (timebase ticks) to 183 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 184 * These are all stored as 0.64 fixed-point binary fractions. 185 */ 186 u64 __cputime_jiffies_factor; 187 EXPORT_SYMBOL(__cputime_jiffies_factor); 188 u64 __cputime_msec_factor; 189 EXPORT_SYMBOL(__cputime_msec_factor); 190 u64 __cputime_sec_factor; 191 EXPORT_SYMBOL(__cputime_sec_factor); 192 u64 __cputime_clockt_factor; 193 EXPORT_SYMBOL(__cputime_clockt_factor); 194 DEFINE_PER_CPU(unsigned long, cputime_last_delta); 195 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); 196 197 cputime_t cputime_one_jiffy; 198 199 static void calc_cputime_factors(void) 200 { 201 struct div_result res; 202 203 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 204 __cputime_jiffies_factor = res.result_low; 205 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 206 __cputime_msec_factor = res.result_low; 207 div128_by_32(1, 0, tb_ticks_per_sec, &res); 208 __cputime_sec_factor = res.result_low; 209 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 210 __cputime_clockt_factor = res.result_low; 211 } 212 213 /* 214 * Read the PURR on systems that have it, otherwise the timebase. 215 */ 216 static u64 read_purr(void) 217 { 218 if (cpu_has_feature(CPU_FTR_PURR)) 219 return mfspr(SPRN_PURR); 220 return mftb(); 221 } 222 223 /* 224 * Read the SPURR on systems that have it, otherwise the purr 225 */ 226 static u64 read_spurr(u64 purr) 227 { 228 /* 229 * cpus without PURR won't have a SPURR 230 * We already know the former when we use this, so tell gcc 231 */ 232 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR)) 233 return mfspr(SPRN_SPURR); 234 return purr; 235 } 236 237 /* 238 * Account time for a transition between system, hard irq 239 * or soft irq state. 240 */ 241 void account_system_vtime(struct task_struct *tsk) 242 { 243 u64 now, nowscaled, delta, deltascaled, sys_time; 244 unsigned long flags; 245 246 local_irq_save(flags); 247 now = read_purr(); 248 nowscaled = read_spurr(now); 249 delta = now - get_paca()->startpurr; 250 deltascaled = nowscaled - get_paca()->startspurr; 251 get_paca()->startpurr = now; 252 get_paca()->startspurr = nowscaled; 253 if (!in_interrupt()) { 254 /* deltascaled includes both user and system time. 255 * Hence scale it based on the purr ratio to estimate 256 * the system time */ 257 sys_time = get_paca()->system_time; 258 if (get_paca()->user_time) 259 deltascaled = deltascaled * sys_time / 260 (sys_time + get_paca()->user_time); 261 delta += sys_time; 262 get_paca()->system_time = 0; 263 } 264 if (in_irq() || idle_task(smp_processor_id()) != tsk) 265 account_system_time(tsk, 0, delta, deltascaled); 266 else 267 account_idle_time(delta); 268 __get_cpu_var(cputime_last_delta) = delta; 269 __get_cpu_var(cputime_scaled_last_delta) = deltascaled; 270 local_irq_restore(flags); 271 } 272 EXPORT_SYMBOL_GPL(account_system_vtime); 273 274 /* 275 * Transfer the user and system times accumulated in the paca 276 * by the exception entry and exit code to the generic process 277 * user and system time records. 278 * Must be called with interrupts disabled. 279 */ 280 void account_process_tick(struct task_struct *tsk, int user_tick) 281 { 282 cputime_t utime, utimescaled; 283 284 utime = get_paca()->user_time; 285 get_paca()->user_time = 0; 286 utimescaled = cputime_to_scaled(utime); 287 account_user_time(tsk, utime, utimescaled); 288 } 289 290 /* 291 * Stuff for accounting stolen time. 292 */ 293 struct cpu_purr_data { 294 int initialized; /* thread is running */ 295 u64 tb; /* last TB value read */ 296 u64 purr; /* last PURR value read */ 297 u64 spurr; /* last SPURR value read */ 298 }; 299 300 /* 301 * Each entry in the cpu_purr_data array is manipulated only by its 302 * "owner" cpu -- usually in the timer interrupt but also occasionally 303 * in process context for cpu online. As long as cpus do not touch 304 * each others' cpu_purr_data, disabling local interrupts is 305 * sufficient to serialize accesses. 306 */ 307 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 308 309 static void snapshot_tb_and_purr(void *data) 310 { 311 unsigned long flags; 312 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 313 314 local_irq_save(flags); 315 p->tb = get_tb_or_rtc(); 316 p->purr = mfspr(SPRN_PURR); 317 wmb(); 318 p->initialized = 1; 319 local_irq_restore(flags); 320 } 321 322 /* 323 * Called during boot when all cpus have come up. 324 */ 325 void snapshot_timebases(void) 326 { 327 if (!cpu_has_feature(CPU_FTR_PURR)) 328 return; 329 on_each_cpu(snapshot_tb_and_purr, NULL, 1); 330 } 331 332 /* 333 * Must be called with interrupts disabled. 334 */ 335 void calculate_steal_time(void) 336 { 337 u64 tb, purr; 338 s64 stolen; 339 struct cpu_purr_data *pme; 340 341 pme = &__get_cpu_var(cpu_purr_data); 342 if (!pme->initialized) 343 return; /* !CPU_FTR_PURR or early in early boot */ 344 tb = mftb(); 345 purr = mfspr(SPRN_PURR); 346 stolen = (tb - pme->tb) - (purr - pme->purr); 347 if (stolen > 0) { 348 if (idle_task(smp_processor_id()) != current) 349 account_steal_time(stolen); 350 else 351 account_idle_time(stolen); 352 } 353 pme->tb = tb; 354 pme->purr = purr; 355 } 356 357 #ifdef CONFIG_PPC_SPLPAR 358 /* 359 * Must be called before the cpu is added to the online map when 360 * a cpu is being brought up at runtime. 361 */ 362 static void snapshot_purr(void) 363 { 364 struct cpu_purr_data *pme; 365 unsigned long flags; 366 367 if (!cpu_has_feature(CPU_FTR_PURR)) 368 return; 369 local_irq_save(flags); 370 pme = &__get_cpu_var(cpu_purr_data); 371 pme->tb = mftb(); 372 pme->purr = mfspr(SPRN_PURR); 373 pme->initialized = 1; 374 local_irq_restore(flags); 375 } 376 377 #endif /* CONFIG_PPC_SPLPAR */ 378 379 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 380 #define calc_cputime_factors() 381 #define calculate_steal_time() do { } while (0) 382 #endif 383 384 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 385 #define snapshot_purr() do { } while (0) 386 #endif 387 388 /* 389 * Called when a cpu comes up after the system has finished booting, 390 * i.e. as a result of a hotplug cpu action. 391 */ 392 void snapshot_timebase(void) 393 { 394 __get_cpu_var(last_jiffy) = get_tb_or_rtc(); 395 snapshot_purr(); 396 } 397 398 void __delay(unsigned long loops) 399 { 400 unsigned long start; 401 int diff; 402 403 if (__USE_RTC()) { 404 start = get_rtcl(); 405 do { 406 /* the RTCL register wraps at 1000000000 */ 407 diff = get_rtcl() - start; 408 if (diff < 0) 409 diff += 1000000000; 410 } while (diff < loops); 411 } else { 412 start = get_tbl(); 413 while (get_tbl() - start < loops) 414 HMT_low(); 415 HMT_medium(); 416 } 417 } 418 EXPORT_SYMBOL(__delay); 419 420 void udelay(unsigned long usecs) 421 { 422 __delay(tb_ticks_per_usec * usecs); 423 } 424 EXPORT_SYMBOL(udelay); 425 426 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 427 u64 new_tb_to_xs) 428 { 429 /* 430 * tb_update_count is used to allow the userspace gettimeofday code 431 * to assure itself that it sees a consistent view of the tb_to_xs and 432 * stamp_xsec variables. It reads the tb_update_count, then reads 433 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 434 * the two values of tb_update_count match and are even then the 435 * tb_to_xs and stamp_xsec values are consistent. If not, then it 436 * loops back and reads them again until this criteria is met. 437 * We expect the caller to have done the first increment of 438 * vdso_data->tb_update_count already. 439 */ 440 vdso_data->tb_orig_stamp = new_tb_stamp; 441 vdso_data->stamp_xsec = new_stamp_xsec; 442 vdso_data->tb_to_xs = new_tb_to_xs; 443 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 444 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 445 vdso_data->stamp_xtime = xtime; 446 smp_wmb(); 447 ++(vdso_data->tb_update_count); 448 } 449 450 #ifdef CONFIG_SMP 451 unsigned long profile_pc(struct pt_regs *regs) 452 { 453 unsigned long pc = instruction_pointer(regs); 454 455 if (in_lock_functions(pc)) 456 return regs->link; 457 458 return pc; 459 } 460 EXPORT_SYMBOL(profile_pc); 461 #endif 462 463 #ifdef CONFIG_PPC_ISERIES 464 465 /* 466 * This function recalibrates the timebase based on the 49-bit time-of-day 467 * value in the Titan chip. The Titan is much more accurate than the value 468 * returned by the service processor for the timebase frequency. 469 */ 470 471 static int __init iSeries_tb_recal(void) 472 { 473 struct div_result divres; 474 unsigned long titan, tb; 475 476 /* Make sure we only run on iSeries */ 477 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 478 return -ENODEV; 479 480 tb = get_tb(); 481 titan = HvCallXm_loadTod(); 482 if ( iSeries_recal_titan ) { 483 unsigned long tb_ticks = tb - iSeries_recal_tb; 484 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 485 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 486 unsigned long new_tb_ticks_per_jiffy = 487 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ); 488 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 489 char sign = '+'; 490 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 491 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 492 493 if ( tick_diff < 0 ) { 494 tick_diff = -tick_diff; 495 sign = '-'; 496 } 497 if ( tick_diff ) { 498 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 499 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 500 new_tb_ticks_per_jiffy, sign, tick_diff ); 501 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 502 tb_ticks_per_sec = new_tb_ticks_per_sec; 503 calc_cputime_factors(); 504 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 505 tb_to_xs = divres.result_low; 506 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 507 vdso_data->tb_to_xs = tb_to_xs; 508 setup_cputime_one_jiffy(); 509 } 510 else { 511 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 512 " new tb_ticks_per_jiffy = %lu\n" 513 " old tb_ticks_per_jiffy = %lu\n", 514 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 515 } 516 } 517 } 518 iSeries_recal_titan = titan; 519 iSeries_recal_tb = tb; 520 521 /* Called here as now we know accurate values for the timebase */ 522 clocksource_init(); 523 return 0; 524 } 525 late_initcall(iSeries_tb_recal); 526 527 /* Called from platform early init */ 528 void __init iSeries_time_init_early(void) 529 { 530 iSeries_recal_tb = get_tb(); 531 iSeries_recal_titan = HvCallXm_loadTod(); 532 } 533 #endif /* CONFIG_PPC_ISERIES */ 534 535 #ifdef CONFIG_PERF_EVENTS 536 537 /* 538 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 539 */ 540 #ifdef CONFIG_PPC64 541 static inline unsigned long test_perf_event_pending(void) 542 { 543 unsigned long x; 544 545 asm volatile("lbz %0,%1(13)" 546 : "=r" (x) 547 : "i" (offsetof(struct paca_struct, perf_event_pending))); 548 return x; 549 } 550 551 static inline void set_perf_event_pending_flag(void) 552 { 553 asm volatile("stb %0,%1(13)" : : 554 "r" (1), 555 "i" (offsetof(struct paca_struct, perf_event_pending))); 556 } 557 558 static inline void clear_perf_event_pending(void) 559 { 560 asm volatile("stb %0,%1(13)" : : 561 "r" (0), 562 "i" (offsetof(struct paca_struct, perf_event_pending))); 563 } 564 565 #else /* 32-bit */ 566 567 DEFINE_PER_CPU(u8, perf_event_pending); 568 569 #define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1 570 #define test_perf_event_pending() __get_cpu_var(perf_event_pending) 571 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0 572 573 #endif /* 32 vs 64 bit */ 574 575 void set_perf_event_pending(void) 576 { 577 preempt_disable(); 578 set_perf_event_pending_flag(); 579 set_dec(1); 580 preempt_enable(); 581 } 582 583 #else /* CONFIG_PERF_EVENTS */ 584 585 #define test_perf_event_pending() 0 586 #define clear_perf_event_pending() 587 588 #endif /* CONFIG_PERF_EVENTS */ 589 590 /* 591 * For iSeries shared processors, we have to let the hypervisor 592 * set the hardware decrementer. We set a virtual decrementer 593 * in the lppaca and call the hypervisor if the virtual 594 * decrementer is less than the current value in the hardware 595 * decrementer. (almost always the new decrementer value will 596 * be greater than the current hardware decementer so the hypervisor 597 * call will not be needed) 598 */ 599 600 /* 601 * timer_interrupt - gets called when the decrementer overflows, 602 * with interrupts disabled. 603 */ 604 void timer_interrupt(struct pt_regs * regs) 605 { 606 struct pt_regs *old_regs; 607 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers); 608 struct clock_event_device *evt = &decrementer->event; 609 u64 now; 610 611 trace_timer_interrupt_entry(regs); 612 613 __get_cpu_var(irq_stat).timer_irqs++; 614 615 /* Ensure a positive value is written to the decrementer, or else 616 * some CPUs will continuue to take decrementer exceptions */ 617 set_dec(DECREMENTER_MAX); 618 619 #ifdef CONFIG_PPC32 620 if (atomic_read(&ppc_n_lost_interrupts) != 0) 621 do_IRQ(regs); 622 #endif 623 624 now = get_tb_or_rtc(); 625 if (now < decrementer->next_tb) { 626 /* not time for this event yet */ 627 now = decrementer->next_tb - now; 628 if (now <= DECREMENTER_MAX) 629 set_dec((int)now); 630 trace_timer_interrupt_exit(regs); 631 return; 632 } 633 old_regs = set_irq_regs(regs); 634 irq_enter(); 635 636 calculate_steal_time(); 637 638 if (test_perf_event_pending()) { 639 clear_perf_event_pending(); 640 perf_event_do_pending(); 641 } 642 643 #ifdef CONFIG_PPC_ISERIES 644 if (firmware_has_feature(FW_FEATURE_ISERIES)) 645 get_lppaca()->int_dword.fields.decr_int = 0; 646 #endif 647 648 if (evt->event_handler) 649 evt->event_handler(evt); 650 651 #ifdef CONFIG_PPC_ISERIES 652 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending()) 653 process_hvlpevents(); 654 #endif 655 656 #ifdef CONFIG_PPC64 657 /* collect purr register values often, for accurate calculations */ 658 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 659 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 660 cu->current_tb = mfspr(SPRN_PURR); 661 } 662 #endif 663 664 irq_exit(); 665 set_irq_regs(old_regs); 666 667 trace_timer_interrupt_exit(regs); 668 } 669 670 void wakeup_decrementer(void) 671 { 672 unsigned long ticks; 673 674 /* 675 * The timebase gets saved on sleep and restored on wakeup, 676 * so all we need to do is to reset the decrementer. 677 */ 678 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 679 if (ticks < tb_ticks_per_jiffy) 680 ticks = tb_ticks_per_jiffy - ticks; 681 else 682 ticks = 1; 683 set_dec(ticks); 684 } 685 686 #ifdef CONFIG_SUSPEND 687 void generic_suspend_disable_irqs(void) 688 { 689 preempt_disable(); 690 691 /* Disable the decrementer, so that it doesn't interfere 692 * with suspending. 693 */ 694 695 set_dec(0x7fffffff); 696 local_irq_disable(); 697 set_dec(0x7fffffff); 698 } 699 700 void generic_suspend_enable_irqs(void) 701 { 702 wakeup_decrementer(); 703 704 local_irq_enable(); 705 preempt_enable(); 706 } 707 708 /* Overrides the weak version in kernel/power/main.c */ 709 void arch_suspend_disable_irqs(void) 710 { 711 if (ppc_md.suspend_disable_irqs) 712 ppc_md.suspend_disable_irqs(); 713 generic_suspend_disable_irqs(); 714 } 715 716 /* Overrides the weak version in kernel/power/main.c */ 717 void arch_suspend_enable_irqs(void) 718 { 719 generic_suspend_enable_irqs(); 720 if (ppc_md.suspend_enable_irqs) 721 ppc_md.suspend_enable_irqs(); 722 } 723 #endif 724 725 #ifdef CONFIG_SMP 726 void __init smp_space_timers(unsigned int max_cpus) 727 { 728 int i; 729 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid); 730 731 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 732 previous_tb -= tb_ticks_per_jiffy; 733 734 for_each_possible_cpu(i) { 735 if (i == boot_cpuid) 736 continue; 737 per_cpu(last_jiffy, i) = previous_tb; 738 } 739 } 740 #endif 741 742 /* 743 * Scheduler clock - returns current time in nanosec units. 744 * 745 * Note: mulhdu(a, b) (multiply high double unsigned) returns 746 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 747 * are 64-bit unsigned numbers. 748 */ 749 unsigned long long sched_clock(void) 750 { 751 if (__USE_RTC()) 752 return get_rtc(); 753 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 754 } 755 756 static int __init get_freq(char *name, int cells, unsigned long *val) 757 { 758 struct device_node *cpu; 759 const unsigned int *fp; 760 int found = 0; 761 762 /* The cpu node should have timebase and clock frequency properties */ 763 cpu = of_find_node_by_type(NULL, "cpu"); 764 765 if (cpu) { 766 fp = of_get_property(cpu, name, NULL); 767 if (fp) { 768 found = 1; 769 *val = of_read_ulong(fp, cells); 770 } 771 772 of_node_put(cpu); 773 } 774 775 return found; 776 } 777 778 /* should become __cpuinit when secondary_cpu_time_init also is */ 779 void start_cpu_decrementer(void) 780 { 781 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 782 /* Clear any pending timer interrupts */ 783 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 784 785 /* Enable decrementer interrupt */ 786 mtspr(SPRN_TCR, TCR_DIE); 787 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */ 788 } 789 790 void __init generic_calibrate_decr(void) 791 { 792 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 793 794 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 795 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 796 797 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 798 "(not found)\n"); 799 } 800 801 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 802 803 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 804 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 805 806 printk(KERN_ERR "WARNING: Estimating processor frequency " 807 "(not found)\n"); 808 } 809 } 810 811 int update_persistent_clock(struct timespec now) 812 { 813 struct rtc_time tm; 814 815 if (!ppc_md.set_rtc_time) 816 return 0; 817 818 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 819 tm.tm_year -= 1900; 820 tm.tm_mon -= 1; 821 822 return ppc_md.set_rtc_time(&tm); 823 } 824 825 static void __read_persistent_clock(struct timespec *ts) 826 { 827 struct rtc_time tm; 828 static int first = 1; 829 830 ts->tv_nsec = 0; 831 /* XXX this is a litle fragile but will work okay in the short term */ 832 if (first) { 833 first = 0; 834 if (ppc_md.time_init) 835 timezone_offset = ppc_md.time_init(); 836 837 /* get_boot_time() isn't guaranteed to be safe to call late */ 838 if (ppc_md.get_boot_time) { 839 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 840 return; 841 } 842 } 843 if (!ppc_md.get_rtc_time) { 844 ts->tv_sec = 0; 845 return; 846 } 847 ppc_md.get_rtc_time(&tm); 848 849 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 850 tm.tm_hour, tm.tm_min, tm.tm_sec); 851 } 852 853 void read_persistent_clock(struct timespec *ts) 854 { 855 __read_persistent_clock(ts); 856 857 /* Sanitize it in case real time clock is set below EPOCH */ 858 if (ts->tv_sec < 0) { 859 ts->tv_sec = 0; 860 ts->tv_nsec = 0; 861 } 862 863 } 864 865 /* clocksource code */ 866 static cycle_t rtc_read(struct clocksource *cs) 867 { 868 return (cycle_t)get_rtc(); 869 } 870 871 static cycle_t timebase_read(struct clocksource *cs) 872 { 873 return (cycle_t)get_tb(); 874 } 875 876 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock, 877 u32 mult) 878 { 879 u64 t2x, stamp_xsec; 880 881 if (clock != &clocksource_timebase) 882 return; 883 884 /* Make userspace gettimeofday spin until we're done. */ 885 ++vdso_data->tb_update_count; 886 smp_mb(); 887 888 /* XXX this assumes clock->shift == 22 */ 889 /* 4611686018 ~= 2^(20+64-22) / 1e9 */ 890 t2x = (u64) mult * 4611686018ULL; 891 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 892 do_div(stamp_xsec, 1000000000); 893 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 894 update_gtod(clock->cycle_last, stamp_xsec, t2x); 895 } 896 897 void update_vsyscall_tz(void) 898 { 899 /* Make userspace gettimeofday spin until we're done. */ 900 ++vdso_data->tb_update_count; 901 smp_mb(); 902 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 903 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 904 smp_mb(); 905 ++vdso_data->tb_update_count; 906 } 907 908 static void __init clocksource_init(void) 909 { 910 struct clocksource *clock; 911 912 if (__USE_RTC()) 913 clock = &clocksource_rtc; 914 else 915 clock = &clocksource_timebase; 916 917 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift); 918 919 if (clocksource_register(clock)) { 920 printk(KERN_ERR "clocksource: %s is already registered\n", 921 clock->name); 922 return; 923 } 924 925 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 926 clock->name, clock->mult, clock->shift); 927 } 928 929 static int decrementer_set_next_event(unsigned long evt, 930 struct clock_event_device *dev) 931 { 932 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt; 933 set_dec(evt); 934 return 0; 935 } 936 937 static void decrementer_set_mode(enum clock_event_mode mode, 938 struct clock_event_device *dev) 939 { 940 if (mode != CLOCK_EVT_MODE_ONESHOT) 941 decrementer_set_next_event(DECREMENTER_MAX, dev); 942 } 943 944 static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec, 945 int shift) 946 { 947 uint64_t tmp = ((uint64_t)ticks) << shift; 948 949 do_div(tmp, nsec); 950 return tmp; 951 } 952 953 static void __init setup_clockevent_multiplier(unsigned long hz) 954 { 955 u64 mult, shift = 32; 956 957 while (1) { 958 mult = div_sc64(hz, NSEC_PER_SEC, shift); 959 if (mult && (mult >> 32UL) == 0UL) 960 break; 961 962 shift--; 963 } 964 965 decrementer_clockevent.shift = shift; 966 decrementer_clockevent.mult = mult; 967 } 968 969 static void register_decrementer_clockevent(int cpu) 970 { 971 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event; 972 973 *dec = decrementer_clockevent; 974 dec->cpumask = cpumask_of(cpu); 975 976 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 977 dec->name, dec->mult, dec->shift, cpu); 978 979 clockevents_register_device(dec); 980 } 981 982 static void __init init_decrementer_clockevent(void) 983 { 984 int cpu = smp_processor_id(); 985 986 setup_clockevent_multiplier(ppc_tb_freq); 987 decrementer_clockevent.max_delta_ns = 988 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); 989 decrementer_clockevent.min_delta_ns = 990 clockevent_delta2ns(2, &decrementer_clockevent); 991 992 register_decrementer_clockevent(cpu); 993 } 994 995 void secondary_cpu_time_init(void) 996 { 997 /* Start the decrementer on CPUs that have manual control 998 * such as BookE 999 */ 1000 start_cpu_decrementer(); 1001 1002 /* FIME: Should make unrelatred change to move snapshot_timebase 1003 * call here ! */ 1004 register_decrementer_clockevent(smp_processor_id()); 1005 } 1006 1007 /* This function is only called on the boot processor */ 1008 void __init time_init(void) 1009 { 1010 unsigned long flags; 1011 struct div_result res; 1012 u64 scale, x; 1013 unsigned shift; 1014 1015 if (__USE_RTC()) { 1016 /* 601 processor: dec counts down by 128 every 128ns */ 1017 ppc_tb_freq = 1000000000; 1018 tb_last_jiffy = get_rtcl(); 1019 } else { 1020 /* Normal PowerPC with timebase register */ 1021 ppc_md.calibrate_decr(); 1022 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 1023 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 1024 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 1025 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 1026 tb_last_jiffy = get_tb(); 1027 } 1028 1029 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 1030 tb_ticks_per_sec = ppc_tb_freq; 1031 tb_ticks_per_usec = ppc_tb_freq / 1000000; 1032 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 1033 calc_cputime_factors(); 1034 setup_cputime_one_jiffy(); 1035 1036 /* 1037 * Calculate the length of each tick in ns. It will not be 1038 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 1039 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 1040 * rounded up. 1041 */ 1042 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 1043 do_div(x, ppc_tb_freq); 1044 tick_nsec = x; 1045 last_tick_len = x << TICKLEN_SCALE; 1046 1047 /* 1048 * Compute ticklen_to_xs, which is a factor which gets multiplied 1049 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 1050 * It is computed as: 1051 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 1052 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 1053 * which turns out to be N = 51 - SHIFT_HZ. 1054 * This gives the result as a 0.64 fixed-point fraction. 1055 * That value is reduced by an offset amounting to 1 xsec per 1056 * 2^31 timebase ticks to avoid problems with time going backwards 1057 * by 1 xsec when we do timer_recalc_offset due to losing the 1058 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 1059 * since there are 2^20 xsec in a second. 1060 */ 1061 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 1062 tb_ticks_per_jiffy << SHIFT_HZ, &res); 1063 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 1064 ticklen_to_xs = res.result_low; 1065 1066 /* Compute tb_to_xs from tick_nsec */ 1067 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 1068 1069 /* 1070 * Compute scale factor for sched_clock. 1071 * The calibrate_decr() function has set tb_ticks_per_sec, 1072 * which is the timebase frequency. 1073 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1074 * the 128-bit result as a 64.64 fixed-point number. 1075 * We then shift that number right until it is less than 1.0, 1076 * giving us the scale factor and shift count to use in 1077 * sched_clock(). 1078 */ 1079 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1080 scale = res.result_low; 1081 for (shift = 0; res.result_high != 0; ++shift) { 1082 scale = (scale >> 1) | (res.result_high << 63); 1083 res.result_high >>= 1; 1084 } 1085 tb_to_ns_scale = scale; 1086 tb_to_ns_shift = shift; 1087 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1088 boot_tb = get_tb_or_rtc(); 1089 1090 write_seqlock_irqsave(&xtime_lock, flags); 1091 1092 /* If platform provided a timezone (pmac), we correct the time */ 1093 if (timezone_offset) { 1094 sys_tz.tz_minuteswest = -timezone_offset / 60; 1095 sys_tz.tz_dsttime = 0; 1096 } 1097 1098 vdso_data->tb_orig_stamp = tb_last_jiffy; 1099 vdso_data->tb_update_count = 0; 1100 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1101 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1102 vdso_data->tb_to_xs = tb_to_xs; 1103 1104 write_sequnlock_irqrestore(&xtime_lock, flags); 1105 1106 /* Start the decrementer on CPUs that have manual control 1107 * such as BookE 1108 */ 1109 start_cpu_decrementer(); 1110 1111 /* Register the clocksource, if we're not running on iSeries */ 1112 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 1113 clocksource_init(); 1114 1115 init_decrementer_clockevent(); 1116 } 1117 1118 1119 #define FEBRUARY 2 1120 #define STARTOFTIME 1970 1121 #define SECDAY 86400L 1122 #define SECYR (SECDAY * 365) 1123 #define leapyear(year) ((year) % 4 == 0 && \ 1124 ((year) % 100 != 0 || (year) % 400 == 0)) 1125 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1126 #define days_in_month(a) (month_days[(a) - 1]) 1127 1128 static int month_days[12] = { 1129 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1130 }; 1131 1132 /* 1133 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1134 */ 1135 void GregorianDay(struct rtc_time * tm) 1136 { 1137 int leapsToDate; 1138 int lastYear; 1139 int day; 1140 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1141 1142 lastYear = tm->tm_year - 1; 1143 1144 /* 1145 * Number of leap corrections to apply up to end of last year 1146 */ 1147 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1148 1149 /* 1150 * This year is a leap year if it is divisible by 4 except when it is 1151 * divisible by 100 unless it is divisible by 400 1152 * 1153 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1154 */ 1155 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1156 1157 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1158 tm->tm_mday; 1159 1160 tm->tm_wday = day % 7; 1161 } 1162 1163 void to_tm(int tim, struct rtc_time * tm) 1164 { 1165 register int i; 1166 register long hms, day; 1167 1168 day = tim / SECDAY; 1169 hms = tim % SECDAY; 1170 1171 /* Hours, minutes, seconds are easy */ 1172 tm->tm_hour = hms / 3600; 1173 tm->tm_min = (hms % 3600) / 60; 1174 tm->tm_sec = (hms % 3600) % 60; 1175 1176 /* Number of years in days */ 1177 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1178 day -= days_in_year(i); 1179 tm->tm_year = i; 1180 1181 /* Number of months in days left */ 1182 if (leapyear(tm->tm_year)) 1183 days_in_month(FEBRUARY) = 29; 1184 for (i = 1; day >= days_in_month(i); i++) 1185 day -= days_in_month(i); 1186 days_in_month(FEBRUARY) = 28; 1187 tm->tm_mon = i; 1188 1189 /* Days are what is left over (+1) from all that. */ 1190 tm->tm_mday = day + 1; 1191 1192 /* 1193 * Determine the day of week 1194 */ 1195 GregorianDay(tm); 1196 } 1197 1198 /* Auxiliary function to compute scaling factors */ 1199 /* Actually the choice of a timebase running at 1/4 the of the bus 1200 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1201 * It makes this computation very precise (27-28 bits typically) which 1202 * is optimistic considering the stability of most processor clock 1203 * oscillators and the precision with which the timebase frequency 1204 * is measured but does not harm. 1205 */ 1206 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1207 { 1208 unsigned mlt=0, tmp, err; 1209 /* No concern for performance, it's done once: use a stupid 1210 * but safe and compact method to find the multiplier. 1211 */ 1212 1213 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1214 if (mulhwu(inscale, mlt|tmp) < outscale) 1215 mlt |= tmp; 1216 } 1217 1218 /* We might still be off by 1 for the best approximation. 1219 * A side effect of this is that if outscale is too large 1220 * the returned value will be zero. 1221 * Many corner cases have been checked and seem to work, 1222 * some might have been forgotten in the test however. 1223 */ 1224 1225 err = inscale * (mlt+1); 1226 if (err <= inscale/2) 1227 mlt++; 1228 return mlt; 1229 } 1230 1231 /* 1232 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1233 * result. 1234 */ 1235 void div128_by_32(u64 dividend_high, u64 dividend_low, 1236 unsigned divisor, struct div_result *dr) 1237 { 1238 unsigned long a, b, c, d; 1239 unsigned long w, x, y, z; 1240 u64 ra, rb, rc; 1241 1242 a = dividend_high >> 32; 1243 b = dividend_high & 0xffffffff; 1244 c = dividend_low >> 32; 1245 d = dividend_low & 0xffffffff; 1246 1247 w = a / divisor; 1248 ra = ((u64)(a - (w * divisor)) << 32) + b; 1249 1250 rb = ((u64) do_div(ra, divisor) << 32) + c; 1251 x = ra; 1252 1253 rc = ((u64) do_div(rb, divisor) << 32) + d; 1254 y = rb; 1255 1256 do_div(rc, divisor); 1257 z = rc; 1258 1259 dr->result_high = ((u64)w << 32) + x; 1260 dr->result_low = ((u64)y << 32) + z; 1261 1262 } 1263 1264 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1265 void calibrate_delay(void) 1266 { 1267 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1268 * as the number of __delay(1) in a jiffy, so make it so 1269 */ 1270 loops_per_jiffy = tb_ticks_per_jiffy; 1271 } 1272 1273 static int __init rtc_init(void) 1274 { 1275 struct platform_device *pdev; 1276 1277 if (!ppc_md.get_rtc_time) 1278 return -ENODEV; 1279 1280 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); 1281 if (IS_ERR(pdev)) 1282 return PTR_ERR(pdev); 1283 1284 return 0; 1285 } 1286 1287 module_init(rtc_init); 1288