xref: /linux/arch/powerpc/kernel/time.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
57 
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 #ifdef CONFIG_PPC_ISERIES
73 #include <asm/iseries/it_lp_queue.h>
74 #include <asm/iseries/hv_call_xm.h>
75 #endif
76 
77 /* powerpc clocksource/clockevent code */
78 
79 #include <linux/clockchips.h>
80 #include <linux/clocksource.h>
81 
82 static cycle_t rtc_read(struct clocksource *);
83 static struct clocksource clocksource_rtc = {
84 	.name         = "rtc",
85 	.rating       = 400,
86 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
87 	.mask         = CLOCKSOURCE_MASK(64),
88 	.shift        = 22,
89 	.mult         = 0,	/* To be filled in */
90 	.read         = rtc_read,
91 };
92 
93 static cycle_t timebase_read(struct clocksource *);
94 static struct clocksource clocksource_timebase = {
95 	.name         = "timebase",
96 	.rating       = 400,
97 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
98 	.mask         = CLOCKSOURCE_MASK(64),
99 	.shift        = 22,
100 	.mult         = 0,	/* To be filled in */
101 	.read         = timebase_read,
102 };
103 
104 #define DECREMENTER_MAX	0x7fffffff
105 
106 static int decrementer_set_next_event(unsigned long evt,
107 				      struct clock_event_device *dev);
108 static void decrementer_set_mode(enum clock_event_mode mode,
109 				 struct clock_event_device *dev);
110 
111 static struct clock_event_device decrementer_clockevent = {
112        .name           = "decrementer",
113        .rating         = 200,
114        .shift          = 0,	/* To be filled in */
115        .mult           = 0,	/* To be filled in */
116        .irq            = 0,
117        .set_next_event = decrementer_set_next_event,
118        .set_mode       = decrementer_set_mode,
119        .features       = CLOCK_EVT_FEAT_ONESHOT,
120 };
121 
122 struct decrementer_clock {
123 	struct clock_event_device event;
124 	u64 next_tb;
125 };
126 
127 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
128 
129 #ifdef CONFIG_PPC_ISERIES
130 static unsigned long __initdata iSeries_recal_titan;
131 static signed long __initdata iSeries_recal_tb;
132 
133 /* Forward declaration is only needed for iSereis compiles */
134 static void __init clocksource_init(void);
135 #endif
136 
137 #define XSEC_PER_SEC (1024*1024)
138 
139 #ifdef CONFIG_PPC64
140 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
141 #else
142 /* compute ((xsec << 12) * max) >> 32 */
143 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
144 #endif
145 
146 unsigned long tb_ticks_per_jiffy;
147 unsigned long tb_ticks_per_usec = 100; /* sane default */
148 EXPORT_SYMBOL(tb_ticks_per_usec);
149 unsigned long tb_ticks_per_sec;
150 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
151 u64 tb_to_xs;
152 unsigned tb_to_us;
153 
154 #define TICKLEN_SCALE	NTP_SCALE_SHIFT
155 static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
156 static u64 ticklen_to_xs;	/* 0.64 fraction */
157 
158 /* If last_tick_len corresponds to about 1/HZ seconds, then
159    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
160 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
161 
162 DEFINE_SPINLOCK(rtc_lock);
163 EXPORT_SYMBOL_GPL(rtc_lock);
164 
165 static u64 tb_to_ns_scale __read_mostly;
166 static unsigned tb_to_ns_shift __read_mostly;
167 static unsigned long boot_tb __read_mostly;
168 
169 extern struct timezone sys_tz;
170 static long timezone_offset;
171 
172 unsigned long ppc_proc_freq;
173 EXPORT_SYMBOL(ppc_proc_freq);
174 unsigned long ppc_tb_freq;
175 
176 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
177 static DEFINE_PER_CPU(u64, last_jiffy);
178 
179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
180 /*
181  * Factors for converting from cputime_t (timebase ticks) to
182  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
183  * These are all stored as 0.64 fixed-point binary fractions.
184  */
185 u64 __cputime_jiffies_factor;
186 EXPORT_SYMBOL(__cputime_jiffies_factor);
187 u64 __cputime_msec_factor;
188 EXPORT_SYMBOL(__cputime_msec_factor);
189 u64 __cputime_sec_factor;
190 EXPORT_SYMBOL(__cputime_sec_factor);
191 u64 __cputime_clockt_factor;
192 EXPORT_SYMBOL(__cputime_clockt_factor);
193 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
195 
196 static void calc_cputime_factors(void)
197 {
198 	struct div_result res;
199 
200 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
201 	__cputime_jiffies_factor = res.result_low;
202 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
203 	__cputime_msec_factor = res.result_low;
204 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
205 	__cputime_sec_factor = res.result_low;
206 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
207 	__cputime_clockt_factor = res.result_low;
208 }
209 
210 /*
211  * Read the PURR on systems that have it, otherwise the timebase.
212  */
213 static u64 read_purr(void)
214 {
215 	if (cpu_has_feature(CPU_FTR_PURR))
216 		return mfspr(SPRN_PURR);
217 	return mftb();
218 }
219 
220 /*
221  * Read the SPURR on systems that have it, otherwise the purr
222  */
223 static u64 read_spurr(u64 purr)
224 {
225 	/*
226 	 * cpus without PURR won't have a SPURR
227 	 * We already know the former when we use this, so tell gcc
228 	 */
229 	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
230 		return mfspr(SPRN_SPURR);
231 	return purr;
232 }
233 
234 /*
235  * Account time for a transition between system, hard irq
236  * or soft irq state.
237  */
238 void account_system_vtime(struct task_struct *tsk)
239 {
240 	u64 now, nowscaled, delta, deltascaled, sys_time;
241 	unsigned long flags;
242 
243 	local_irq_save(flags);
244 	now = read_purr();
245 	nowscaled = read_spurr(now);
246 	delta = now - get_paca()->startpurr;
247 	deltascaled = nowscaled - get_paca()->startspurr;
248 	get_paca()->startpurr = now;
249 	get_paca()->startspurr = nowscaled;
250 	if (!in_interrupt()) {
251 		/* deltascaled includes both user and system time.
252 		 * Hence scale it based on the purr ratio to estimate
253 		 * the system time */
254 		sys_time = get_paca()->system_time;
255 		if (get_paca()->user_time)
256 			deltascaled = deltascaled * sys_time /
257 			     (sys_time + get_paca()->user_time);
258 		delta += sys_time;
259 		get_paca()->system_time = 0;
260 	}
261 	if (in_irq() || idle_task(smp_processor_id()) != tsk)
262 		account_system_time(tsk, 0, delta, deltascaled);
263 	else
264 		account_idle_time(delta);
265 	per_cpu(cputime_last_delta, smp_processor_id()) = delta;
266 	per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
267 	local_irq_restore(flags);
268 }
269 
270 /*
271  * Transfer the user and system times accumulated in the paca
272  * by the exception entry and exit code to the generic process
273  * user and system time records.
274  * Must be called with interrupts disabled.
275  */
276 void account_process_tick(struct task_struct *tsk, int user_tick)
277 {
278 	cputime_t utime, utimescaled;
279 
280 	utime = get_paca()->user_time;
281 	get_paca()->user_time = 0;
282 	utimescaled = cputime_to_scaled(utime);
283 	account_user_time(tsk, utime, utimescaled);
284 }
285 
286 /*
287  * Stuff for accounting stolen time.
288  */
289 struct cpu_purr_data {
290 	int	initialized;			/* thread is running */
291 	u64	tb;			/* last TB value read */
292 	u64	purr;			/* last PURR value read */
293 	u64	spurr;			/* last SPURR value read */
294 };
295 
296 /*
297  * Each entry in the cpu_purr_data array is manipulated only by its
298  * "owner" cpu -- usually in the timer interrupt but also occasionally
299  * in process context for cpu online.  As long as cpus do not touch
300  * each others' cpu_purr_data, disabling local interrupts is
301  * sufficient to serialize accesses.
302  */
303 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
304 
305 static void snapshot_tb_and_purr(void *data)
306 {
307 	unsigned long flags;
308 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
309 
310 	local_irq_save(flags);
311 	p->tb = get_tb_or_rtc();
312 	p->purr = mfspr(SPRN_PURR);
313 	wmb();
314 	p->initialized = 1;
315 	local_irq_restore(flags);
316 }
317 
318 /*
319  * Called during boot when all cpus have come up.
320  */
321 void snapshot_timebases(void)
322 {
323 	if (!cpu_has_feature(CPU_FTR_PURR))
324 		return;
325 	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
326 }
327 
328 /*
329  * Must be called with interrupts disabled.
330  */
331 void calculate_steal_time(void)
332 {
333 	u64 tb, purr;
334 	s64 stolen;
335 	struct cpu_purr_data *pme;
336 
337 	pme = &__get_cpu_var(cpu_purr_data);
338 	if (!pme->initialized)
339 		return;		/* !CPU_FTR_PURR or early in early boot */
340 	tb = mftb();
341 	purr = mfspr(SPRN_PURR);
342 	stolen = (tb - pme->tb) - (purr - pme->purr);
343 	if (stolen > 0) {
344 		if (idle_task(smp_processor_id()) != current)
345 			account_steal_time(stolen);
346 		else
347 			account_idle_time(stolen);
348 	}
349 	pme->tb = tb;
350 	pme->purr = purr;
351 }
352 
353 #ifdef CONFIG_PPC_SPLPAR
354 /*
355  * Must be called before the cpu is added to the online map when
356  * a cpu is being brought up at runtime.
357  */
358 static void snapshot_purr(void)
359 {
360 	struct cpu_purr_data *pme;
361 	unsigned long flags;
362 
363 	if (!cpu_has_feature(CPU_FTR_PURR))
364 		return;
365 	local_irq_save(flags);
366 	pme = &__get_cpu_var(cpu_purr_data);
367 	pme->tb = mftb();
368 	pme->purr = mfspr(SPRN_PURR);
369 	pme->initialized = 1;
370 	local_irq_restore(flags);
371 }
372 
373 #endif /* CONFIG_PPC_SPLPAR */
374 
375 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
376 #define calc_cputime_factors()
377 #define calculate_steal_time()		do { } while (0)
378 #endif
379 
380 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
381 #define snapshot_purr()			do { } while (0)
382 #endif
383 
384 /*
385  * Called when a cpu comes up after the system has finished booting,
386  * i.e. as a result of a hotplug cpu action.
387  */
388 void snapshot_timebase(void)
389 {
390 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
391 	snapshot_purr();
392 }
393 
394 void __delay(unsigned long loops)
395 {
396 	unsigned long start;
397 	int diff;
398 
399 	if (__USE_RTC()) {
400 		start = get_rtcl();
401 		do {
402 			/* the RTCL register wraps at 1000000000 */
403 			diff = get_rtcl() - start;
404 			if (diff < 0)
405 				diff += 1000000000;
406 		} while (diff < loops);
407 	} else {
408 		start = get_tbl();
409 		while (get_tbl() - start < loops)
410 			HMT_low();
411 		HMT_medium();
412 	}
413 }
414 EXPORT_SYMBOL(__delay);
415 
416 void udelay(unsigned long usecs)
417 {
418 	__delay(tb_ticks_per_usec * usecs);
419 }
420 EXPORT_SYMBOL(udelay);
421 
422 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
423 			       u64 new_tb_to_xs)
424 {
425 	/*
426 	 * tb_update_count is used to allow the userspace gettimeofday code
427 	 * to assure itself that it sees a consistent view of the tb_to_xs and
428 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
429 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
430 	 * the two values of tb_update_count match and are even then the
431 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
432 	 * loops back and reads them again until this criteria is met.
433 	 * We expect the caller to have done the first increment of
434 	 * vdso_data->tb_update_count already.
435 	 */
436 	vdso_data->tb_orig_stamp = new_tb_stamp;
437 	vdso_data->stamp_xsec = new_stamp_xsec;
438 	vdso_data->tb_to_xs = new_tb_to_xs;
439 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
440 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
441 	vdso_data->stamp_xtime = xtime;
442 	smp_wmb();
443 	++(vdso_data->tb_update_count);
444 }
445 
446 #ifdef CONFIG_SMP
447 unsigned long profile_pc(struct pt_regs *regs)
448 {
449 	unsigned long pc = instruction_pointer(regs);
450 
451 	if (in_lock_functions(pc))
452 		return regs->link;
453 
454 	return pc;
455 }
456 EXPORT_SYMBOL(profile_pc);
457 #endif
458 
459 #ifdef CONFIG_PPC_ISERIES
460 
461 /*
462  * This function recalibrates the timebase based on the 49-bit time-of-day
463  * value in the Titan chip.  The Titan is much more accurate than the value
464  * returned by the service processor for the timebase frequency.
465  */
466 
467 static int __init iSeries_tb_recal(void)
468 {
469 	struct div_result divres;
470 	unsigned long titan, tb;
471 
472 	/* Make sure we only run on iSeries */
473 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
474 		return -ENODEV;
475 
476 	tb = get_tb();
477 	titan = HvCallXm_loadTod();
478 	if ( iSeries_recal_titan ) {
479 		unsigned long tb_ticks = tb - iSeries_recal_tb;
480 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
481 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
482 		unsigned long new_tb_ticks_per_jiffy =
483 			DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
484 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
485 		char sign = '+';
486 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
487 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
488 
489 		if ( tick_diff < 0 ) {
490 			tick_diff = -tick_diff;
491 			sign = '-';
492 		}
493 		if ( tick_diff ) {
494 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
495 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
496 						new_tb_ticks_per_jiffy, sign, tick_diff );
497 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
498 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
499 				calc_cputime_factors();
500 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
501 				tb_to_xs = divres.result_low;
502 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
503 				vdso_data->tb_to_xs = tb_to_xs;
504 			}
505 			else {
506 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
507 					"                   new tb_ticks_per_jiffy = %lu\n"
508 					"                   old tb_ticks_per_jiffy = %lu\n",
509 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
510 			}
511 		}
512 	}
513 	iSeries_recal_titan = titan;
514 	iSeries_recal_tb = tb;
515 
516 	/* Called here as now we know accurate values for the timebase */
517 	clocksource_init();
518 	return 0;
519 }
520 late_initcall(iSeries_tb_recal);
521 
522 /* Called from platform early init */
523 void __init iSeries_time_init_early(void)
524 {
525 	iSeries_recal_tb = get_tb();
526 	iSeries_recal_titan = HvCallXm_loadTod();
527 }
528 #endif /* CONFIG_PPC_ISERIES */
529 
530 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
531 DEFINE_PER_CPU(u8, perf_event_pending);
532 
533 void set_perf_event_pending(void)
534 {
535 	get_cpu_var(perf_event_pending) = 1;
536 	set_dec(1);
537 	put_cpu_var(perf_event_pending);
538 }
539 
540 #define test_perf_event_pending()	__get_cpu_var(perf_event_pending)
541 #define clear_perf_event_pending()	__get_cpu_var(perf_event_pending) = 0
542 
543 #else  /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
544 
545 #define test_perf_event_pending()	0
546 #define clear_perf_event_pending()
547 
548 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
549 
550 /*
551  * For iSeries shared processors, we have to let the hypervisor
552  * set the hardware decrementer.  We set a virtual decrementer
553  * in the lppaca and call the hypervisor if the virtual
554  * decrementer is less than the current value in the hardware
555  * decrementer. (almost always the new decrementer value will
556  * be greater than the current hardware decementer so the hypervisor
557  * call will not be needed)
558  */
559 
560 /*
561  * timer_interrupt - gets called when the decrementer overflows,
562  * with interrupts disabled.
563  */
564 void timer_interrupt(struct pt_regs * regs)
565 {
566 	struct pt_regs *old_regs;
567 	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
568 	struct clock_event_device *evt = &decrementer->event;
569 	u64 now;
570 
571 	/* Ensure a positive value is written to the decrementer, or else
572 	 * some CPUs will continuue to take decrementer exceptions */
573 	set_dec(DECREMENTER_MAX);
574 
575 #ifdef CONFIG_PPC32
576 	if (test_perf_event_pending()) {
577 		clear_perf_event_pending();
578 		perf_event_do_pending();
579 	}
580 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
581 		do_IRQ(regs);
582 #endif
583 
584 	now = get_tb_or_rtc();
585 	if (now < decrementer->next_tb) {
586 		/* not time for this event yet */
587 		now = decrementer->next_tb - now;
588 		if (now <= DECREMENTER_MAX)
589 			set_dec((int)now);
590 		return;
591 	}
592 	old_regs = set_irq_regs(regs);
593 	irq_enter();
594 
595 	calculate_steal_time();
596 
597 #ifdef CONFIG_PPC_ISERIES
598 	if (firmware_has_feature(FW_FEATURE_ISERIES))
599 		get_lppaca()->int_dword.fields.decr_int = 0;
600 #endif
601 
602 	if (evt->event_handler)
603 		evt->event_handler(evt);
604 
605 #ifdef CONFIG_PPC_ISERIES
606 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
607 		process_hvlpevents();
608 #endif
609 
610 #ifdef CONFIG_PPC64
611 	/* collect purr register values often, for accurate calculations */
612 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
613 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
614 		cu->current_tb = mfspr(SPRN_PURR);
615 	}
616 #endif
617 
618 	irq_exit();
619 	set_irq_regs(old_regs);
620 }
621 
622 void wakeup_decrementer(void)
623 {
624 	unsigned long ticks;
625 
626 	/*
627 	 * The timebase gets saved on sleep and restored on wakeup,
628 	 * so all we need to do is to reset the decrementer.
629 	 */
630 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
631 	if (ticks < tb_ticks_per_jiffy)
632 		ticks = tb_ticks_per_jiffy - ticks;
633 	else
634 		ticks = 1;
635 	set_dec(ticks);
636 }
637 
638 #ifdef CONFIG_SUSPEND
639 void generic_suspend_disable_irqs(void)
640 {
641 	preempt_disable();
642 
643 	/* Disable the decrementer, so that it doesn't interfere
644 	 * with suspending.
645 	 */
646 
647 	set_dec(0x7fffffff);
648 	local_irq_disable();
649 	set_dec(0x7fffffff);
650 }
651 
652 void generic_suspend_enable_irqs(void)
653 {
654 	wakeup_decrementer();
655 
656 	local_irq_enable();
657 	preempt_enable();
658 }
659 
660 /* Overrides the weak version in kernel/power/main.c */
661 void arch_suspend_disable_irqs(void)
662 {
663 	if (ppc_md.suspend_disable_irqs)
664 		ppc_md.suspend_disable_irqs();
665 	generic_suspend_disable_irqs();
666 }
667 
668 /* Overrides the weak version in kernel/power/main.c */
669 void arch_suspend_enable_irqs(void)
670 {
671 	generic_suspend_enable_irqs();
672 	if (ppc_md.suspend_enable_irqs)
673 		ppc_md.suspend_enable_irqs();
674 }
675 #endif
676 
677 #ifdef CONFIG_SMP
678 void __init smp_space_timers(unsigned int max_cpus)
679 {
680 	int i;
681 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
682 
683 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
684 	previous_tb -= tb_ticks_per_jiffy;
685 
686 	for_each_possible_cpu(i) {
687 		if (i == boot_cpuid)
688 			continue;
689 		per_cpu(last_jiffy, i) = previous_tb;
690 	}
691 }
692 #endif
693 
694 /*
695  * Scheduler clock - returns current time in nanosec units.
696  *
697  * Note: mulhdu(a, b) (multiply high double unsigned) returns
698  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
699  * are 64-bit unsigned numbers.
700  */
701 unsigned long long sched_clock(void)
702 {
703 	if (__USE_RTC())
704 		return get_rtc();
705 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
706 }
707 
708 static int __init get_freq(char *name, int cells, unsigned long *val)
709 {
710 	struct device_node *cpu;
711 	const unsigned int *fp;
712 	int found = 0;
713 
714 	/* The cpu node should have timebase and clock frequency properties */
715 	cpu = of_find_node_by_type(NULL, "cpu");
716 
717 	if (cpu) {
718 		fp = of_get_property(cpu, name, NULL);
719 		if (fp) {
720 			found = 1;
721 			*val = of_read_ulong(fp, cells);
722 		}
723 
724 		of_node_put(cpu);
725 	}
726 
727 	return found;
728 }
729 
730 /* should become __cpuinit when secondary_cpu_time_init also is */
731 void start_cpu_decrementer(void)
732 {
733 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
734 	/* Clear any pending timer interrupts */
735 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
736 
737 	/* Enable decrementer interrupt */
738 	mtspr(SPRN_TCR, TCR_DIE);
739 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
740 }
741 
742 void __init generic_calibrate_decr(void)
743 {
744 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
745 
746 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
747 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
748 
749 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
750 				"(not found)\n");
751 	}
752 
753 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
754 
755 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
756 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
757 
758 		printk(KERN_ERR "WARNING: Estimating processor frequency "
759 				"(not found)\n");
760 	}
761 }
762 
763 int update_persistent_clock(struct timespec now)
764 {
765 	struct rtc_time tm;
766 
767 	if (!ppc_md.set_rtc_time)
768 		return 0;
769 
770 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
771 	tm.tm_year -= 1900;
772 	tm.tm_mon -= 1;
773 
774 	return ppc_md.set_rtc_time(&tm);
775 }
776 
777 void read_persistent_clock(struct timespec *ts)
778 {
779 	struct rtc_time tm;
780 	static int first = 1;
781 
782 	ts->tv_nsec = 0;
783 	/* XXX this is a litle fragile but will work okay in the short term */
784 	if (first) {
785 		first = 0;
786 		if (ppc_md.time_init)
787 			timezone_offset = ppc_md.time_init();
788 
789 		/* get_boot_time() isn't guaranteed to be safe to call late */
790 		if (ppc_md.get_boot_time) {
791 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
792 			return;
793 		}
794 	}
795 	if (!ppc_md.get_rtc_time) {
796 		ts->tv_sec = 0;
797 		return;
798 	}
799 	ppc_md.get_rtc_time(&tm);
800 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
801 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
802 }
803 
804 /* clocksource code */
805 static cycle_t rtc_read(struct clocksource *cs)
806 {
807 	return (cycle_t)get_rtc();
808 }
809 
810 static cycle_t timebase_read(struct clocksource *cs)
811 {
812 	return (cycle_t)get_tb();
813 }
814 
815 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
816 {
817 	u64 t2x, stamp_xsec;
818 
819 	if (clock != &clocksource_timebase)
820 		return;
821 
822 	/* Make userspace gettimeofday spin until we're done. */
823 	++vdso_data->tb_update_count;
824 	smp_mb();
825 
826 	/* XXX this assumes clock->shift == 22 */
827 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
828 	t2x = (u64) clock->mult * 4611686018ULL;
829 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
830 	do_div(stamp_xsec, 1000000000);
831 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
832 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
833 }
834 
835 void update_vsyscall_tz(void)
836 {
837 	/* Make userspace gettimeofday spin until we're done. */
838 	++vdso_data->tb_update_count;
839 	smp_mb();
840 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
841 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
842 	smp_mb();
843 	++vdso_data->tb_update_count;
844 }
845 
846 static void __init clocksource_init(void)
847 {
848 	struct clocksource *clock;
849 
850 	if (__USE_RTC())
851 		clock = &clocksource_rtc;
852 	else
853 		clock = &clocksource_timebase;
854 
855 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
856 
857 	if (clocksource_register(clock)) {
858 		printk(KERN_ERR "clocksource: %s is already registered\n",
859 		       clock->name);
860 		return;
861 	}
862 
863 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
864 	       clock->name, clock->mult, clock->shift);
865 }
866 
867 static int decrementer_set_next_event(unsigned long evt,
868 				      struct clock_event_device *dev)
869 {
870 	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
871 	set_dec(evt);
872 	return 0;
873 }
874 
875 static void decrementer_set_mode(enum clock_event_mode mode,
876 				 struct clock_event_device *dev)
877 {
878 	if (mode != CLOCK_EVT_MODE_ONESHOT)
879 		decrementer_set_next_event(DECREMENTER_MAX, dev);
880 }
881 
882 static void __init setup_clockevent_multiplier(unsigned long hz)
883 {
884 	u64 mult, shift = 32;
885 
886 	while (1) {
887 		mult = div_sc(hz, NSEC_PER_SEC, shift);
888 		if (mult && (mult >> 32UL) == 0UL)
889 			break;
890 
891 		shift--;
892 	}
893 
894 	decrementer_clockevent.shift = shift;
895 	decrementer_clockevent.mult = mult;
896 }
897 
898 static void register_decrementer_clockevent(int cpu)
899 {
900 	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
901 
902 	*dec = decrementer_clockevent;
903 	dec->cpumask = cpumask_of(cpu);
904 
905 	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
906 	       dec->name, dec->mult, dec->shift, cpu);
907 
908 	clockevents_register_device(dec);
909 }
910 
911 static void __init init_decrementer_clockevent(void)
912 {
913 	int cpu = smp_processor_id();
914 
915 	setup_clockevent_multiplier(ppc_tb_freq);
916 	decrementer_clockevent.max_delta_ns =
917 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
918 	decrementer_clockevent.min_delta_ns =
919 		clockevent_delta2ns(2, &decrementer_clockevent);
920 
921 	register_decrementer_clockevent(cpu);
922 }
923 
924 void secondary_cpu_time_init(void)
925 {
926 	/* Start the decrementer on CPUs that have manual control
927 	 * such as BookE
928 	 */
929 	start_cpu_decrementer();
930 
931 	/* FIME: Should make unrelatred change to move snapshot_timebase
932 	 * call here ! */
933 	register_decrementer_clockevent(smp_processor_id());
934 }
935 
936 /* This function is only called on the boot processor */
937 void __init time_init(void)
938 {
939 	unsigned long flags;
940 	struct div_result res;
941 	u64 scale, x;
942 	unsigned shift;
943 
944 	if (__USE_RTC()) {
945 		/* 601 processor: dec counts down by 128 every 128ns */
946 		ppc_tb_freq = 1000000000;
947 		tb_last_jiffy = get_rtcl();
948 	} else {
949 		/* Normal PowerPC with timebase register */
950 		ppc_md.calibrate_decr();
951 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
952 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
953 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
954 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
955 		tb_last_jiffy = get_tb();
956 	}
957 
958 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
959 	tb_ticks_per_sec = ppc_tb_freq;
960 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
961 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
962 	calc_cputime_factors();
963 
964 	/*
965 	 * Calculate the length of each tick in ns.  It will not be
966 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
967 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
968 	 * rounded up.
969 	 */
970 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
971 	do_div(x, ppc_tb_freq);
972 	tick_nsec = x;
973 	last_tick_len = x << TICKLEN_SCALE;
974 
975 	/*
976 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
977 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
978 	 * It is computed as:
979 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
980 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
981 	 * which turns out to be N = 51 - SHIFT_HZ.
982 	 * This gives the result as a 0.64 fixed-point fraction.
983 	 * That value is reduced by an offset amounting to 1 xsec per
984 	 * 2^31 timebase ticks to avoid problems with time going backwards
985 	 * by 1 xsec when we do timer_recalc_offset due to losing the
986 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
987 	 * since there are 2^20 xsec in a second.
988 	 */
989 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
990 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
991 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
992 	ticklen_to_xs = res.result_low;
993 
994 	/* Compute tb_to_xs from tick_nsec */
995 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
996 
997 	/*
998 	 * Compute scale factor for sched_clock.
999 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1000 	 * which is the timebase frequency.
1001 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1002 	 * the 128-bit result as a 64.64 fixed-point number.
1003 	 * We then shift that number right until it is less than 1.0,
1004 	 * giving us the scale factor and shift count to use in
1005 	 * sched_clock().
1006 	 */
1007 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1008 	scale = res.result_low;
1009 	for (shift = 0; res.result_high != 0; ++shift) {
1010 		scale = (scale >> 1) | (res.result_high << 63);
1011 		res.result_high >>= 1;
1012 	}
1013 	tb_to_ns_scale = scale;
1014 	tb_to_ns_shift = shift;
1015 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1016 	boot_tb = get_tb_or_rtc();
1017 
1018 	write_seqlock_irqsave(&xtime_lock, flags);
1019 
1020 	/* If platform provided a timezone (pmac), we correct the time */
1021         if (timezone_offset) {
1022 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1023 		sys_tz.tz_dsttime = 0;
1024         }
1025 
1026 	vdso_data->tb_orig_stamp = tb_last_jiffy;
1027 	vdso_data->tb_update_count = 0;
1028 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1029 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1030 	vdso_data->tb_to_xs = tb_to_xs;
1031 
1032 	write_sequnlock_irqrestore(&xtime_lock, flags);
1033 
1034 	/* Start the decrementer on CPUs that have manual control
1035 	 * such as BookE
1036 	 */
1037 	start_cpu_decrementer();
1038 
1039 	/* Register the clocksource, if we're not running on iSeries */
1040 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
1041 		clocksource_init();
1042 
1043 	init_decrementer_clockevent();
1044 }
1045 
1046 
1047 #define FEBRUARY	2
1048 #define	STARTOFTIME	1970
1049 #define SECDAY		86400L
1050 #define SECYR		(SECDAY * 365)
1051 #define	leapyear(year)		((year) % 4 == 0 && \
1052 				 ((year) % 100 != 0 || (year) % 400 == 0))
1053 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1054 #define	days_in_month(a) 	(month_days[(a) - 1])
1055 
1056 static int month_days[12] = {
1057 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1058 };
1059 
1060 /*
1061  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1062  */
1063 void GregorianDay(struct rtc_time * tm)
1064 {
1065 	int leapsToDate;
1066 	int lastYear;
1067 	int day;
1068 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1069 
1070 	lastYear = tm->tm_year - 1;
1071 
1072 	/*
1073 	 * Number of leap corrections to apply up to end of last year
1074 	 */
1075 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1076 
1077 	/*
1078 	 * This year is a leap year if it is divisible by 4 except when it is
1079 	 * divisible by 100 unless it is divisible by 400
1080 	 *
1081 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1082 	 */
1083 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1084 
1085 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1086 		   tm->tm_mday;
1087 
1088 	tm->tm_wday = day % 7;
1089 }
1090 
1091 void to_tm(int tim, struct rtc_time * tm)
1092 {
1093 	register int    i;
1094 	register long   hms, day;
1095 
1096 	day = tim / SECDAY;
1097 	hms = tim % SECDAY;
1098 
1099 	/* Hours, minutes, seconds are easy */
1100 	tm->tm_hour = hms / 3600;
1101 	tm->tm_min = (hms % 3600) / 60;
1102 	tm->tm_sec = (hms % 3600) % 60;
1103 
1104 	/* Number of years in days */
1105 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1106 		day -= days_in_year(i);
1107 	tm->tm_year = i;
1108 
1109 	/* Number of months in days left */
1110 	if (leapyear(tm->tm_year))
1111 		days_in_month(FEBRUARY) = 29;
1112 	for (i = 1; day >= days_in_month(i); i++)
1113 		day -= days_in_month(i);
1114 	days_in_month(FEBRUARY) = 28;
1115 	tm->tm_mon = i;
1116 
1117 	/* Days are what is left over (+1) from all that. */
1118 	tm->tm_mday = day + 1;
1119 
1120 	/*
1121 	 * Determine the day of week
1122 	 */
1123 	GregorianDay(tm);
1124 }
1125 
1126 /* Auxiliary function to compute scaling factors */
1127 /* Actually the choice of a timebase running at 1/4 the of the bus
1128  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1129  * It makes this computation very precise (27-28 bits typically) which
1130  * is optimistic considering the stability of most processor clock
1131  * oscillators and the precision with which the timebase frequency
1132  * is measured but does not harm.
1133  */
1134 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1135 {
1136         unsigned mlt=0, tmp, err;
1137         /* No concern for performance, it's done once: use a stupid
1138          * but safe and compact method to find the multiplier.
1139          */
1140 
1141         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1142                 if (mulhwu(inscale, mlt|tmp) < outscale)
1143 			mlt |= tmp;
1144         }
1145 
1146         /* We might still be off by 1 for the best approximation.
1147          * A side effect of this is that if outscale is too large
1148          * the returned value will be zero.
1149          * Many corner cases have been checked and seem to work,
1150          * some might have been forgotten in the test however.
1151          */
1152 
1153         err = inscale * (mlt+1);
1154         if (err <= inscale/2)
1155 		mlt++;
1156         return mlt;
1157 }
1158 
1159 /*
1160  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1161  * result.
1162  */
1163 void div128_by_32(u64 dividend_high, u64 dividend_low,
1164 		  unsigned divisor, struct div_result *dr)
1165 {
1166 	unsigned long a, b, c, d;
1167 	unsigned long w, x, y, z;
1168 	u64 ra, rb, rc;
1169 
1170 	a = dividend_high >> 32;
1171 	b = dividend_high & 0xffffffff;
1172 	c = dividend_low >> 32;
1173 	d = dividend_low & 0xffffffff;
1174 
1175 	w = a / divisor;
1176 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1177 
1178 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1179 	x = ra;
1180 
1181 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1182 	y = rb;
1183 
1184 	do_div(rc, divisor);
1185 	z = rc;
1186 
1187 	dr->result_high = ((u64)w << 32) + x;
1188 	dr->result_low  = ((u64)y << 32) + z;
1189 
1190 }
1191 
1192 /* We don't need to calibrate delay, we use the CPU timebase for that */
1193 void calibrate_delay(void)
1194 {
1195 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1196 	 * as the number of __delay(1) in a jiffy, so make it so
1197 	 */
1198 	loops_per_jiffy = tb_ticks_per_jiffy;
1199 }
1200 
1201 static int __init rtc_init(void)
1202 {
1203 	struct platform_device *pdev;
1204 
1205 	if (!ppc_md.get_rtc_time)
1206 		return -ENODEV;
1207 
1208 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1209 	if (IS_ERR(pdev))
1210 		return PTR_ERR(pdev);
1211 
1212 	return 0;
1213 }
1214 
1215 module_init(rtc_init);
1216