1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. 21 * - for astronomical applications: add a new function to get 22 * non ambiguous timestamps even around leap seconds. This needs 23 * a new timestamp format and a good name. 24 * 25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 26 * "A Kernel Model for Precision Timekeeping" by Dave Mills 27 * 28 * This program is free software; you can redistribute it and/or 29 * modify it under the terms of the GNU General Public License 30 * as published by the Free Software Foundation; either version 31 * 2 of the License, or (at your option) any later version. 32 */ 33 34 #include <linux/errno.h> 35 #include <linux/export.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 #include <linux/irq.h> 55 #include <linux/delay.h> 56 #include <linux/irq_work.h> 57 #include <linux/clk-provider.h> 58 #include <linux/suspend.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/processor.h> 61 #include <asm/trace.h> 62 63 #include <asm/io.h> 64 #include <asm/nvram.h> 65 #include <asm/cache.h> 66 #include <asm/machdep.h> 67 #include <linux/uaccess.h> 68 #include <asm/time.h> 69 #include <asm/prom.h> 70 #include <asm/irq.h> 71 #include <asm/div64.h> 72 #include <asm/smp.h> 73 #include <asm/vdso_datapage.h> 74 #include <asm/firmware.h> 75 #include <asm/asm-prototypes.h> 76 77 /* powerpc clocksource/clockevent code */ 78 79 #include <linux/clockchips.h> 80 #include <linux/timekeeper_internal.h> 81 82 static u64 rtc_read(struct clocksource *); 83 static struct clocksource clocksource_rtc = { 84 .name = "rtc", 85 .rating = 400, 86 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 87 .mask = CLOCKSOURCE_MASK(64), 88 .read = rtc_read, 89 }; 90 91 static u64 timebase_read(struct clocksource *); 92 static struct clocksource clocksource_timebase = { 93 .name = "timebase", 94 .rating = 400, 95 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 96 .mask = CLOCKSOURCE_MASK(64), 97 .read = timebase_read, 98 }; 99 100 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 101 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 102 103 static int decrementer_set_next_event(unsigned long evt, 104 struct clock_event_device *dev); 105 static int decrementer_shutdown(struct clock_event_device *evt); 106 107 struct clock_event_device decrementer_clockevent = { 108 .name = "decrementer", 109 .rating = 200, 110 .irq = 0, 111 .set_next_event = decrementer_set_next_event, 112 .set_state_oneshot_stopped = decrementer_shutdown, 113 .set_state_shutdown = decrementer_shutdown, 114 .tick_resume = decrementer_shutdown, 115 .features = CLOCK_EVT_FEAT_ONESHOT | 116 CLOCK_EVT_FEAT_C3STOP, 117 }; 118 EXPORT_SYMBOL(decrementer_clockevent); 119 120 DEFINE_PER_CPU(u64, decrementers_next_tb); 121 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 122 123 #define XSEC_PER_SEC (1024*1024) 124 125 #ifdef CONFIG_PPC64 126 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 127 #else 128 /* compute ((xsec << 12) * max) >> 32 */ 129 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 130 #endif 131 132 unsigned long tb_ticks_per_jiffy; 133 unsigned long tb_ticks_per_usec = 100; /* sane default */ 134 EXPORT_SYMBOL(tb_ticks_per_usec); 135 unsigned long tb_ticks_per_sec; 136 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 137 138 DEFINE_SPINLOCK(rtc_lock); 139 EXPORT_SYMBOL_GPL(rtc_lock); 140 141 static u64 tb_to_ns_scale __read_mostly; 142 static unsigned tb_to_ns_shift __read_mostly; 143 static u64 boot_tb __read_mostly; 144 145 extern struct timezone sys_tz; 146 static long timezone_offset; 147 148 unsigned long ppc_proc_freq; 149 EXPORT_SYMBOL_GPL(ppc_proc_freq); 150 unsigned long ppc_tb_freq; 151 EXPORT_SYMBOL_GPL(ppc_tb_freq); 152 153 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 154 /* 155 * Factor for converting from cputime_t (timebase ticks) to 156 * microseconds. This is stored as 0.64 fixed-point binary fraction. 157 */ 158 u64 __cputime_usec_factor; 159 EXPORT_SYMBOL(__cputime_usec_factor); 160 161 #ifdef CONFIG_PPC_SPLPAR 162 void (*dtl_consumer)(struct dtl_entry *, u64); 163 #endif 164 165 static void calc_cputime_factors(void) 166 { 167 struct div_result res; 168 169 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 170 __cputime_usec_factor = res.result_low; 171 } 172 173 /* 174 * Read the SPURR on systems that have it, otherwise the PURR, 175 * or if that doesn't exist return the timebase value passed in. 176 */ 177 static inline unsigned long read_spurr(unsigned long tb) 178 { 179 if (cpu_has_feature(CPU_FTR_SPURR)) 180 return mfspr(SPRN_SPURR); 181 if (cpu_has_feature(CPU_FTR_PURR)) 182 return mfspr(SPRN_PURR); 183 return tb; 184 } 185 186 #ifdef CONFIG_PPC_SPLPAR 187 188 /* 189 * Scan the dispatch trace log and count up the stolen time. 190 * Should be called with interrupts disabled. 191 */ 192 static u64 scan_dispatch_log(u64 stop_tb) 193 { 194 u64 i = local_paca->dtl_ridx; 195 struct dtl_entry *dtl = local_paca->dtl_curr; 196 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 197 struct lppaca *vpa = local_paca->lppaca_ptr; 198 u64 tb_delta; 199 u64 stolen = 0; 200 u64 dtb; 201 202 if (!dtl) 203 return 0; 204 205 if (i == be64_to_cpu(vpa->dtl_idx)) 206 return 0; 207 while (i < be64_to_cpu(vpa->dtl_idx)) { 208 dtb = be64_to_cpu(dtl->timebase); 209 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 210 be32_to_cpu(dtl->ready_to_enqueue_time); 211 barrier(); 212 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 213 /* buffer has overflowed */ 214 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 215 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 216 continue; 217 } 218 if (dtb > stop_tb) 219 break; 220 if (dtl_consumer) 221 dtl_consumer(dtl, i); 222 stolen += tb_delta; 223 ++i; 224 ++dtl; 225 if (dtl == dtl_end) 226 dtl = local_paca->dispatch_log; 227 } 228 local_paca->dtl_ridx = i; 229 local_paca->dtl_curr = dtl; 230 return stolen; 231 } 232 233 /* 234 * Accumulate stolen time by scanning the dispatch trace log. 235 * Called on entry from user mode. 236 */ 237 void accumulate_stolen_time(void) 238 { 239 u64 sst, ust; 240 unsigned long save_irq_soft_mask = irq_soft_mask_return(); 241 struct cpu_accounting_data *acct = &local_paca->accounting; 242 243 /* We are called early in the exception entry, before 244 * soft/hard_enabled are sync'ed to the expected state 245 * for the exception. We are hard disabled but the PACA 246 * needs to reflect that so various debug stuff doesn't 247 * complain 248 */ 249 irq_soft_mask_set(IRQS_DISABLED); 250 251 sst = scan_dispatch_log(acct->starttime_user); 252 ust = scan_dispatch_log(acct->starttime); 253 acct->stime -= sst; 254 acct->utime -= ust; 255 acct->steal_time += ust + sst; 256 257 irq_soft_mask_set(save_irq_soft_mask); 258 } 259 260 static inline u64 calculate_stolen_time(u64 stop_tb) 261 { 262 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 263 return 0; 264 265 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 266 return scan_dispatch_log(stop_tb); 267 268 return 0; 269 } 270 271 #else /* CONFIG_PPC_SPLPAR */ 272 static inline u64 calculate_stolen_time(u64 stop_tb) 273 { 274 return 0; 275 } 276 277 #endif /* CONFIG_PPC_SPLPAR */ 278 279 /* 280 * Account time for a transition between system, hard irq 281 * or soft irq state. 282 */ 283 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 284 unsigned long now, unsigned long stime) 285 { 286 unsigned long stime_scaled = 0; 287 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 288 unsigned long nowscaled, deltascaled; 289 unsigned long utime, utime_scaled; 290 291 nowscaled = read_spurr(now); 292 deltascaled = nowscaled - acct->startspurr; 293 acct->startspurr = nowscaled; 294 utime = acct->utime - acct->utime_sspurr; 295 acct->utime_sspurr = acct->utime; 296 297 /* 298 * Because we don't read the SPURR on every kernel entry/exit, 299 * deltascaled includes both user and system SPURR ticks. 300 * Apportion these ticks to system SPURR ticks and user 301 * SPURR ticks in the same ratio as the system time (delta) 302 * and user time (udelta) values obtained from the timebase 303 * over the same interval. The system ticks get accounted here; 304 * the user ticks get saved up in paca->user_time_scaled to be 305 * used by account_process_tick. 306 */ 307 stime_scaled = stime; 308 utime_scaled = utime; 309 if (deltascaled != stime + utime) { 310 if (utime) { 311 stime_scaled = deltascaled * stime / (stime + utime); 312 utime_scaled = deltascaled - stime_scaled; 313 } else { 314 stime_scaled = deltascaled; 315 } 316 } 317 acct->utime_scaled += utime_scaled; 318 #endif 319 320 return stime_scaled; 321 } 322 323 static unsigned long vtime_delta(struct task_struct *tsk, 324 unsigned long *stime_scaled, 325 unsigned long *steal_time) 326 { 327 unsigned long now, stime; 328 struct cpu_accounting_data *acct = get_accounting(tsk); 329 330 WARN_ON_ONCE(!irqs_disabled()); 331 332 now = mftb(); 333 stime = now - acct->starttime; 334 acct->starttime = now; 335 336 *stime_scaled = vtime_delta_scaled(acct, now, stime); 337 338 *steal_time = calculate_stolen_time(now); 339 340 return stime; 341 } 342 343 void vtime_account_system(struct task_struct *tsk) 344 { 345 unsigned long stime, stime_scaled, steal_time; 346 struct cpu_accounting_data *acct = get_accounting(tsk); 347 348 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 349 350 stime -= min(stime, steal_time); 351 acct->steal_time += steal_time; 352 353 if ((tsk->flags & PF_VCPU) && !irq_count()) { 354 acct->gtime += stime; 355 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 356 acct->utime_scaled += stime_scaled; 357 #endif 358 } else { 359 if (hardirq_count()) 360 acct->hardirq_time += stime; 361 else if (in_serving_softirq()) 362 acct->softirq_time += stime; 363 else 364 acct->stime += stime; 365 366 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 367 acct->stime_scaled += stime_scaled; 368 #endif 369 } 370 } 371 EXPORT_SYMBOL_GPL(vtime_account_system); 372 373 void vtime_account_idle(struct task_struct *tsk) 374 { 375 unsigned long stime, stime_scaled, steal_time; 376 struct cpu_accounting_data *acct = get_accounting(tsk); 377 378 stime = vtime_delta(tsk, &stime_scaled, &steal_time); 379 acct->idle_time += stime + steal_time; 380 } 381 382 static void vtime_flush_scaled(struct task_struct *tsk, 383 struct cpu_accounting_data *acct) 384 { 385 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 386 if (acct->utime_scaled) 387 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 388 if (acct->stime_scaled) 389 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 390 391 acct->utime_scaled = 0; 392 acct->utime_sspurr = 0; 393 acct->stime_scaled = 0; 394 #endif 395 } 396 397 /* 398 * Account the whole cputime accumulated in the paca 399 * Must be called with interrupts disabled. 400 * Assumes that vtime_account_system/idle() has been called 401 * recently (i.e. since the last entry from usermode) so that 402 * get_paca()->user_time_scaled is up to date. 403 */ 404 void vtime_flush(struct task_struct *tsk) 405 { 406 struct cpu_accounting_data *acct = get_accounting(tsk); 407 408 if (acct->utime) 409 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 410 411 if (acct->gtime) 412 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 413 414 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 415 account_steal_time(cputime_to_nsecs(acct->steal_time)); 416 acct->steal_time = 0; 417 } 418 419 if (acct->idle_time) 420 account_idle_time(cputime_to_nsecs(acct->idle_time)); 421 422 if (acct->stime) 423 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 424 CPUTIME_SYSTEM); 425 426 if (acct->hardirq_time) 427 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 428 CPUTIME_IRQ); 429 if (acct->softirq_time) 430 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 431 CPUTIME_SOFTIRQ); 432 433 vtime_flush_scaled(tsk, acct); 434 435 acct->utime = 0; 436 acct->gtime = 0; 437 acct->idle_time = 0; 438 acct->stime = 0; 439 acct->hardirq_time = 0; 440 acct->softirq_time = 0; 441 } 442 443 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 444 #define calc_cputime_factors() 445 #endif 446 447 void __delay(unsigned long loops) 448 { 449 unsigned long start; 450 int diff; 451 452 spin_begin(); 453 if (__USE_RTC()) { 454 start = get_rtcl(); 455 do { 456 /* the RTCL register wraps at 1000000000 */ 457 diff = get_rtcl() - start; 458 if (diff < 0) 459 diff += 1000000000; 460 spin_cpu_relax(); 461 } while (diff < loops); 462 } else { 463 start = get_tbl(); 464 while (get_tbl() - start < loops) 465 spin_cpu_relax(); 466 } 467 spin_end(); 468 } 469 EXPORT_SYMBOL(__delay); 470 471 void udelay(unsigned long usecs) 472 { 473 __delay(tb_ticks_per_usec * usecs); 474 } 475 EXPORT_SYMBOL(udelay); 476 477 #ifdef CONFIG_SMP 478 unsigned long profile_pc(struct pt_regs *regs) 479 { 480 unsigned long pc = instruction_pointer(regs); 481 482 if (in_lock_functions(pc)) 483 return regs->link; 484 485 return pc; 486 } 487 EXPORT_SYMBOL(profile_pc); 488 #endif 489 490 #ifdef CONFIG_IRQ_WORK 491 492 /* 493 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 494 */ 495 #ifdef CONFIG_PPC64 496 static inline unsigned long test_irq_work_pending(void) 497 { 498 unsigned long x; 499 500 asm volatile("lbz %0,%1(13)" 501 : "=r" (x) 502 : "i" (offsetof(struct paca_struct, irq_work_pending))); 503 return x; 504 } 505 506 static inline void set_irq_work_pending_flag(void) 507 { 508 asm volatile("stb %0,%1(13)" : : 509 "r" (1), 510 "i" (offsetof(struct paca_struct, irq_work_pending))); 511 } 512 513 static inline void clear_irq_work_pending(void) 514 { 515 asm volatile("stb %0,%1(13)" : : 516 "r" (0), 517 "i" (offsetof(struct paca_struct, irq_work_pending))); 518 } 519 520 void arch_irq_work_raise(void) 521 { 522 preempt_disable(); 523 set_irq_work_pending_flag(); 524 /* 525 * Non-nmi code running with interrupts disabled will replay 526 * irq_happened before it re-enables interrupts, so setthe 527 * decrementer there instead of causing a hardware exception 528 * which would immediately hit the masked interrupt handler 529 * and have the net effect of setting the decrementer in 530 * irq_happened. 531 * 532 * NMI interrupts can not check this when they return, so the 533 * decrementer hardware exception is raised, which will fire 534 * when interrupts are next enabled. 535 * 536 * BookE does not support this yet, it must audit all NMI 537 * interrupt handlers to ensure they call nmi_enter() so this 538 * check would be correct. 539 */ 540 if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) { 541 set_dec(1); 542 } else { 543 hard_irq_disable(); 544 local_paca->irq_happened |= PACA_IRQ_DEC; 545 } 546 preempt_enable(); 547 } 548 549 #else /* 32-bit */ 550 551 DEFINE_PER_CPU(u8, irq_work_pending); 552 553 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 554 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 555 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 556 557 void arch_irq_work_raise(void) 558 { 559 preempt_disable(); 560 set_irq_work_pending_flag(); 561 set_dec(1); 562 preempt_enable(); 563 } 564 565 #endif /* 32 vs 64 bit */ 566 567 #else /* CONFIG_IRQ_WORK */ 568 569 #define test_irq_work_pending() 0 570 #define clear_irq_work_pending() 571 572 #endif /* CONFIG_IRQ_WORK */ 573 574 /* 575 * timer_interrupt - gets called when the decrementer overflows, 576 * with interrupts disabled. 577 */ 578 void timer_interrupt(struct pt_regs *regs) 579 { 580 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 581 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 582 struct pt_regs *old_regs; 583 u64 now; 584 585 /* Some implementations of hotplug will get timer interrupts while 586 * offline, just ignore these and we also need to set 587 * decrementers_next_tb as MAX to make sure __check_irq_replay 588 * don't replay timer interrupt when return, otherwise we'll trap 589 * here infinitely :( 590 */ 591 if (unlikely(!cpu_online(smp_processor_id()))) { 592 *next_tb = ~(u64)0; 593 set_dec(decrementer_max); 594 return; 595 } 596 597 /* Ensure a positive value is written to the decrementer, or else 598 * some CPUs will continue to take decrementer exceptions. When the 599 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 600 * 31 bits, which is about 4 seconds on most systems, which gives 601 * the watchdog a chance of catching timer interrupt hard lockups. 602 */ 603 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 604 set_dec(0x7fffffff); 605 else 606 set_dec(decrementer_max); 607 608 /* Conditionally hard-enable interrupts now that the DEC has been 609 * bumped to its maximum value 610 */ 611 may_hard_irq_enable(); 612 613 614 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 615 if (atomic_read(&ppc_n_lost_interrupts) != 0) 616 do_IRQ(regs); 617 #endif 618 619 old_regs = set_irq_regs(regs); 620 irq_enter(); 621 trace_timer_interrupt_entry(regs); 622 623 if (test_irq_work_pending()) { 624 clear_irq_work_pending(); 625 irq_work_run(); 626 } 627 628 now = get_tb_or_rtc(); 629 if (now >= *next_tb) { 630 *next_tb = ~(u64)0; 631 if (evt->event_handler) 632 evt->event_handler(evt); 633 __this_cpu_inc(irq_stat.timer_irqs_event); 634 } else { 635 now = *next_tb - now; 636 if (now <= decrementer_max) 637 set_dec(now); 638 /* We may have raced with new irq work */ 639 if (test_irq_work_pending()) 640 set_dec(1); 641 __this_cpu_inc(irq_stat.timer_irqs_others); 642 } 643 644 trace_timer_interrupt_exit(regs); 645 irq_exit(); 646 set_irq_regs(old_regs); 647 } 648 EXPORT_SYMBOL(timer_interrupt); 649 650 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 651 void timer_broadcast_interrupt(void) 652 { 653 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 654 655 *next_tb = ~(u64)0; 656 tick_receive_broadcast(); 657 __this_cpu_inc(irq_stat.broadcast_irqs_event); 658 } 659 #endif 660 661 /* 662 * Hypervisor decrementer interrupts shouldn't occur but are sometimes 663 * left pending on exit from a KVM guest. We don't need to do anything 664 * to clear them, as they are edge-triggered. 665 */ 666 void hdec_interrupt(struct pt_regs *regs) 667 { 668 } 669 670 #ifdef CONFIG_SUSPEND 671 static void generic_suspend_disable_irqs(void) 672 { 673 /* Disable the decrementer, so that it doesn't interfere 674 * with suspending. 675 */ 676 677 set_dec(decrementer_max); 678 local_irq_disable(); 679 set_dec(decrementer_max); 680 } 681 682 static void generic_suspend_enable_irqs(void) 683 { 684 local_irq_enable(); 685 } 686 687 /* Overrides the weak version in kernel/power/main.c */ 688 void arch_suspend_disable_irqs(void) 689 { 690 if (ppc_md.suspend_disable_irqs) 691 ppc_md.suspend_disable_irqs(); 692 generic_suspend_disable_irqs(); 693 } 694 695 /* Overrides the weak version in kernel/power/main.c */ 696 void arch_suspend_enable_irqs(void) 697 { 698 generic_suspend_enable_irqs(); 699 if (ppc_md.suspend_enable_irqs) 700 ppc_md.suspend_enable_irqs(); 701 } 702 #endif 703 704 unsigned long long tb_to_ns(unsigned long long ticks) 705 { 706 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 707 } 708 EXPORT_SYMBOL_GPL(tb_to_ns); 709 710 /* 711 * Scheduler clock - returns current time in nanosec units. 712 * 713 * Note: mulhdu(a, b) (multiply high double unsigned) returns 714 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 715 * are 64-bit unsigned numbers. 716 */ 717 notrace unsigned long long sched_clock(void) 718 { 719 if (__USE_RTC()) 720 return get_rtc(); 721 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 722 } 723 724 725 #ifdef CONFIG_PPC_PSERIES 726 727 /* 728 * Running clock - attempts to give a view of time passing for a virtualised 729 * kernels. 730 * Uses the VTB register if available otherwise a next best guess. 731 */ 732 unsigned long long running_clock(void) 733 { 734 /* 735 * Don't read the VTB as a host since KVM does not switch in host 736 * timebase into the VTB when it takes a guest off the CPU, reading the 737 * VTB would result in reading 'last switched out' guest VTB. 738 * 739 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 740 * would be unsafe to rely only on the #ifdef above. 741 */ 742 if (firmware_has_feature(FW_FEATURE_LPAR) && 743 cpu_has_feature(CPU_FTR_ARCH_207S)) 744 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 745 746 /* 747 * This is a next best approximation without a VTB. 748 * On a host which is running bare metal there should never be any stolen 749 * time and on a host which doesn't do any virtualisation TB *should* equal 750 * VTB so it makes no difference anyway. 751 */ 752 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 753 } 754 #endif 755 756 static int __init get_freq(char *name, int cells, unsigned long *val) 757 { 758 struct device_node *cpu; 759 const __be32 *fp; 760 int found = 0; 761 762 /* The cpu node should have timebase and clock frequency properties */ 763 cpu = of_find_node_by_type(NULL, "cpu"); 764 765 if (cpu) { 766 fp = of_get_property(cpu, name, NULL); 767 if (fp) { 768 found = 1; 769 *val = of_read_ulong(fp, cells); 770 } 771 772 of_node_put(cpu); 773 } 774 775 return found; 776 } 777 778 static void start_cpu_decrementer(void) 779 { 780 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 781 unsigned int tcr; 782 783 /* Clear any pending timer interrupts */ 784 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 785 786 tcr = mfspr(SPRN_TCR); 787 /* 788 * The watchdog may have already been enabled by u-boot. So leave 789 * TRC[WP] (Watchdog Period) alone. 790 */ 791 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 792 tcr |= TCR_DIE; /* Enable decrementer */ 793 mtspr(SPRN_TCR, tcr); 794 #endif 795 } 796 797 void __init generic_calibrate_decr(void) 798 { 799 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 800 801 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 802 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 803 804 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 805 "(not found)\n"); 806 } 807 808 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 809 810 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 811 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 812 813 printk(KERN_ERR "WARNING: Estimating processor frequency " 814 "(not found)\n"); 815 } 816 } 817 818 int update_persistent_clock64(struct timespec64 now) 819 { 820 struct rtc_time tm; 821 822 if (!ppc_md.set_rtc_time) 823 return -ENODEV; 824 825 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 826 827 return ppc_md.set_rtc_time(&tm); 828 } 829 830 static void __read_persistent_clock(struct timespec64 *ts) 831 { 832 struct rtc_time tm; 833 static int first = 1; 834 835 ts->tv_nsec = 0; 836 /* XXX this is a litle fragile but will work okay in the short term */ 837 if (first) { 838 first = 0; 839 if (ppc_md.time_init) 840 timezone_offset = ppc_md.time_init(); 841 842 /* get_boot_time() isn't guaranteed to be safe to call late */ 843 if (ppc_md.get_boot_time) { 844 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 845 return; 846 } 847 } 848 if (!ppc_md.get_rtc_time) { 849 ts->tv_sec = 0; 850 return; 851 } 852 ppc_md.get_rtc_time(&tm); 853 854 ts->tv_sec = rtc_tm_to_time64(&tm); 855 } 856 857 void read_persistent_clock64(struct timespec64 *ts) 858 { 859 __read_persistent_clock(ts); 860 861 /* Sanitize it in case real time clock is set below EPOCH */ 862 if (ts->tv_sec < 0) { 863 ts->tv_sec = 0; 864 ts->tv_nsec = 0; 865 } 866 867 } 868 869 /* clocksource code */ 870 static notrace u64 rtc_read(struct clocksource *cs) 871 { 872 return (u64)get_rtc(); 873 } 874 875 static notrace u64 timebase_read(struct clocksource *cs) 876 { 877 return (u64)get_tb(); 878 } 879 880 881 void update_vsyscall(struct timekeeper *tk) 882 { 883 struct timespec xt; 884 struct clocksource *clock = tk->tkr_mono.clock; 885 u32 mult = tk->tkr_mono.mult; 886 u32 shift = tk->tkr_mono.shift; 887 u64 cycle_last = tk->tkr_mono.cycle_last; 888 u64 new_tb_to_xs, new_stamp_xsec; 889 u64 frac_sec; 890 891 if (clock != &clocksource_timebase) 892 return; 893 894 xt.tv_sec = tk->xtime_sec; 895 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 896 897 /* Make userspace gettimeofday spin until we're done. */ 898 ++vdso_data->tb_update_count; 899 smp_mb(); 900 901 /* 902 * This computes ((2^20 / 1e9) * mult) >> shift as a 903 * 0.64 fixed-point fraction. 904 * The computation in the else clause below won't overflow 905 * (as long as the timebase frequency is >= 1.049 MHz) 906 * but loses precision because we lose the low bits of the constant 907 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9. 908 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns 909 * over a second. (Shift values are usually 22, 23 or 24.) 910 * For high frequency clocks such as the 512MHz timebase clock 911 * on POWER[6789], the mult value is small (e.g. 32768000) 912 * and so we can shift the constant by 16 initially 913 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the 914 * remaining shifts after the multiplication, which gives a 915 * more accurate result (e.g. with mult = 32768000, shift = 24, 916 * the error is only about 1.2e-12, or 0.7ns over 10 minutes). 917 */ 918 if (mult <= 62500000 && clock->shift >= 16) 919 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16); 920 else 921 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); 922 923 /* 924 * Compute the fractional second in units of 2^-32 seconds. 925 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift 926 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives 927 * it in units of 2^-32 seconds. 928 * We assume shift <= 32 because clocks_calc_mult_shift() 929 * generates shift values in the range 0 - 32. 930 */ 931 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift); 932 do_div(frac_sec, NSEC_PER_SEC); 933 934 /* 935 * Work out new stamp_xsec value for any legacy users of systemcfg. 936 * stamp_xsec is in units of 2^-20 seconds. 937 */ 938 new_stamp_xsec = frac_sec >> 12; 939 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC; 940 941 /* 942 * tb_update_count is used to allow the userspace gettimeofday code 943 * to assure itself that it sees a consistent view of the tb_to_xs and 944 * stamp_xsec variables. It reads the tb_update_count, then reads 945 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 946 * the two values of tb_update_count match and are even then the 947 * tb_to_xs and stamp_xsec values are consistent. If not, then it 948 * loops back and reads them again until this criteria is met. 949 */ 950 vdso_data->tb_orig_stamp = cycle_last; 951 vdso_data->stamp_xsec = new_stamp_xsec; 952 vdso_data->tb_to_xs = new_tb_to_xs; 953 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec; 954 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec; 955 vdso_data->stamp_xtime = xt; 956 vdso_data->stamp_sec_fraction = frac_sec; 957 smp_wmb(); 958 ++(vdso_data->tb_update_count); 959 } 960 961 void update_vsyscall_tz(void) 962 { 963 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 964 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 965 } 966 967 static void __init clocksource_init(void) 968 { 969 struct clocksource *clock; 970 971 if (__USE_RTC()) 972 clock = &clocksource_rtc; 973 else 974 clock = &clocksource_timebase; 975 976 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 977 printk(KERN_ERR "clocksource: %s is already registered\n", 978 clock->name); 979 return; 980 } 981 982 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 983 clock->name, clock->mult, clock->shift); 984 } 985 986 static int decrementer_set_next_event(unsigned long evt, 987 struct clock_event_device *dev) 988 { 989 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt); 990 set_dec(evt); 991 992 /* We may have raced with new irq work */ 993 if (test_irq_work_pending()) 994 set_dec(1); 995 996 return 0; 997 } 998 999 static int decrementer_shutdown(struct clock_event_device *dev) 1000 { 1001 decrementer_set_next_event(decrementer_max, dev); 1002 return 0; 1003 } 1004 1005 static void register_decrementer_clockevent(int cpu) 1006 { 1007 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 1008 1009 *dec = decrementer_clockevent; 1010 dec->cpumask = cpumask_of(cpu); 1011 1012 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 1013 1014 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 1015 dec->name, dec->mult, dec->shift, cpu); 1016 1017 /* Set values for KVM, see kvm_emulate_dec() */ 1018 decrementer_clockevent.mult = dec->mult; 1019 decrementer_clockevent.shift = dec->shift; 1020 } 1021 1022 static void enable_large_decrementer(void) 1023 { 1024 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1025 return; 1026 1027 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 1028 return; 1029 1030 /* 1031 * If we're running as the hypervisor we need to enable the LD manually 1032 * otherwise firmware should have done it for us. 1033 */ 1034 if (cpu_has_feature(CPU_FTR_HVMODE)) 1035 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 1036 } 1037 1038 static void __init set_decrementer_max(void) 1039 { 1040 struct device_node *cpu; 1041 u32 bits = 32; 1042 1043 /* Prior to ISAv3 the decrementer is always 32 bit */ 1044 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1045 return; 1046 1047 cpu = of_find_node_by_type(NULL, "cpu"); 1048 1049 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 1050 if (bits > 64 || bits < 32) { 1051 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 1052 bits = 32; 1053 } 1054 1055 /* calculate the signed maximum given this many bits */ 1056 decrementer_max = (1ul << (bits - 1)) - 1; 1057 } 1058 1059 of_node_put(cpu); 1060 1061 pr_info("time_init: %u bit decrementer (max: %llx)\n", 1062 bits, decrementer_max); 1063 } 1064 1065 static void __init init_decrementer_clockevent(void) 1066 { 1067 register_decrementer_clockevent(smp_processor_id()); 1068 } 1069 1070 void secondary_cpu_time_init(void) 1071 { 1072 /* Enable and test the large decrementer for this cpu */ 1073 enable_large_decrementer(); 1074 1075 /* Start the decrementer on CPUs that have manual control 1076 * such as BookE 1077 */ 1078 start_cpu_decrementer(); 1079 1080 /* FIME: Should make unrelatred change to move snapshot_timebase 1081 * call here ! */ 1082 register_decrementer_clockevent(smp_processor_id()); 1083 } 1084 1085 /* This function is only called on the boot processor */ 1086 void __init time_init(void) 1087 { 1088 struct div_result res; 1089 u64 scale; 1090 unsigned shift; 1091 1092 if (__USE_RTC()) { 1093 /* 601 processor: dec counts down by 128 every 128ns */ 1094 ppc_tb_freq = 1000000000; 1095 } else { 1096 /* Normal PowerPC with timebase register */ 1097 ppc_md.calibrate_decr(); 1098 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 1099 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 1100 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 1101 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 1102 } 1103 1104 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 1105 tb_ticks_per_sec = ppc_tb_freq; 1106 tb_ticks_per_usec = ppc_tb_freq / 1000000; 1107 calc_cputime_factors(); 1108 1109 /* 1110 * Compute scale factor for sched_clock. 1111 * The calibrate_decr() function has set tb_ticks_per_sec, 1112 * which is the timebase frequency. 1113 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1114 * the 128-bit result as a 64.64 fixed-point number. 1115 * We then shift that number right until it is less than 1.0, 1116 * giving us the scale factor and shift count to use in 1117 * sched_clock(). 1118 */ 1119 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1120 scale = res.result_low; 1121 for (shift = 0; res.result_high != 0; ++shift) { 1122 scale = (scale >> 1) | (res.result_high << 63); 1123 res.result_high >>= 1; 1124 } 1125 tb_to_ns_scale = scale; 1126 tb_to_ns_shift = shift; 1127 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1128 boot_tb = get_tb_or_rtc(); 1129 1130 /* If platform provided a timezone (pmac), we correct the time */ 1131 if (timezone_offset) { 1132 sys_tz.tz_minuteswest = -timezone_offset / 60; 1133 sys_tz.tz_dsttime = 0; 1134 } 1135 1136 vdso_data->tb_update_count = 0; 1137 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1138 1139 /* initialise and enable the large decrementer (if we have one) */ 1140 set_decrementer_max(); 1141 enable_large_decrementer(); 1142 1143 /* Start the decrementer on CPUs that have manual control 1144 * such as BookE 1145 */ 1146 start_cpu_decrementer(); 1147 1148 /* Register the clocksource */ 1149 clocksource_init(); 1150 1151 init_decrementer_clockevent(); 1152 tick_setup_hrtimer_broadcast(); 1153 1154 #ifdef CONFIG_COMMON_CLK 1155 of_clk_init(NULL); 1156 #endif 1157 } 1158 1159 /* 1160 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1161 * result. 1162 */ 1163 void div128_by_32(u64 dividend_high, u64 dividend_low, 1164 unsigned divisor, struct div_result *dr) 1165 { 1166 unsigned long a, b, c, d; 1167 unsigned long w, x, y, z; 1168 u64 ra, rb, rc; 1169 1170 a = dividend_high >> 32; 1171 b = dividend_high & 0xffffffff; 1172 c = dividend_low >> 32; 1173 d = dividend_low & 0xffffffff; 1174 1175 w = a / divisor; 1176 ra = ((u64)(a - (w * divisor)) << 32) + b; 1177 1178 rb = ((u64) do_div(ra, divisor) << 32) + c; 1179 x = ra; 1180 1181 rc = ((u64) do_div(rb, divisor) << 32) + d; 1182 y = rb; 1183 1184 do_div(rc, divisor); 1185 z = rc; 1186 1187 dr->result_high = ((u64)w << 32) + x; 1188 dr->result_low = ((u64)y << 32) + z; 1189 1190 } 1191 1192 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1193 void calibrate_delay(void) 1194 { 1195 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1196 * as the number of __delay(1) in a jiffy, so make it so 1197 */ 1198 loops_per_jiffy = tb_ticks_per_jiffy; 1199 } 1200 1201 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1202 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1203 { 1204 ppc_md.get_rtc_time(tm); 1205 return 0; 1206 } 1207 1208 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1209 { 1210 if (!ppc_md.set_rtc_time) 1211 return -EOPNOTSUPP; 1212 1213 if (ppc_md.set_rtc_time(tm) < 0) 1214 return -EOPNOTSUPP; 1215 1216 return 0; 1217 } 1218 1219 static const struct rtc_class_ops rtc_generic_ops = { 1220 .read_time = rtc_generic_get_time, 1221 .set_time = rtc_generic_set_time, 1222 }; 1223 1224 static int __init rtc_init(void) 1225 { 1226 struct platform_device *pdev; 1227 1228 if (!ppc_md.get_rtc_time) 1229 return -ENODEV; 1230 1231 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1232 &rtc_generic_ops, 1233 sizeof(rtc_generic_ops)); 1234 1235 return PTR_ERR_OR_ZERO(pdev); 1236 } 1237 1238 device_initcall(rtc_init); 1239 #endif 1240