1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/errno.h> 36 #include <linux/module.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 55 #include <asm/io.h> 56 #include <asm/processor.h> 57 #include <asm/nvram.h> 58 #include <asm/cache.h> 59 #include <asm/machdep.h> 60 #include <asm/uaccess.h> 61 #include <asm/time.h> 62 #include <asm/prom.h> 63 #include <asm/irq.h> 64 #include <asm/div64.h> 65 #include <asm/smp.h> 66 #include <asm/vdso_datapage.h> 67 #ifdef CONFIG_PPC64 68 #include <asm/firmware.h> 69 #endif 70 #ifdef CONFIG_PPC_ISERIES 71 #include <asm/iseries/it_lp_queue.h> 72 #include <asm/iseries/hv_call_xm.h> 73 #endif 74 #include <asm/smp.h> 75 76 /* keep track of when we need to update the rtc */ 77 time_t last_rtc_update; 78 #ifdef CONFIG_PPC_ISERIES 79 unsigned long iSeries_recal_titan = 0; 80 unsigned long iSeries_recal_tb = 0; 81 static unsigned long first_settimeofday = 1; 82 #endif 83 84 /* The decrementer counts down by 128 every 128ns on a 601. */ 85 #define DECREMENTER_COUNT_601 (1000000000 / HZ) 86 87 #define XSEC_PER_SEC (1024*1024) 88 89 #ifdef CONFIG_PPC64 90 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 91 #else 92 /* compute ((xsec << 12) * max) >> 32 */ 93 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 94 #endif 95 96 unsigned long tb_ticks_per_jiffy; 97 unsigned long tb_ticks_per_usec = 100; /* sane default */ 98 EXPORT_SYMBOL(tb_ticks_per_usec); 99 unsigned long tb_ticks_per_sec; 100 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 101 u64 tb_to_xs; 102 unsigned tb_to_us; 103 104 #define TICKLEN_SCALE TICK_LENGTH_SHIFT 105 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 106 u64 ticklen_to_xs; /* 0.64 fraction */ 107 108 /* If last_tick_len corresponds to about 1/HZ seconds, then 109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 110 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 111 112 DEFINE_SPINLOCK(rtc_lock); 113 EXPORT_SYMBOL_GPL(rtc_lock); 114 115 u64 tb_to_ns_scale; 116 unsigned tb_to_ns_shift; 117 118 struct gettimeofday_struct do_gtod; 119 120 extern unsigned long wall_jiffies; 121 122 extern struct timezone sys_tz; 123 static long timezone_offset; 124 125 unsigned long ppc_proc_freq; 126 unsigned long ppc_tb_freq; 127 128 u64 tb_last_jiffy __cacheline_aligned_in_smp; 129 unsigned long tb_last_stamp; 130 131 /* 132 * Note that on ppc32 this only stores the bottom 32 bits of 133 * the timebase value, but that's enough to tell when a jiffy 134 * has passed. 135 */ 136 DEFINE_PER_CPU(unsigned long, last_jiffy); 137 138 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 139 /* 140 * Factors for converting from cputime_t (timebase ticks) to 141 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 142 * These are all stored as 0.64 fixed-point binary fractions. 143 */ 144 u64 __cputime_jiffies_factor; 145 EXPORT_SYMBOL(__cputime_jiffies_factor); 146 u64 __cputime_msec_factor; 147 EXPORT_SYMBOL(__cputime_msec_factor); 148 u64 __cputime_sec_factor; 149 EXPORT_SYMBOL(__cputime_sec_factor); 150 u64 __cputime_clockt_factor; 151 EXPORT_SYMBOL(__cputime_clockt_factor); 152 153 static void calc_cputime_factors(void) 154 { 155 struct div_result res; 156 157 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 158 __cputime_jiffies_factor = res.result_low; 159 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 160 __cputime_msec_factor = res.result_low; 161 div128_by_32(1, 0, tb_ticks_per_sec, &res); 162 __cputime_sec_factor = res.result_low; 163 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 164 __cputime_clockt_factor = res.result_low; 165 } 166 167 /* 168 * Read the PURR on systems that have it, otherwise the timebase. 169 */ 170 static u64 read_purr(void) 171 { 172 if (cpu_has_feature(CPU_FTR_PURR)) 173 return mfspr(SPRN_PURR); 174 return mftb(); 175 } 176 177 /* 178 * Account time for a transition between system, hard irq 179 * or soft irq state. 180 */ 181 void account_system_vtime(struct task_struct *tsk) 182 { 183 u64 now, delta; 184 unsigned long flags; 185 186 local_irq_save(flags); 187 now = read_purr(); 188 delta = now - get_paca()->startpurr; 189 get_paca()->startpurr = now; 190 if (!in_interrupt()) { 191 delta += get_paca()->system_time; 192 get_paca()->system_time = 0; 193 } 194 account_system_time(tsk, 0, delta); 195 local_irq_restore(flags); 196 } 197 198 /* 199 * Transfer the user and system times accumulated in the paca 200 * by the exception entry and exit code to the generic process 201 * user and system time records. 202 * Must be called with interrupts disabled. 203 */ 204 void account_process_vtime(struct task_struct *tsk) 205 { 206 cputime_t utime; 207 208 utime = get_paca()->user_time; 209 get_paca()->user_time = 0; 210 account_user_time(tsk, utime); 211 } 212 213 static void account_process_time(struct pt_regs *regs) 214 { 215 int cpu = smp_processor_id(); 216 217 account_process_vtime(current); 218 run_local_timers(); 219 if (rcu_pending(cpu)) 220 rcu_check_callbacks(cpu, user_mode(regs)); 221 scheduler_tick(); 222 run_posix_cpu_timers(current); 223 } 224 225 #ifdef CONFIG_PPC_SPLPAR 226 /* 227 * Stuff for accounting stolen time. 228 */ 229 struct cpu_purr_data { 230 int initialized; /* thread is running */ 231 u64 tb0; /* timebase at origin time */ 232 u64 purr0; /* PURR at origin time */ 233 u64 tb; /* last TB value read */ 234 u64 purr; /* last PURR value read */ 235 u64 stolen; /* stolen time so far */ 236 spinlock_t lock; 237 }; 238 239 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 240 241 static void snapshot_tb_and_purr(void *data) 242 { 243 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 244 245 p->tb0 = mftb(); 246 p->purr0 = mfspr(SPRN_PURR); 247 p->tb = p->tb0; 248 p->purr = 0; 249 wmb(); 250 p->initialized = 1; 251 } 252 253 /* 254 * Called during boot when all cpus have come up. 255 */ 256 void snapshot_timebases(void) 257 { 258 int cpu; 259 260 if (!cpu_has_feature(CPU_FTR_PURR)) 261 return; 262 for_each_possible_cpu(cpu) 263 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock); 264 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1); 265 } 266 267 void calculate_steal_time(void) 268 { 269 u64 tb, purr, t0; 270 s64 stolen; 271 struct cpu_purr_data *p0, *pme, *phim; 272 int cpu; 273 274 if (!cpu_has_feature(CPU_FTR_PURR)) 275 return; 276 cpu = smp_processor_id(); 277 pme = &per_cpu(cpu_purr_data, cpu); 278 if (!pme->initialized) 279 return; /* this can happen in early boot */ 280 p0 = &per_cpu(cpu_purr_data, cpu & ~1); 281 phim = &per_cpu(cpu_purr_data, cpu ^ 1); 282 spin_lock(&p0->lock); 283 tb = mftb(); 284 purr = mfspr(SPRN_PURR) - pme->purr0; 285 if (!phim->initialized || !cpu_online(cpu ^ 1)) { 286 stolen = (tb - pme->tb) - (purr - pme->purr); 287 } else { 288 t0 = pme->tb0; 289 if (phim->tb0 < t0) 290 t0 = phim->tb0; 291 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen; 292 } 293 if (stolen > 0) { 294 account_steal_time(current, stolen); 295 p0->stolen += stolen; 296 } 297 pme->tb = tb; 298 pme->purr = purr; 299 spin_unlock(&p0->lock); 300 } 301 302 /* 303 * Must be called before the cpu is added to the online map when 304 * a cpu is being brought up at runtime. 305 */ 306 static void snapshot_purr(void) 307 { 308 int cpu; 309 u64 purr; 310 struct cpu_purr_data *p0, *pme, *phim; 311 unsigned long flags; 312 313 if (!cpu_has_feature(CPU_FTR_PURR)) 314 return; 315 cpu = smp_processor_id(); 316 pme = &per_cpu(cpu_purr_data, cpu); 317 p0 = &per_cpu(cpu_purr_data, cpu & ~1); 318 phim = &per_cpu(cpu_purr_data, cpu ^ 1); 319 spin_lock_irqsave(&p0->lock, flags); 320 pme->tb = pme->tb0 = mftb(); 321 purr = mfspr(SPRN_PURR); 322 if (!phim->initialized) { 323 pme->purr = 0; 324 pme->purr0 = purr; 325 } else { 326 /* set p->purr and p->purr0 for no change in p0->stolen */ 327 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen; 328 pme->purr0 = purr - pme->purr; 329 } 330 pme->initialized = 1; 331 spin_unlock_irqrestore(&p0->lock, flags); 332 } 333 334 #endif /* CONFIG_PPC_SPLPAR */ 335 336 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 337 #define calc_cputime_factors() 338 #define account_process_time(regs) update_process_times(user_mode(regs)) 339 #define calculate_steal_time() do { } while (0) 340 #endif 341 342 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 343 #define snapshot_purr() do { } while (0) 344 #endif 345 346 /* 347 * Called when a cpu comes up after the system has finished booting, 348 * i.e. as a result of a hotplug cpu action. 349 */ 350 void snapshot_timebase(void) 351 { 352 __get_cpu_var(last_jiffy) = get_tb(); 353 snapshot_purr(); 354 } 355 356 void __delay(unsigned long loops) 357 { 358 unsigned long start; 359 int diff; 360 361 if (__USE_RTC()) { 362 start = get_rtcl(); 363 do { 364 /* the RTCL register wraps at 1000000000 */ 365 diff = get_rtcl() - start; 366 if (diff < 0) 367 diff += 1000000000; 368 } while (diff < loops); 369 } else { 370 start = get_tbl(); 371 while (get_tbl() - start < loops) 372 HMT_low(); 373 HMT_medium(); 374 } 375 } 376 EXPORT_SYMBOL(__delay); 377 378 void udelay(unsigned long usecs) 379 { 380 __delay(tb_ticks_per_usec * usecs); 381 } 382 EXPORT_SYMBOL(udelay); 383 384 static __inline__ void timer_check_rtc(void) 385 { 386 /* 387 * update the rtc when needed, this should be performed on the 388 * right fraction of a second. Half or full second ? 389 * Full second works on mk48t59 clocks, others need testing. 390 * Note that this update is basically only used through 391 * the adjtimex system calls. Setting the HW clock in 392 * any other way is a /dev/rtc and userland business. 393 * This is still wrong by -0.5/+1.5 jiffies because of the 394 * timer interrupt resolution and possible delay, but here we 395 * hit a quantization limit which can only be solved by higher 396 * resolution timers and decoupling time management from timer 397 * interrupts. This is also wrong on the clocks 398 * which require being written at the half second boundary. 399 * We should have an rtc call that only sets the minutes and 400 * seconds like on Intel to avoid problems with non UTC clocks. 401 */ 402 if (ppc_md.set_rtc_time && ntp_synced() && 403 xtime.tv_sec - last_rtc_update >= 659 && 404 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) { 405 struct rtc_time tm; 406 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); 407 tm.tm_year -= 1900; 408 tm.tm_mon -= 1; 409 if (ppc_md.set_rtc_time(&tm) == 0) 410 last_rtc_update = xtime.tv_sec + 1; 411 else 412 /* Try again one minute later */ 413 last_rtc_update += 60; 414 } 415 } 416 417 /* 418 * This version of gettimeofday has microsecond resolution. 419 */ 420 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) 421 { 422 unsigned long sec, usec; 423 u64 tb_ticks, xsec; 424 struct gettimeofday_vars *temp_varp; 425 u64 temp_tb_to_xs, temp_stamp_xsec; 426 427 /* 428 * These calculations are faster (gets rid of divides) 429 * if done in units of 1/2^20 rather than microseconds. 430 * The conversion to microseconds at the end is done 431 * without a divide (and in fact, without a multiply) 432 */ 433 temp_varp = do_gtod.varp; 434 tb_ticks = tb_val - temp_varp->tb_orig_stamp; 435 temp_tb_to_xs = temp_varp->tb_to_xs; 436 temp_stamp_xsec = temp_varp->stamp_xsec; 437 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); 438 sec = xsec / XSEC_PER_SEC; 439 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); 440 usec = SCALE_XSEC(usec, 1000000); 441 442 tv->tv_sec = sec; 443 tv->tv_usec = usec; 444 } 445 446 void do_gettimeofday(struct timeval *tv) 447 { 448 if (__USE_RTC()) { 449 /* do this the old way */ 450 unsigned long flags, seq; 451 unsigned int sec, nsec, usec; 452 453 do { 454 seq = read_seqbegin_irqsave(&xtime_lock, flags); 455 sec = xtime.tv_sec; 456 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp); 457 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 458 usec = nsec / 1000; 459 while (usec >= 1000000) { 460 usec -= 1000000; 461 ++sec; 462 } 463 tv->tv_sec = sec; 464 tv->tv_usec = usec; 465 return; 466 } 467 __do_gettimeofday(tv, get_tb()); 468 } 469 470 EXPORT_SYMBOL(do_gettimeofday); 471 472 /* 473 * There are two copies of tb_to_xs and stamp_xsec so that no 474 * lock is needed to access and use these values in 475 * do_gettimeofday. We alternate the copies and as long as a 476 * reasonable time elapses between changes, there will never 477 * be inconsistent values. ntpd has a minimum of one minute 478 * between updates. 479 */ 480 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 481 u64 new_tb_to_xs) 482 { 483 unsigned temp_idx; 484 struct gettimeofday_vars *temp_varp; 485 486 temp_idx = (do_gtod.var_idx == 0); 487 temp_varp = &do_gtod.vars[temp_idx]; 488 489 temp_varp->tb_to_xs = new_tb_to_xs; 490 temp_varp->tb_orig_stamp = new_tb_stamp; 491 temp_varp->stamp_xsec = new_stamp_xsec; 492 smp_mb(); 493 do_gtod.varp = temp_varp; 494 do_gtod.var_idx = temp_idx; 495 496 /* 497 * tb_update_count is used to allow the userspace gettimeofday code 498 * to assure itself that it sees a consistent view of the tb_to_xs and 499 * stamp_xsec variables. It reads the tb_update_count, then reads 500 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 501 * the two values of tb_update_count match and are even then the 502 * tb_to_xs and stamp_xsec values are consistent. If not, then it 503 * loops back and reads them again until this criteria is met. 504 * We expect the caller to have done the first increment of 505 * vdso_data->tb_update_count already. 506 */ 507 vdso_data->tb_orig_stamp = new_tb_stamp; 508 vdso_data->stamp_xsec = new_stamp_xsec; 509 vdso_data->tb_to_xs = new_tb_to_xs; 510 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 511 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 512 smp_wmb(); 513 ++(vdso_data->tb_update_count); 514 } 515 516 /* 517 * When the timebase - tb_orig_stamp gets too big, we do a manipulation 518 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 519 * difference tb - tb_orig_stamp small enough to always fit inside a 520 * 32 bits number. This is a requirement of our fast 32 bits userland 521 * implementation in the vdso. If we "miss" a call to this function 522 * (interrupt latency, CPU locked in a spinlock, ...) and we end up 523 * with a too big difference, then the vdso will fallback to calling 524 * the syscall 525 */ 526 static __inline__ void timer_recalc_offset(u64 cur_tb) 527 { 528 unsigned long offset; 529 u64 new_stamp_xsec; 530 u64 tlen, t2x; 531 u64 tb, xsec_old, xsec_new; 532 struct gettimeofday_vars *varp; 533 534 if (__USE_RTC()) 535 return; 536 tlen = current_tick_length(); 537 offset = cur_tb - do_gtod.varp->tb_orig_stamp; 538 if (tlen == last_tick_len && offset < 0x80000000u) 539 return; 540 if (tlen != last_tick_len) { 541 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs); 542 last_tick_len = tlen; 543 } else 544 t2x = do_gtod.varp->tb_to_xs; 545 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 546 do_div(new_stamp_xsec, 1000000000); 547 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 548 549 ++vdso_data->tb_update_count; 550 smp_mb(); 551 552 /* 553 * Make sure time doesn't go backwards for userspace gettimeofday. 554 */ 555 tb = get_tb(); 556 varp = do_gtod.varp; 557 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs) 558 + varp->stamp_xsec; 559 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec; 560 if (xsec_new < xsec_old) 561 new_stamp_xsec += xsec_old - xsec_new; 562 563 update_gtod(cur_tb, new_stamp_xsec, t2x); 564 } 565 566 #ifdef CONFIG_SMP 567 unsigned long profile_pc(struct pt_regs *regs) 568 { 569 unsigned long pc = instruction_pointer(regs); 570 571 if (in_lock_functions(pc)) 572 return regs->link; 573 574 return pc; 575 } 576 EXPORT_SYMBOL(profile_pc); 577 #endif 578 579 #ifdef CONFIG_PPC_ISERIES 580 581 /* 582 * This function recalibrates the timebase based on the 49-bit time-of-day 583 * value in the Titan chip. The Titan is much more accurate than the value 584 * returned by the service processor for the timebase frequency. 585 */ 586 587 static void iSeries_tb_recal(void) 588 { 589 struct div_result divres; 590 unsigned long titan, tb; 591 tb = get_tb(); 592 titan = HvCallXm_loadTod(); 593 if ( iSeries_recal_titan ) { 594 unsigned long tb_ticks = tb - iSeries_recal_tb; 595 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 596 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 597 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 598 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 599 char sign = '+'; 600 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 601 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 602 603 if ( tick_diff < 0 ) { 604 tick_diff = -tick_diff; 605 sign = '-'; 606 } 607 if ( tick_diff ) { 608 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 609 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 610 new_tb_ticks_per_jiffy, sign, tick_diff ); 611 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 612 tb_ticks_per_sec = new_tb_ticks_per_sec; 613 calc_cputime_factors(); 614 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 615 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 616 tb_to_xs = divres.result_low; 617 do_gtod.varp->tb_to_xs = tb_to_xs; 618 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 619 vdso_data->tb_to_xs = tb_to_xs; 620 } 621 else { 622 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 623 " new tb_ticks_per_jiffy = %lu\n" 624 " old tb_ticks_per_jiffy = %lu\n", 625 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 626 } 627 } 628 } 629 iSeries_recal_titan = titan; 630 iSeries_recal_tb = tb; 631 } 632 #endif 633 634 /* 635 * For iSeries shared processors, we have to let the hypervisor 636 * set the hardware decrementer. We set a virtual decrementer 637 * in the lppaca and call the hypervisor if the virtual 638 * decrementer is less than the current value in the hardware 639 * decrementer. (almost always the new decrementer value will 640 * be greater than the current hardware decementer so the hypervisor 641 * call will not be needed) 642 */ 643 644 /* 645 * timer_interrupt - gets called when the decrementer overflows, 646 * with interrupts disabled. 647 */ 648 void timer_interrupt(struct pt_regs * regs) 649 { 650 int next_dec; 651 int cpu = smp_processor_id(); 652 unsigned long ticks; 653 654 #ifdef CONFIG_PPC32 655 if (atomic_read(&ppc_n_lost_interrupts) != 0) 656 do_IRQ(regs); 657 #endif 658 659 irq_enter(); 660 661 profile_tick(CPU_PROFILING, regs); 662 calculate_steal_time(); 663 664 #ifdef CONFIG_PPC_ISERIES 665 get_lppaca()->int_dword.fields.decr_int = 0; 666 #endif 667 668 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) 669 >= tb_ticks_per_jiffy) { 670 /* Update last_jiffy */ 671 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; 672 /* Handle RTCL overflow on 601 */ 673 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) 674 per_cpu(last_jiffy, cpu) -= 1000000000; 675 676 /* 677 * We cannot disable the decrementer, so in the period 678 * between this cpu's being marked offline in cpu_online_map 679 * and calling stop-self, it is taking timer interrupts. 680 * Avoid calling into the scheduler rebalancing code if this 681 * is the case. 682 */ 683 if (!cpu_is_offline(cpu)) 684 account_process_time(regs); 685 686 /* 687 * No need to check whether cpu is offline here; boot_cpuid 688 * should have been fixed up by now. 689 */ 690 if (cpu != boot_cpuid) 691 continue; 692 693 write_seqlock(&xtime_lock); 694 tb_last_jiffy += tb_ticks_per_jiffy; 695 tb_last_stamp = per_cpu(last_jiffy, cpu); 696 do_timer(regs); 697 timer_recalc_offset(tb_last_jiffy); 698 timer_check_rtc(); 699 write_sequnlock(&xtime_lock); 700 } 701 702 next_dec = tb_ticks_per_jiffy - ticks; 703 set_dec(next_dec); 704 705 #ifdef CONFIG_PPC_ISERIES 706 if (hvlpevent_is_pending()) 707 process_hvlpevents(regs); 708 #endif 709 710 #ifdef CONFIG_PPC64 711 /* collect purr register values often, for accurate calculations */ 712 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 713 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 714 cu->current_tb = mfspr(SPRN_PURR); 715 } 716 #endif 717 718 irq_exit(); 719 } 720 721 void wakeup_decrementer(void) 722 { 723 unsigned long ticks; 724 725 /* 726 * The timebase gets saved on sleep and restored on wakeup, 727 * so all we need to do is to reset the decrementer. 728 */ 729 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 730 if (ticks < tb_ticks_per_jiffy) 731 ticks = tb_ticks_per_jiffy - ticks; 732 else 733 ticks = 1; 734 set_dec(ticks); 735 } 736 737 #ifdef CONFIG_SMP 738 void __init smp_space_timers(unsigned int max_cpus) 739 { 740 int i; 741 unsigned long half = tb_ticks_per_jiffy / 2; 742 unsigned long offset = tb_ticks_per_jiffy / max_cpus; 743 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); 744 745 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 746 previous_tb -= tb_ticks_per_jiffy; 747 /* 748 * The stolen time calculation for POWER5 shared-processor LPAR 749 * systems works better if the two threads' timebase interrupts 750 * are staggered by half a jiffy with respect to each other. 751 */ 752 for_each_possible_cpu(i) { 753 if (i == boot_cpuid) 754 continue; 755 if (i == (boot_cpuid ^ 1)) 756 per_cpu(last_jiffy, i) = 757 per_cpu(last_jiffy, boot_cpuid) - half; 758 else if (i & 1) 759 per_cpu(last_jiffy, i) = 760 per_cpu(last_jiffy, i ^ 1) + half; 761 else { 762 previous_tb += offset; 763 per_cpu(last_jiffy, i) = previous_tb; 764 } 765 } 766 } 767 #endif 768 769 /* 770 * Scheduler clock - returns current time in nanosec units. 771 * 772 * Note: mulhdu(a, b) (multiply high double unsigned) returns 773 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 774 * are 64-bit unsigned numbers. 775 */ 776 unsigned long long sched_clock(void) 777 { 778 if (__USE_RTC()) 779 return get_rtc(); 780 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 781 } 782 783 int do_settimeofday(struct timespec *tv) 784 { 785 time_t wtm_sec, new_sec = tv->tv_sec; 786 long wtm_nsec, new_nsec = tv->tv_nsec; 787 unsigned long flags; 788 u64 new_xsec; 789 unsigned long tb_delta; 790 791 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 792 return -EINVAL; 793 794 write_seqlock_irqsave(&xtime_lock, flags); 795 796 /* 797 * Updating the RTC is not the job of this code. If the time is 798 * stepped under NTP, the RTC will be updated after STA_UNSYNC 799 * is cleared. Tools like clock/hwclock either copy the RTC 800 * to the system time, in which case there is no point in writing 801 * to the RTC again, or write to the RTC but then they don't call 802 * settimeofday to perform this operation. 803 */ 804 #ifdef CONFIG_PPC_ISERIES 805 if (first_settimeofday) { 806 iSeries_tb_recal(); 807 first_settimeofday = 0; 808 } 809 #endif 810 811 /* Make userspace gettimeofday spin until we're done. */ 812 ++vdso_data->tb_update_count; 813 smp_mb(); 814 815 /* 816 * Subtract off the number of nanoseconds since the 817 * beginning of the last tick. 818 * Note that since we don't increment jiffies_64 anywhere other 819 * than in do_timer (since we don't have a lost tick problem), 820 * wall_jiffies will always be the same as jiffies, 821 * and therefore the (jiffies - wall_jiffies) computation 822 * has been removed. 823 */ 824 tb_delta = tb_ticks_since(tb_last_stamp); 825 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */ 826 new_nsec -= SCALE_XSEC(tb_delta, 1000000000); 827 828 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 829 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 830 831 set_normalized_timespec(&xtime, new_sec, new_nsec); 832 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 833 834 /* In case of a large backwards jump in time with NTP, we want the 835 * clock to be updated as soon as the PLL is again in lock. 836 */ 837 last_rtc_update = new_sec - 658; 838 839 ntp_clear(); 840 841 new_xsec = xtime.tv_nsec; 842 if (new_xsec != 0) { 843 new_xsec *= XSEC_PER_SEC; 844 do_div(new_xsec, NSEC_PER_SEC); 845 } 846 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC; 847 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); 848 849 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 850 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 851 852 write_sequnlock_irqrestore(&xtime_lock, flags); 853 clock_was_set(); 854 return 0; 855 } 856 857 EXPORT_SYMBOL(do_settimeofday); 858 859 static int __init get_freq(char *name, int cells, unsigned long *val) 860 { 861 struct device_node *cpu; 862 unsigned int *fp; 863 int found = 0; 864 865 /* The cpu node should have timebase and clock frequency properties */ 866 cpu = of_find_node_by_type(NULL, "cpu"); 867 868 if (cpu) { 869 fp = (unsigned int *)get_property(cpu, name, NULL); 870 if (fp) { 871 found = 1; 872 *val = 0; 873 while (cells--) 874 *val = (*val << 32) | *fp++; 875 } 876 877 of_node_put(cpu); 878 } 879 880 return found; 881 } 882 883 void __init generic_calibrate_decr(void) 884 { 885 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 886 887 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 888 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 889 890 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 891 "(not found)\n"); 892 } 893 894 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 895 896 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 897 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 898 899 printk(KERN_ERR "WARNING: Estimating processor frequency " 900 "(not found)\n"); 901 } 902 903 #ifdef CONFIG_BOOKE 904 /* Set the time base to zero */ 905 mtspr(SPRN_TBWL, 0); 906 mtspr(SPRN_TBWU, 0); 907 908 /* Clear any pending timer interrupts */ 909 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 910 911 /* Enable decrementer interrupt */ 912 mtspr(SPRN_TCR, TCR_DIE); 913 #endif 914 } 915 916 unsigned long get_boot_time(void) 917 { 918 struct rtc_time tm; 919 920 if (ppc_md.get_boot_time) 921 return ppc_md.get_boot_time(); 922 if (!ppc_md.get_rtc_time) 923 return 0; 924 ppc_md.get_rtc_time(&tm); 925 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 926 tm.tm_hour, tm.tm_min, tm.tm_sec); 927 } 928 929 /* This function is only called on the boot processor */ 930 void __init time_init(void) 931 { 932 unsigned long flags; 933 unsigned long tm = 0; 934 struct div_result res; 935 u64 scale, x; 936 unsigned shift; 937 938 if (ppc_md.time_init != NULL) 939 timezone_offset = ppc_md.time_init(); 940 941 if (__USE_RTC()) { 942 /* 601 processor: dec counts down by 128 every 128ns */ 943 ppc_tb_freq = 1000000000; 944 tb_last_stamp = get_rtcl(); 945 tb_last_jiffy = tb_last_stamp; 946 } else { 947 /* Normal PowerPC with timebase register */ 948 ppc_md.calibrate_decr(); 949 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 950 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 951 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 952 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 953 tb_last_stamp = tb_last_jiffy = get_tb(); 954 } 955 956 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 957 tb_ticks_per_sec = ppc_tb_freq; 958 tb_ticks_per_usec = ppc_tb_freq / 1000000; 959 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 960 calc_cputime_factors(); 961 962 /* 963 * Calculate the length of each tick in ns. It will not be 964 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 965 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 966 * rounded up. 967 */ 968 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 969 do_div(x, ppc_tb_freq); 970 tick_nsec = x; 971 last_tick_len = x << TICKLEN_SCALE; 972 973 /* 974 * Compute ticklen_to_xs, which is a factor which gets multiplied 975 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 976 * It is computed as: 977 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 978 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 979 * which turns out to be N = 51 - SHIFT_HZ. 980 * This gives the result as a 0.64 fixed-point fraction. 981 * That value is reduced by an offset amounting to 1 xsec per 982 * 2^31 timebase ticks to avoid problems with time going backwards 983 * by 1 xsec when we do timer_recalc_offset due to losing the 984 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 985 * since there are 2^20 xsec in a second. 986 */ 987 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 988 tb_ticks_per_jiffy << SHIFT_HZ, &res); 989 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 990 ticklen_to_xs = res.result_low; 991 992 /* Compute tb_to_xs from tick_nsec */ 993 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 994 995 /* 996 * Compute scale factor for sched_clock. 997 * The calibrate_decr() function has set tb_ticks_per_sec, 998 * which is the timebase frequency. 999 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1000 * the 128-bit result as a 64.64 fixed-point number. 1001 * We then shift that number right until it is less than 1.0, 1002 * giving us the scale factor and shift count to use in 1003 * sched_clock(). 1004 */ 1005 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1006 scale = res.result_low; 1007 for (shift = 0; res.result_high != 0; ++shift) { 1008 scale = (scale >> 1) | (res.result_high << 63); 1009 res.result_high >>= 1; 1010 } 1011 tb_to_ns_scale = scale; 1012 tb_to_ns_shift = shift; 1013 1014 tm = get_boot_time(); 1015 1016 write_seqlock_irqsave(&xtime_lock, flags); 1017 1018 /* If platform provided a timezone (pmac), we correct the time */ 1019 if (timezone_offset) { 1020 sys_tz.tz_minuteswest = -timezone_offset / 60; 1021 sys_tz.tz_dsttime = 0; 1022 tm -= timezone_offset; 1023 } 1024 1025 xtime.tv_sec = tm; 1026 xtime.tv_nsec = 0; 1027 do_gtod.varp = &do_gtod.vars[0]; 1028 do_gtod.var_idx = 0; 1029 do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 1030 __get_cpu_var(last_jiffy) = tb_last_stamp; 1031 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1032 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 1033 do_gtod.varp->tb_to_xs = tb_to_xs; 1034 do_gtod.tb_to_us = tb_to_us; 1035 1036 vdso_data->tb_orig_stamp = tb_last_jiffy; 1037 vdso_data->tb_update_count = 0; 1038 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1039 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1040 vdso_data->tb_to_xs = tb_to_xs; 1041 1042 time_freq = 0; 1043 1044 last_rtc_update = xtime.tv_sec; 1045 set_normalized_timespec(&wall_to_monotonic, 1046 -xtime.tv_sec, -xtime.tv_nsec); 1047 write_sequnlock_irqrestore(&xtime_lock, flags); 1048 1049 /* Not exact, but the timer interrupt takes care of this */ 1050 set_dec(tb_ticks_per_jiffy); 1051 } 1052 1053 1054 #define FEBRUARY 2 1055 #define STARTOFTIME 1970 1056 #define SECDAY 86400L 1057 #define SECYR (SECDAY * 365) 1058 #define leapyear(year) ((year) % 4 == 0 && \ 1059 ((year) % 100 != 0 || (year) % 400 == 0)) 1060 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1061 #define days_in_month(a) (month_days[(a) - 1]) 1062 1063 static int month_days[12] = { 1064 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1065 }; 1066 1067 /* 1068 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1069 */ 1070 void GregorianDay(struct rtc_time * tm) 1071 { 1072 int leapsToDate; 1073 int lastYear; 1074 int day; 1075 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1076 1077 lastYear = tm->tm_year - 1; 1078 1079 /* 1080 * Number of leap corrections to apply up to end of last year 1081 */ 1082 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1083 1084 /* 1085 * This year is a leap year if it is divisible by 4 except when it is 1086 * divisible by 100 unless it is divisible by 400 1087 * 1088 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1089 */ 1090 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1091 1092 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1093 tm->tm_mday; 1094 1095 tm->tm_wday = day % 7; 1096 } 1097 1098 void to_tm(int tim, struct rtc_time * tm) 1099 { 1100 register int i; 1101 register long hms, day; 1102 1103 day = tim / SECDAY; 1104 hms = tim % SECDAY; 1105 1106 /* Hours, minutes, seconds are easy */ 1107 tm->tm_hour = hms / 3600; 1108 tm->tm_min = (hms % 3600) / 60; 1109 tm->tm_sec = (hms % 3600) % 60; 1110 1111 /* Number of years in days */ 1112 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1113 day -= days_in_year(i); 1114 tm->tm_year = i; 1115 1116 /* Number of months in days left */ 1117 if (leapyear(tm->tm_year)) 1118 days_in_month(FEBRUARY) = 29; 1119 for (i = 1; day >= days_in_month(i); i++) 1120 day -= days_in_month(i); 1121 days_in_month(FEBRUARY) = 28; 1122 tm->tm_mon = i; 1123 1124 /* Days are what is left over (+1) from all that. */ 1125 tm->tm_mday = day + 1; 1126 1127 /* 1128 * Determine the day of week 1129 */ 1130 GregorianDay(tm); 1131 } 1132 1133 /* Auxiliary function to compute scaling factors */ 1134 /* Actually the choice of a timebase running at 1/4 the of the bus 1135 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1136 * It makes this computation very precise (27-28 bits typically) which 1137 * is optimistic considering the stability of most processor clock 1138 * oscillators and the precision with which the timebase frequency 1139 * is measured but does not harm. 1140 */ 1141 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1142 { 1143 unsigned mlt=0, tmp, err; 1144 /* No concern for performance, it's done once: use a stupid 1145 * but safe and compact method to find the multiplier. 1146 */ 1147 1148 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1149 if (mulhwu(inscale, mlt|tmp) < outscale) 1150 mlt |= tmp; 1151 } 1152 1153 /* We might still be off by 1 for the best approximation. 1154 * A side effect of this is that if outscale is too large 1155 * the returned value will be zero. 1156 * Many corner cases have been checked and seem to work, 1157 * some might have been forgotten in the test however. 1158 */ 1159 1160 err = inscale * (mlt+1); 1161 if (err <= inscale/2) 1162 mlt++; 1163 return mlt; 1164 } 1165 1166 /* 1167 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1168 * result. 1169 */ 1170 void div128_by_32(u64 dividend_high, u64 dividend_low, 1171 unsigned divisor, struct div_result *dr) 1172 { 1173 unsigned long a, b, c, d; 1174 unsigned long w, x, y, z; 1175 u64 ra, rb, rc; 1176 1177 a = dividend_high >> 32; 1178 b = dividend_high & 0xffffffff; 1179 c = dividend_low >> 32; 1180 d = dividend_low & 0xffffffff; 1181 1182 w = a / divisor; 1183 ra = ((u64)(a - (w * divisor)) << 32) + b; 1184 1185 rb = ((u64) do_div(ra, divisor) << 32) + c; 1186 x = ra; 1187 1188 rc = ((u64) do_div(rb, divisor) << 32) + d; 1189 y = rb; 1190 1191 do_div(rc, divisor); 1192 z = rc; 1193 1194 dr->result_high = ((u64)w << 32) + x; 1195 dr->result_low = ((u64)y << 32) + z; 1196 1197 } 1198