xref: /linux/arch/powerpc/kernel/time.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 
55 #include <asm/io.h>
56 #include <asm/processor.h>
57 #include <asm/nvram.h>
58 #include <asm/cache.h>
59 #include <asm/machdep.h>
60 #include <asm/uaccess.h>
61 #include <asm/time.h>
62 #include <asm/prom.h>
63 #include <asm/irq.h>
64 #include <asm/div64.h>
65 #include <asm/smp.h>
66 #include <asm/vdso_datapage.h>
67 #ifdef CONFIG_PPC64
68 #include <asm/firmware.h>
69 #endif
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
73 #endif
74 #include <asm/smp.h>
75 
76 /* keep track of when we need to update the rtc */
77 time_t last_rtc_update;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan = 0;
80 unsigned long iSeries_recal_tb = 0;
81 static unsigned long first_settimeofday = 1;
82 #endif
83 
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601	(1000000000 / HZ)
86 
87 #define XSEC_PER_SEC (1024*1024)
88 
89 #ifdef CONFIG_PPC64
90 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
91 #else
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
94 #endif
95 
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
100 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
101 u64 tb_to_xs;
102 unsigned tb_to_us;
103 
104 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
105 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
106 u64 ticklen_to_xs;	/* 0.64 fraction */
107 
108 /* If last_tick_len corresponds to about 1/HZ seconds, then
109    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
111 
112 DEFINE_SPINLOCK(rtc_lock);
113 EXPORT_SYMBOL_GPL(rtc_lock);
114 
115 u64 tb_to_ns_scale;
116 unsigned tb_to_ns_shift;
117 
118 struct gettimeofday_struct do_gtod;
119 
120 extern unsigned long wall_jiffies;
121 
122 extern struct timezone sys_tz;
123 static long timezone_offset;
124 
125 unsigned long ppc_proc_freq;
126 unsigned long ppc_tb_freq;
127 
128 u64 tb_last_jiffy __cacheline_aligned_in_smp;
129 unsigned long tb_last_stamp;
130 
131 /*
132  * Note that on ppc32 this only stores the bottom 32 bits of
133  * the timebase value, but that's enough to tell when a jiffy
134  * has passed.
135  */
136 DEFINE_PER_CPU(unsigned long, last_jiffy);
137 
138 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
139 /*
140  * Factors for converting from cputime_t (timebase ticks) to
141  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
142  * These are all stored as 0.64 fixed-point binary fractions.
143  */
144 u64 __cputime_jiffies_factor;
145 EXPORT_SYMBOL(__cputime_jiffies_factor);
146 u64 __cputime_msec_factor;
147 EXPORT_SYMBOL(__cputime_msec_factor);
148 u64 __cputime_sec_factor;
149 EXPORT_SYMBOL(__cputime_sec_factor);
150 u64 __cputime_clockt_factor;
151 EXPORT_SYMBOL(__cputime_clockt_factor);
152 
153 static void calc_cputime_factors(void)
154 {
155 	struct div_result res;
156 
157 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
158 	__cputime_jiffies_factor = res.result_low;
159 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
160 	__cputime_msec_factor = res.result_low;
161 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
162 	__cputime_sec_factor = res.result_low;
163 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
164 	__cputime_clockt_factor = res.result_low;
165 }
166 
167 /*
168  * Read the PURR on systems that have it, otherwise the timebase.
169  */
170 static u64 read_purr(void)
171 {
172 	if (cpu_has_feature(CPU_FTR_PURR))
173 		return mfspr(SPRN_PURR);
174 	return mftb();
175 }
176 
177 /*
178  * Account time for a transition between system, hard irq
179  * or soft irq state.
180  */
181 void account_system_vtime(struct task_struct *tsk)
182 {
183 	u64 now, delta;
184 	unsigned long flags;
185 
186 	local_irq_save(flags);
187 	now = read_purr();
188 	delta = now - get_paca()->startpurr;
189 	get_paca()->startpurr = now;
190 	if (!in_interrupt()) {
191 		delta += get_paca()->system_time;
192 		get_paca()->system_time = 0;
193 	}
194 	account_system_time(tsk, 0, delta);
195 	local_irq_restore(flags);
196 }
197 
198 /*
199  * Transfer the user and system times accumulated in the paca
200  * by the exception entry and exit code to the generic process
201  * user and system time records.
202  * Must be called with interrupts disabled.
203  */
204 void account_process_vtime(struct task_struct *tsk)
205 {
206 	cputime_t utime;
207 
208 	utime = get_paca()->user_time;
209 	get_paca()->user_time = 0;
210 	account_user_time(tsk, utime);
211 }
212 
213 static void account_process_time(struct pt_regs *regs)
214 {
215 	int cpu = smp_processor_id();
216 
217 	account_process_vtime(current);
218 	run_local_timers();
219 	if (rcu_pending(cpu))
220 		rcu_check_callbacks(cpu, user_mode(regs));
221 	scheduler_tick();
222  	run_posix_cpu_timers(current);
223 }
224 
225 #ifdef CONFIG_PPC_SPLPAR
226 /*
227  * Stuff for accounting stolen time.
228  */
229 struct cpu_purr_data {
230 	int	initialized;			/* thread is running */
231 	u64	tb0;			/* timebase at origin time */
232 	u64	purr0;			/* PURR at origin time */
233 	u64	tb;			/* last TB value read */
234 	u64	purr;			/* last PURR value read */
235 	u64	stolen;			/* stolen time so far */
236 	spinlock_t lock;
237 };
238 
239 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
240 
241 static void snapshot_tb_and_purr(void *data)
242 {
243 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
244 
245 	p->tb0 = mftb();
246 	p->purr0 = mfspr(SPRN_PURR);
247 	p->tb = p->tb0;
248 	p->purr = 0;
249 	wmb();
250 	p->initialized = 1;
251 }
252 
253 /*
254  * Called during boot when all cpus have come up.
255  */
256 void snapshot_timebases(void)
257 {
258 	int cpu;
259 
260 	if (!cpu_has_feature(CPU_FTR_PURR))
261 		return;
262 	for_each_possible_cpu(cpu)
263 		spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
264 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
265 }
266 
267 void calculate_steal_time(void)
268 {
269 	u64 tb, purr, t0;
270 	s64 stolen;
271 	struct cpu_purr_data *p0, *pme, *phim;
272 	int cpu;
273 
274 	if (!cpu_has_feature(CPU_FTR_PURR))
275 		return;
276 	cpu = smp_processor_id();
277 	pme = &per_cpu(cpu_purr_data, cpu);
278 	if (!pme->initialized)
279 		return;		/* this can happen in early boot */
280 	p0 = &per_cpu(cpu_purr_data, cpu & ~1);
281 	phim = &per_cpu(cpu_purr_data, cpu ^ 1);
282 	spin_lock(&p0->lock);
283 	tb = mftb();
284 	purr = mfspr(SPRN_PURR) - pme->purr0;
285 	if (!phim->initialized || !cpu_online(cpu ^ 1)) {
286 		stolen = (tb - pme->tb) - (purr - pme->purr);
287 	} else {
288 		t0 = pme->tb0;
289 		if (phim->tb0 < t0)
290 			t0 = phim->tb0;
291 		stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
292 	}
293 	if (stolen > 0) {
294 		account_steal_time(current, stolen);
295 		p0->stolen += stolen;
296 	}
297 	pme->tb = tb;
298 	pme->purr = purr;
299 	spin_unlock(&p0->lock);
300 }
301 
302 /*
303  * Must be called before the cpu is added to the online map when
304  * a cpu is being brought up at runtime.
305  */
306 static void snapshot_purr(void)
307 {
308 	int cpu;
309 	u64 purr;
310 	struct cpu_purr_data *p0, *pme, *phim;
311 	unsigned long flags;
312 
313 	if (!cpu_has_feature(CPU_FTR_PURR))
314 		return;
315 	cpu = smp_processor_id();
316 	pme = &per_cpu(cpu_purr_data, cpu);
317 	p0 = &per_cpu(cpu_purr_data, cpu & ~1);
318 	phim = &per_cpu(cpu_purr_data, cpu ^ 1);
319 	spin_lock_irqsave(&p0->lock, flags);
320 	pme->tb = pme->tb0 = mftb();
321 	purr = mfspr(SPRN_PURR);
322 	if (!phim->initialized) {
323 		pme->purr = 0;
324 		pme->purr0 = purr;
325 	} else {
326 		/* set p->purr and p->purr0 for no change in p0->stolen */
327 		pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
328 		pme->purr0 = purr - pme->purr;
329 	}
330 	pme->initialized = 1;
331 	spin_unlock_irqrestore(&p0->lock, flags);
332 }
333 
334 #endif /* CONFIG_PPC_SPLPAR */
335 
336 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
337 #define calc_cputime_factors()
338 #define account_process_time(regs)	update_process_times(user_mode(regs))
339 #define calculate_steal_time()		do { } while (0)
340 #endif
341 
342 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
343 #define snapshot_purr()			do { } while (0)
344 #endif
345 
346 /*
347  * Called when a cpu comes up after the system has finished booting,
348  * i.e. as a result of a hotplug cpu action.
349  */
350 void snapshot_timebase(void)
351 {
352 	__get_cpu_var(last_jiffy) = get_tb();
353 	snapshot_purr();
354 }
355 
356 void __delay(unsigned long loops)
357 {
358 	unsigned long start;
359 	int diff;
360 
361 	if (__USE_RTC()) {
362 		start = get_rtcl();
363 		do {
364 			/* the RTCL register wraps at 1000000000 */
365 			diff = get_rtcl() - start;
366 			if (diff < 0)
367 				diff += 1000000000;
368 		} while (diff < loops);
369 	} else {
370 		start = get_tbl();
371 		while (get_tbl() - start < loops)
372 			HMT_low();
373 		HMT_medium();
374 	}
375 }
376 EXPORT_SYMBOL(__delay);
377 
378 void udelay(unsigned long usecs)
379 {
380 	__delay(tb_ticks_per_usec * usecs);
381 }
382 EXPORT_SYMBOL(udelay);
383 
384 static __inline__ void timer_check_rtc(void)
385 {
386         /*
387          * update the rtc when needed, this should be performed on the
388          * right fraction of a second. Half or full second ?
389          * Full second works on mk48t59 clocks, others need testing.
390          * Note that this update is basically only used through
391          * the adjtimex system calls. Setting the HW clock in
392          * any other way is a /dev/rtc and userland business.
393          * This is still wrong by -0.5/+1.5 jiffies because of the
394          * timer interrupt resolution and possible delay, but here we
395          * hit a quantization limit which can only be solved by higher
396          * resolution timers and decoupling time management from timer
397          * interrupts. This is also wrong on the clocks
398          * which require being written at the half second boundary.
399          * We should have an rtc call that only sets the minutes and
400          * seconds like on Intel to avoid problems with non UTC clocks.
401          */
402         if (ppc_md.set_rtc_time && ntp_synced() &&
403 	    xtime.tv_sec - last_rtc_update >= 659 &&
404 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
405 		struct rtc_time tm;
406 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
407 		tm.tm_year -= 1900;
408 		tm.tm_mon -= 1;
409 		if (ppc_md.set_rtc_time(&tm) == 0)
410 			last_rtc_update = xtime.tv_sec + 1;
411 		else
412 			/* Try again one minute later */
413 			last_rtc_update += 60;
414         }
415 }
416 
417 /*
418  * This version of gettimeofday has microsecond resolution.
419  */
420 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
421 {
422 	unsigned long sec, usec;
423 	u64 tb_ticks, xsec;
424 	struct gettimeofday_vars *temp_varp;
425 	u64 temp_tb_to_xs, temp_stamp_xsec;
426 
427 	/*
428 	 * These calculations are faster (gets rid of divides)
429 	 * if done in units of 1/2^20 rather than microseconds.
430 	 * The conversion to microseconds at the end is done
431 	 * without a divide (and in fact, without a multiply)
432 	 */
433 	temp_varp = do_gtod.varp;
434 	tb_ticks = tb_val - temp_varp->tb_orig_stamp;
435 	temp_tb_to_xs = temp_varp->tb_to_xs;
436 	temp_stamp_xsec = temp_varp->stamp_xsec;
437 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
438 	sec = xsec / XSEC_PER_SEC;
439 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
440 	usec = SCALE_XSEC(usec, 1000000);
441 
442 	tv->tv_sec = sec;
443 	tv->tv_usec = usec;
444 }
445 
446 void do_gettimeofday(struct timeval *tv)
447 {
448 	if (__USE_RTC()) {
449 		/* do this the old way */
450 		unsigned long flags, seq;
451 		unsigned int sec, nsec, usec;
452 
453 		do {
454 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
455 			sec = xtime.tv_sec;
456 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
457 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
458 		usec = nsec / 1000;
459 		while (usec >= 1000000) {
460 			usec -= 1000000;
461 			++sec;
462 		}
463 		tv->tv_sec = sec;
464 		tv->tv_usec = usec;
465 		return;
466 	}
467 	__do_gettimeofday(tv, get_tb());
468 }
469 
470 EXPORT_SYMBOL(do_gettimeofday);
471 
472 /*
473  * There are two copies of tb_to_xs and stamp_xsec so that no
474  * lock is needed to access and use these values in
475  * do_gettimeofday.  We alternate the copies and as long as a
476  * reasonable time elapses between changes, there will never
477  * be inconsistent values.  ntpd has a minimum of one minute
478  * between updates.
479  */
480 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
481 			       u64 new_tb_to_xs)
482 {
483 	unsigned temp_idx;
484 	struct gettimeofday_vars *temp_varp;
485 
486 	temp_idx = (do_gtod.var_idx == 0);
487 	temp_varp = &do_gtod.vars[temp_idx];
488 
489 	temp_varp->tb_to_xs = new_tb_to_xs;
490 	temp_varp->tb_orig_stamp = new_tb_stamp;
491 	temp_varp->stamp_xsec = new_stamp_xsec;
492 	smp_mb();
493 	do_gtod.varp = temp_varp;
494 	do_gtod.var_idx = temp_idx;
495 
496 	/*
497 	 * tb_update_count is used to allow the userspace gettimeofday code
498 	 * to assure itself that it sees a consistent view of the tb_to_xs and
499 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
500 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
501 	 * the two values of tb_update_count match and are even then the
502 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
503 	 * loops back and reads them again until this criteria is met.
504 	 * We expect the caller to have done the first increment of
505 	 * vdso_data->tb_update_count already.
506 	 */
507 	vdso_data->tb_orig_stamp = new_tb_stamp;
508 	vdso_data->stamp_xsec = new_stamp_xsec;
509 	vdso_data->tb_to_xs = new_tb_to_xs;
510 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
511 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
512 	smp_wmb();
513 	++(vdso_data->tb_update_count);
514 }
515 
516 /*
517  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
518  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
519  * difference tb - tb_orig_stamp small enough to always fit inside a
520  * 32 bits number. This is a requirement of our fast 32 bits userland
521  * implementation in the vdso. If we "miss" a call to this function
522  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
523  * with a too big difference, then the vdso will fallback to calling
524  * the syscall
525  */
526 static __inline__ void timer_recalc_offset(u64 cur_tb)
527 {
528 	unsigned long offset;
529 	u64 new_stamp_xsec;
530 	u64 tlen, t2x;
531 	u64 tb, xsec_old, xsec_new;
532 	struct gettimeofday_vars *varp;
533 
534 	if (__USE_RTC())
535 		return;
536 	tlen = current_tick_length();
537 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
538 	if (tlen == last_tick_len && offset < 0x80000000u)
539 		return;
540 	if (tlen != last_tick_len) {
541 		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
542 		last_tick_len = tlen;
543 	} else
544 		t2x = do_gtod.varp->tb_to_xs;
545 	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
546 	do_div(new_stamp_xsec, 1000000000);
547 	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
548 
549 	++vdso_data->tb_update_count;
550 	smp_mb();
551 
552 	/*
553 	 * Make sure time doesn't go backwards for userspace gettimeofday.
554 	 */
555 	tb = get_tb();
556 	varp = do_gtod.varp;
557 	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
558 		+ varp->stamp_xsec;
559 	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
560 	if (xsec_new < xsec_old)
561 		new_stamp_xsec += xsec_old - xsec_new;
562 
563 	update_gtod(cur_tb, new_stamp_xsec, t2x);
564 }
565 
566 #ifdef CONFIG_SMP
567 unsigned long profile_pc(struct pt_regs *regs)
568 {
569 	unsigned long pc = instruction_pointer(regs);
570 
571 	if (in_lock_functions(pc))
572 		return regs->link;
573 
574 	return pc;
575 }
576 EXPORT_SYMBOL(profile_pc);
577 #endif
578 
579 #ifdef CONFIG_PPC_ISERIES
580 
581 /*
582  * This function recalibrates the timebase based on the 49-bit time-of-day
583  * value in the Titan chip.  The Titan is much more accurate than the value
584  * returned by the service processor for the timebase frequency.
585  */
586 
587 static void iSeries_tb_recal(void)
588 {
589 	struct div_result divres;
590 	unsigned long titan, tb;
591 	tb = get_tb();
592 	titan = HvCallXm_loadTod();
593 	if ( iSeries_recal_titan ) {
594 		unsigned long tb_ticks = tb - iSeries_recal_tb;
595 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
596 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
597 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
598 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
599 		char sign = '+';
600 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
601 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
602 
603 		if ( tick_diff < 0 ) {
604 			tick_diff = -tick_diff;
605 			sign = '-';
606 		}
607 		if ( tick_diff ) {
608 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
609 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
610 						new_tb_ticks_per_jiffy, sign, tick_diff );
611 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
612 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
613 				calc_cputime_factors();
614 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
615 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
616 				tb_to_xs = divres.result_low;
617 				do_gtod.varp->tb_to_xs = tb_to_xs;
618 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
619 				vdso_data->tb_to_xs = tb_to_xs;
620 			}
621 			else {
622 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
623 					"                   new tb_ticks_per_jiffy = %lu\n"
624 					"                   old tb_ticks_per_jiffy = %lu\n",
625 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
626 			}
627 		}
628 	}
629 	iSeries_recal_titan = titan;
630 	iSeries_recal_tb = tb;
631 }
632 #endif
633 
634 /*
635  * For iSeries shared processors, we have to let the hypervisor
636  * set the hardware decrementer.  We set a virtual decrementer
637  * in the lppaca and call the hypervisor if the virtual
638  * decrementer is less than the current value in the hardware
639  * decrementer. (almost always the new decrementer value will
640  * be greater than the current hardware decementer so the hypervisor
641  * call will not be needed)
642  */
643 
644 /*
645  * timer_interrupt - gets called when the decrementer overflows,
646  * with interrupts disabled.
647  */
648 void timer_interrupt(struct pt_regs * regs)
649 {
650 	int next_dec;
651 	int cpu = smp_processor_id();
652 	unsigned long ticks;
653 
654 #ifdef CONFIG_PPC32
655 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
656 		do_IRQ(regs);
657 #endif
658 
659 	irq_enter();
660 
661 	profile_tick(CPU_PROFILING, regs);
662 	calculate_steal_time();
663 
664 #ifdef CONFIG_PPC_ISERIES
665 	get_lppaca()->int_dword.fields.decr_int = 0;
666 #endif
667 
668 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
669 	       >= tb_ticks_per_jiffy) {
670 		/* Update last_jiffy */
671 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
672 		/* Handle RTCL overflow on 601 */
673 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
674 			per_cpu(last_jiffy, cpu) -= 1000000000;
675 
676 		/*
677 		 * We cannot disable the decrementer, so in the period
678 		 * between this cpu's being marked offline in cpu_online_map
679 		 * and calling stop-self, it is taking timer interrupts.
680 		 * Avoid calling into the scheduler rebalancing code if this
681 		 * is the case.
682 		 */
683 		if (!cpu_is_offline(cpu))
684 			account_process_time(regs);
685 
686 		/*
687 		 * No need to check whether cpu is offline here; boot_cpuid
688 		 * should have been fixed up by now.
689 		 */
690 		if (cpu != boot_cpuid)
691 			continue;
692 
693 		write_seqlock(&xtime_lock);
694 		tb_last_jiffy += tb_ticks_per_jiffy;
695 		tb_last_stamp = per_cpu(last_jiffy, cpu);
696 		do_timer(regs);
697 		timer_recalc_offset(tb_last_jiffy);
698 		timer_check_rtc();
699 		write_sequnlock(&xtime_lock);
700 	}
701 
702 	next_dec = tb_ticks_per_jiffy - ticks;
703 	set_dec(next_dec);
704 
705 #ifdef CONFIG_PPC_ISERIES
706 	if (hvlpevent_is_pending())
707 		process_hvlpevents(regs);
708 #endif
709 
710 #ifdef CONFIG_PPC64
711 	/* collect purr register values often, for accurate calculations */
712 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
713 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
714 		cu->current_tb = mfspr(SPRN_PURR);
715 	}
716 #endif
717 
718 	irq_exit();
719 }
720 
721 void wakeup_decrementer(void)
722 {
723 	unsigned long ticks;
724 
725 	/*
726 	 * The timebase gets saved on sleep and restored on wakeup,
727 	 * so all we need to do is to reset the decrementer.
728 	 */
729 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
730 	if (ticks < tb_ticks_per_jiffy)
731 		ticks = tb_ticks_per_jiffy - ticks;
732 	else
733 		ticks = 1;
734 	set_dec(ticks);
735 }
736 
737 #ifdef CONFIG_SMP
738 void __init smp_space_timers(unsigned int max_cpus)
739 {
740 	int i;
741 	unsigned long half = tb_ticks_per_jiffy / 2;
742 	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
743 	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
744 
745 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
746 	previous_tb -= tb_ticks_per_jiffy;
747 	/*
748 	 * The stolen time calculation for POWER5 shared-processor LPAR
749 	 * systems works better if the two threads' timebase interrupts
750 	 * are staggered by half a jiffy with respect to each other.
751 	 */
752 	for_each_possible_cpu(i) {
753 		if (i == boot_cpuid)
754 			continue;
755 		if (i == (boot_cpuid ^ 1))
756 			per_cpu(last_jiffy, i) =
757 				per_cpu(last_jiffy, boot_cpuid) - half;
758 		else if (i & 1)
759 			per_cpu(last_jiffy, i) =
760 				per_cpu(last_jiffy, i ^ 1) + half;
761 		else {
762 			previous_tb += offset;
763 			per_cpu(last_jiffy, i) = previous_tb;
764 		}
765 	}
766 }
767 #endif
768 
769 /*
770  * Scheduler clock - returns current time in nanosec units.
771  *
772  * Note: mulhdu(a, b) (multiply high double unsigned) returns
773  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
774  * are 64-bit unsigned numbers.
775  */
776 unsigned long long sched_clock(void)
777 {
778 	if (__USE_RTC())
779 		return get_rtc();
780 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
781 }
782 
783 int do_settimeofday(struct timespec *tv)
784 {
785 	time_t wtm_sec, new_sec = tv->tv_sec;
786 	long wtm_nsec, new_nsec = tv->tv_nsec;
787 	unsigned long flags;
788 	u64 new_xsec;
789 	unsigned long tb_delta;
790 
791 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
792 		return -EINVAL;
793 
794 	write_seqlock_irqsave(&xtime_lock, flags);
795 
796 	/*
797 	 * Updating the RTC is not the job of this code. If the time is
798 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
799 	 * is cleared.  Tools like clock/hwclock either copy the RTC
800 	 * to the system time, in which case there is no point in writing
801 	 * to the RTC again, or write to the RTC but then they don't call
802 	 * settimeofday to perform this operation.
803 	 */
804 #ifdef CONFIG_PPC_ISERIES
805 	if (first_settimeofday) {
806 		iSeries_tb_recal();
807 		first_settimeofday = 0;
808 	}
809 #endif
810 
811 	/* Make userspace gettimeofday spin until we're done. */
812 	++vdso_data->tb_update_count;
813 	smp_mb();
814 
815 	/*
816 	 * Subtract off the number of nanoseconds since the
817 	 * beginning of the last tick.
818 	 * Note that since we don't increment jiffies_64 anywhere other
819 	 * than in do_timer (since we don't have a lost tick problem),
820 	 * wall_jiffies will always be the same as jiffies,
821 	 * and therefore the (jiffies - wall_jiffies) computation
822 	 * has been removed.
823 	 */
824 	tb_delta = tb_ticks_since(tb_last_stamp);
825 	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
826 	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
827 
828 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
829 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
830 
831  	set_normalized_timespec(&xtime, new_sec, new_nsec);
832 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
833 
834 	/* In case of a large backwards jump in time with NTP, we want the
835 	 * clock to be updated as soon as the PLL is again in lock.
836 	 */
837 	last_rtc_update = new_sec - 658;
838 
839 	ntp_clear();
840 
841 	new_xsec = xtime.tv_nsec;
842 	if (new_xsec != 0) {
843 		new_xsec *= XSEC_PER_SEC;
844 		do_div(new_xsec, NSEC_PER_SEC);
845 	}
846 	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
847 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
848 
849 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
850 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
851 
852 	write_sequnlock_irqrestore(&xtime_lock, flags);
853 	clock_was_set();
854 	return 0;
855 }
856 
857 EXPORT_SYMBOL(do_settimeofday);
858 
859 static int __init get_freq(char *name, int cells, unsigned long *val)
860 {
861 	struct device_node *cpu;
862 	unsigned int *fp;
863 	int found = 0;
864 
865 	/* The cpu node should have timebase and clock frequency properties */
866 	cpu = of_find_node_by_type(NULL, "cpu");
867 
868 	if (cpu) {
869 		fp = (unsigned int *)get_property(cpu, name, NULL);
870 		if (fp) {
871 			found = 1;
872 			*val = 0;
873 			while (cells--)
874 				*val = (*val << 32) | *fp++;
875 		}
876 
877 		of_node_put(cpu);
878 	}
879 
880 	return found;
881 }
882 
883 void __init generic_calibrate_decr(void)
884 {
885 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
886 
887 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
888 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
889 
890 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
891 				"(not found)\n");
892 	}
893 
894 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
895 
896 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
897 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
898 
899 		printk(KERN_ERR "WARNING: Estimating processor frequency "
900 				"(not found)\n");
901 	}
902 
903 #ifdef CONFIG_BOOKE
904 	/* Set the time base to zero */
905 	mtspr(SPRN_TBWL, 0);
906 	mtspr(SPRN_TBWU, 0);
907 
908 	/* Clear any pending timer interrupts */
909 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
910 
911 	/* Enable decrementer interrupt */
912 	mtspr(SPRN_TCR, TCR_DIE);
913 #endif
914 }
915 
916 unsigned long get_boot_time(void)
917 {
918 	struct rtc_time tm;
919 
920 	if (ppc_md.get_boot_time)
921 		return ppc_md.get_boot_time();
922 	if (!ppc_md.get_rtc_time)
923 		return 0;
924 	ppc_md.get_rtc_time(&tm);
925 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
926 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
927 }
928 
929 /* This function is only called on the boot processor */
930 void __init time_init(void)
931 {
932 	unsigned long flags;
933 	unsigned long tm = 0;
934 	struct div_result res;
935 	u64 scale, x;
936 	unsigned shift;
937 
938         if (ppc_md.time_init != NULL)
939                 timezone_offset = ppc_md.time_init();
940 
941 	if (__USE_RTC()) {
942 		/* 601 processor: dec counts down by 128 every 128ns */
943 		ppc_tb_freq = 1000000000;
944 		tb_last_stamp = get_rtcl();
945 		tb_last_jiffy = tb_last_stamp;
946 	} else {
947 		/* Normal PowerPC with timebase register */
948 		ppc_md.calibrate_decr();
949 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
950 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
951 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
952 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
953 		tb_last_stamp = tb_last_jiffy = get_tb();
954 	}
955 
956 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
957 	tb_ticks_per_sec = ppc_tb_freq;
958 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
959 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
960 	calc_cputime_factors();
961 
962 	/*
963 	 * Calculate the length of each tick in ns.  It will not be
964 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
965 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
966 	 * rounded up.
967 	 */
968 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
969 	do_div(x, ppc_tb_freq);
970 	tick_nsec = x;
971 	last_tick_len = x << TICKLEN_SCALE;
972 
973 	/*
974 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
975 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
976 	 * It is computed as:
977 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
978 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
979 	 * which turns out to be N = 51 - SHIFT_HZ.
980 	 * This gives the result as a 0.64 fixed-point fraction.
981 	 * That value is reduced by an offset amounting to 1 xsec per
982 	 * 2^31 timebase ticks to avoid problems with time going backwards
983 	 * by 1 xsec when we do timer_recalc_offset due to losing the
984 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
985 	 * since there are 2^20 xsec in a second.
986 	 */
987 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
988 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
989 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
990 	ticklen_to_xs = res.result_low;
991 
992 	/* Compute tb_to_xs from tick_nsec */
993 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
994 
995 	/*
996 	 * Compute scale factor for sched_clock.
997 	 * The calibrate_decr() function has set tb_ticks_per_sec,
998 	 * which is the timebase frequency.
999 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1000 	 * the 128-bit result as a 64.64 fixed-point number.
1001 	 * We then shift that number right until it is less than 1.0,
1002 	 * giving us the scale factor and shift count to use in
1003 	 * sched_clock().
1004 	 */
1005 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1006 	scale = res.result_low;
1007 	for (shift = 0; res.result_high != 0; ++shift) {
1008 		scale = (scale >> 1) | (res.result_high << 63);
1009 		res.result_high >>= 1;
1010 	}
1011 	tb_to_ns_scale = scale;
1012 	tb_to_ns_shift = shift;
1013 
1014 	tm = get_boot_time();
1015 
1016 	write_seqlock_irqsave(&xtime_lock, flags);
1017 
1018 	/* If platform provided a timezone (pmac), we correct the time */
1019         if (timezone_offset) {
1020 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1021 		sys_tz.tz_dsttime = 0;
1022 		tm -= timezone_offset;
1023         }
1024 
1025 	xtime.tv_sec = tm;
1026 	xtime.tv_nsec = 0;
1027 	do_gtod.varp = &do_gtod.vars[0];
1028 	do_gtod.var_idx = 0;
1029 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
1030 	__get_cpu_var(last_jiffy) = tb_last_stamp;
1031 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1032 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1033 	do_gtod.varp->tb_to_xs = tb_to_xs;
1034 	do_gtod.tb_to_us = tb_to_us;
1035 
1036 	vdso_data->tb_orig_stamp = tb_last_jiffy;
1037 	vdso_data->tb_update_count = 0;
1038 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1039 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1040 	vdso_data->tb_to_xs = tb_to_xs;
1041 
1042 	time_freq = 0;
1043 
1044 	last_rtc_update = xtime.tv_sec;
1045 	set_normalized_timespec(&wall_to_monotonic,
1046 	                        -xtime.tv_sec, -xtime.tv_nsec);
1047 	write_sequnlock_irqrestore(&xtime_lock, flags);
1048 
1049 	/* Not exact, but the timer interrupt takes care of this */
1050 	set_dec(tb_ticks_per_jiffy);
1051 }
1052 
1053 
1054 #define FEBRUARY	2
1055 #define	STARTOFTIME	1970
1056 #define SECDAY		86400L
1057 #define SECYR		(SECDAY * 365)
1058 #define	leapyear(year)		((year) % 4 == 0 && \
1059 				 ((year) % 100 != 0 || (year) % 400 == 0))
1060 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1061 #define	days_in_month(a) 	(month_days[(a) - 1])
1062 
1063 static int month_days[12] = {
1064 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1065 };
1066 
1067 /*
1068  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1069  */
1070 void GregorianDay(struct rtc_time * tm)
1071 {
1072 	int leapsToDate;
1073 	int lastYear;
1074 	int day;
1075 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1076 
1077 	lastYear = tm->tm_year - 1;
1078 
1079 	/*
1080 	 * Number of leap corrections to apply up to end of last year
1081 	 */
1082 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1083 
1084 	/*
1085 	 * This year is a leap year if it is divisible by 4 except when it is
1086 	 * divisible by 100 unless it is divisible by 400
1087 	 *
1088 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1089 	 */
1090 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1091 
1092 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1093 		   tm->tm_mday;
1094 
1095 	tm->tm_wday = day % 7;
1096 }
1097 
1098 void to_tm(int tim, struct rtc_time * tm)
1099 {
1100 	register int    i;
1101 	register long   hms, day;
1102 
1103 	day = tim / SECDAY;
1104 	hms = tim % SECDAY;
1105 
1106 	/* Hours, minutes, seconds are easy */
1107 	tm->tm_hour = hms / 3600;
1108 	tm->tm_min = (hms % 3600) / 60;
1109 	tm->tm_sec = (hms % 3600) % 60;
1110 
1111 	/* Number of years in days */
1112 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1113 		day -= days_in_year(i);
1114 	tm->tm_year = i;
1115 
1116 	/* Number of months in days left */
1117 	if (leapyear(tm->tm_year))
1118 		days_in_month(FEBRUARY) = 29;
1119 	for (i = 1; day >= days_in_month(i); i++)
1120 		day -= days_in_month(i);
1121 	days_in_month(FEBRUARY) = 28;
1122 	tm->tm_mon = i;
1123 
1124 	/* Days are what is left over (+1) from all that. */
1125 	tm->tm_mday = day + 1;
1126 
1127 	/*
1128 	 * Determine the day of week
1129 	 */
1130 	GregorianDay(tm);
1131 }
1132 
1133 /* Auxiliary function to compute scaling factors */
1134 /* Actually the choice of a timebase running at 1/4 the of the bus
1135  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1136  * It makes this computation very precise (27-28 bits typically) which
1137  * is optimistic considering the stability of most processor clock
1138  * oscillators and the precision with which the timebase frequency
1139  * is measured but does not harm.
1140  */
1141 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1142 {
1143         unsigned mlt=0, tmp, err;
1144         /* No concern for performance, it's done once: use a stupid
1145          * but safe and compact method to find the multiplier.
1146          */
1147 
1148         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1149                 if (mulhwu(inscale, mlt|tmp) < outscale)
1150 			mlt |= tmp;
1151         }
1152 
1153         /* We might still be off by 1 for the best approximation.
1154          * A side effect of this is that if outscale is too large
1155          * the returned value will be zero.
1156          * Many corner cases have been checked and seem to work,
1157          * some might have been forgotten in the test however.
1158          */
1159 
1160         err = inscale * (mlt+1);
1161         if (err <= inscale/2)
1162 		mlt++;
1163         return mlt;
1164 }
1165 
1166 /*
1167  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1168  * result.
1169  */
1170 void div128_by_32(u64 dividend_high, u64 dividend_low,
1171 		  unsigned divisor, struct div_result *dr)
1172 {
1173 	unsigned long a, b, c, d;
1174 	unsigned long w, x, y, z;
1175 	u64 ra, rb, rc;
1176 
1177 	a = dividend_high >> 32;
1178 	b = dividend_high & 0xffffffff;
1179 	c = dividend_low >> 32;
1180 	d = dividend_low & 0xffffffff;
1181 
1182 	w = a / divisor;
1183 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1184 
1185 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1186 	x = ra;
1187 
1188 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1189 	y = rb;
1190 
1191 	do_div(rc, divisor);
1192 	z = rc;
1193 
1194 	dr->result_high = ((u64)w << 32) + x;
1195 	dr->result_low  = ((u64)y << 32) + z;
1196 
1197 }
1198