xref: /linux/arch/powerpc/kernel/time.c (revision 0973fed6a5e58dd2515a83dd7f83ad674e91cc4f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/sched/cputime.h>
35 #include <linux/kernel.h>
36 #include <linux/param.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/timex.h>
41 #include <linux/kernel_stat.h>
42 #include <linux/time.h>
43 #include <linux/init.h>
44 #include <linux/profile.h>
45 #include <linux/cpu.h>
46 #include <linux/security.h>
47 #include <linux/percpu.h>
48 #include <linux/rtc.h>
49 #include <linux/jiffies.h>
50 #include <linux/posix-timers.h>
51 #include <linux/irq.h>
52 #include <linux/delay.h>
53 #include <linux/irq_work.h>
54 #include <linux/of_clk.h>
55 #include <linux/suspend.h>
56 #include <linux/processor.h>
57 #include <linux/mc146818rtc.h>
58 #include <linux/platform_device.h>
59 
60 #include <asm/trace.h>
61 #include <asm/interrupt.h>
62 #include <asm/io.h>
63 #include <asm/nvram.h>
64 #include <asm/cache.h>
65 #include <asm/machdep.h>
66 #include <linux/uaccess.h>
67 #include <asm/time.h>
68 #include <asm/irq.h>
69 #include <asm/div64.h>
70 #include <asm/smp.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/mce.h>
74 
75 /* powerpc clocksource/clockevent code */
76 
77 #include <linux/clockchips.h>
78 
79 static u64 timebase_read(struct clocksource *);
80 static struct clocksource clocksource_timebase = {
81 	.name         = "timebase",
82 	.rating       = 400,
83 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
84 	.mask         = CLOCKSOURCE_MASK(64),
85 	.read         = timebase_read,
86 	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
87 };
88 
89 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
90 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
91 EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */
92 
93 static int decrementer_set_next_event(unsigned long evt,
94 				      struct clock_event_device *dev);
95 static int decrementer_shutdown(struct clock_event_device *evt);
96 
97 struct clock_event_device decrementer_clockevent = {
98 	.name			= "decrementer",
99 	.rating			= 200,
100 	.irq			= 0,
101 	.set_next_event		= decrementer_set_next_event,
102 	.set_state_oneshot_stopped = decrementer_shutdown,
103 	.set_state_shutdown	= decrementer_shutdown,
104 	.tick_resume		= decrementer_shutdown,
105 	.features		= CLOCK_EVT_FEAT_ONESHOT |
106 				  CLOCK_EVT_FEAT_C3STOP,
107 };
108 EXPORT_SYMBOL(decrementer_clockevent);
109 
110 /*
111  * This always puts next_tb beyond now, so the clock event will never fire
112  * with the usual comparison, no need for a separate test for stopped.
113  */
114 #define DEC_CLOCKEVENT_STOPPED ~0ULL
115 DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED;
116 EXPORT_SYMBOL_GPL(decrementers_next_tb);
117 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
118 
119 #define XSEC_PER_SEC (1024*1024)
120 
121 #ifdef CONFIG_PPC64
122 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
123 #else
124 /* compute ((xsec << 12) * max) >> 32 */
125 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
126 #endif
127 
128 unsigned long tb_ticks_per_jiffy;
129 unsigned long tb_ticks_per_usec = 100; /* sane default */
130 EXPORT_SYMBOL(tb_ticks_per_usec);
131 unsigned long tb_ticks_per_sec;
132 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime conversions */
133 
134 DEFINE_SPINLOCK(rtc_lock);
135 EXPORT_SYMBOL_GPL(rtc_lock);
136 
137 static u64 tb_to_ns_scale __read_mostly;
138 static unsigned tb_to_ns_shift __read_mostly;
139 static u64 boot_tb __read_mostly;
140 
141 extern struct timezone sys_tz;
142 static long timezone_offset;
143 
144 unsigned long ppc_proc_freq;
145 EXPORT_SYMBOL_GPL(ppc_proc_freq);
146 unsigned long ppc_tb_freq;
147 EXPORT_SYMBOL_GPL(ppc_tb_freq);
148 
149 bool tb_invalid;
150 
151 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
152 /*
153  * Read the SPURR on systems that have it, otherwise the PURR,
154  * or if that doesn't exist return the timebase value passed in.
155  */
156 static inline unsigned long read_spurr(unsigned long tb)
157 {
158 	if (cpu_has_feature(CPU_FTR_SPURR))
159 		return mfspr(SPRN_SPURR);
160 	if (cpu_has_feature(CPU_FTR_PURR))
161 		return mfspr(SPRN_PURR);
162 	return tb;
163 }
164 
165 /*
166  * Account time for a transition between system, hard irq
167  * or soft irq state.
168  */
169 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
170 					unsigned long now, unsigned long stime)
171 {
172 	unsigned long stime_scaled = 0;
173 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
174 	unsigned long nowscaled, deltascaled;
175 	unsigned long utime, utime_scaled;
176 
177 	nowscaled = read_spurr(now);
178 	deltascaled = nowscaled - acct->startspurr;
179 	acct->startspurr = nowscaled;
180 	utime = acct->utime - acct->utime_sspurr;
181 	acct->utime_sspurr = acct->utime;
182 
183 	/*
184 	 * Because we don't read the SPURR on every kernel entry/exit,
185 	 * deltascaled includes both user and system SPURR ticks.
186 	 * Apportion these ticks to system SPURR ticks and user
187 	 * SPURR ticks in the same ratio as the system time (delta)
188 	 * and user time (udelta) values obtained from the timebase
189 	 * over the same interval.  The system ticks get accounted here;
190 	 * the user ticks get saved up in paca->user_time_scaled to be
191 	 * used by account_process_tick.
192 	 */
193 	stime_scaled = stime;
194 	utime_scaled = utime;
195 	if (deltascaled != stime + utime) {
196 		if (utime) {
197 			stime_scaled = deltascaled * stime / (stime + utime);
198 			utime_scaled = deltascaled - stime_scaled;
199 		} else {
200 			stime_scaled = deltascaled;
201 		}
202 	}
203 	acct->utime_scaled += utime_scaled;
204 #endif
205 
206 	return stime_scaled;
207 }
208 
209 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
210 				 unsigned long *stime_scaled,
211 				 unsigned long *steal_time)
212 {
213 	unsigned long now, stime;
214 
215 	WARN_ON_ONCE(!irqs_disabled());
216 
217 	now = mftb();
218 	stime = now - acct->starttime;
219 	acct->starttime = now;
220 
221 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
222 
223 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) &&
224 			firmware_has_feature(FW_FEATURE_SPLPAR))
225 		*steal_time = pseries_calculate_stolen_time(now);
226 	else
227 		*steal_time = 0;
228 
229 	return stime;
230 }
231 
232 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
233 			       unsigned long *stime, unsigned long *stime_scaled)
234 {
235 	unsigned long steal_time;
236 
237 	*stime = vtime_delta(acct, stime_scaled, &steal_time);
238 	*stime -= min(*stime, steal_time);
239 	acct->steal_time += steal_time;
240 }
241 
242 void vtime_account_kernel(struct task_struct *tsk)
243 {
244 	struct cpu_accounting_data *acct = get_accounting(tsk);
245 	unsigned long stime, stime_scaled;
246 
247 	vtime_delta_kernel(acct, &stime, &stime_scaled);
248 
249 	if (tsk->flags & PF_VCPU) {
250 		acct->gtime += stime;
251 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
252 		acct->utime_scaled += stime_scaled;
253 #endif
254 	} else {
255 		acct->stime += stime;
256 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
257 		acct->stime_scaled += stime_scaled;
258 #endif
259 	}
260 }
261 EXPORT_SYMBOL_GPL(vtime_account_kernel);
262 
263 void vtime_account_idle(struct task_struct *tsk)
264 {
265 	unsigned long stime, stime_scaled, steal_time;
266 	struct cpu_accounting_data *acct = get_accounting(tsk);
267 
268 	stime = vtime_delta(acct, &stime_scaled, &steal_time);
269 	acct->idle_time += stime + steal_time;
270 }
271 
272 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
273 				    unsigned long *field)
274 {
275 	unsigned long stime, stime_scaled;
276 
277 	vtime_delta_kernel(acct, &stime, &stime_scaled);
278 	*field += stime;
279 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
280 	acct->stime_scaled += stime_scaled;
281 #endif
282 }
283 
284 void vtime_account_softirq(struct task_struct *tsk)
285 {
286 	struct cpu_accounting_data *acct = get_accounting(tsk);
287 	vtime_account_irq_field(acct, &acct->softirq_time);
288 }
289 
290 void vtime_account_hardirq(struct task_struct *tsk)
291 {
292 	struct cpu_accounting_data *acct = get_accounting(tsk);
293 	vtime_account_irq_field(acct, &acct->hardirq_time);
294 }
295 
296 static void vtime_flush_scaled(struct task_struct *tsk,
297 			       struct cpu_accounting_data *acct)
298 {
299 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
300 	if (acct->utime_scaled)
301 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
302 	if (acct->stime_scaled)
303 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
304 
305 	acct->utime_scaled = 0;
306 	acct->utime_sspurr = 0;
307 	acct->stime_scaled = 0;
308 #endif
309 }
310 
311 /*
312  * Account the whole cputime accumulated in the paca
313  * Must be called with interrupts disabled.
314  * Assumes that vtime_account_kernel/idle() has been called
315  * recently (i.e. since the last entry from usermode) so that
316  * get_paca()->user_time_scaled is up to date.
317  */
318 void vtime_flush(struct task_struct *tsk)
319 {
320 	struct cpu_accounting_data *acct = get_accounting(tsk);
321 
322 	if (acct->utime)
323 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
324 
325 	if (acct->gtime)
326 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
327 
328 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
329 		account_steal_time(cputime_to_nsecs(acct->steal_time));
330 		acct->steal_time = 0;
331 	}
332 
333 	if (acct->idle_time)
334 		account_idle_time(cputime_to_nsecs(acct->idle_time));
335 
336 	if (acct->stime)
337 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
338 					  CPUTIME_SYSTEM);
339 
340 	if (acct->hardirq_time)
341 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
342 					  CPUTIME_IRQ);
343 	if (acct->softirq_time)
344 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
345 					  CPUTIME_SOFTIRQ);
346 
347 	vtime_flush_scaled(tsk, acct);
348 
349 	acct->utime = 0;
350 	acct->gtime = 0;
351 	acct->idle_time = 0;
352 	acct->stime = 0;
353 	acct->hardirq_time = 0;
354 	acct->softirq_time = 0;
355 }
356 
357 /*
358  * Called from the context switch with interrupts disabled, to charge all
359  * accumulated times to the current process, and to prepare accounting on
360  * the next process.
361  */
362 void vtime_task_switch(struct task_struct *prev)
363 {
364 	if (is_idle_task(prev))
365 		vtime_account_idle(prev);
366 	else
367 		vtime_account_kernel(prev);
368 
369 	vtime_flush(prev);
370 
371 	if (!IS_ENABLED(CONFIG_PPC64)) {
372 		struct cpu_accounting_data *acct = get_accounting(current);
373 		struct cpu_accounting_data *acct0 = get_accounting(prev);
374 
375 		acct->starttime = acct0->starttime;
376 	}
377 }
378 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
379 
380 void __no_kcsan __delay(unsigned long loops)
381 {
382 	unsigned long start;
383 
384 	spin_begin();
385 	if (tb_invalid) {
386 		/*
387 		 * TB is in error state and isn't ticking anymore.
388 		 * HMI handler was unable to recover from TB error.
389 		 * Return immediately, so that kernel won't get stuck here.
390 		 */
391 		spin_cpu_relax();
392 	} else {
393 		start = mftb();
394 		while (mftb() - start < loops)
395 			spin_cpu_relax();
396 	}
397 	spin_end();
398 }
399 EXPORT_SYMBOL(__delay);
400 
401 void __no_kcsan udelay(unsigned long usecs)
402 {
403 	__delay(tb_ticks_per_usec * usecs);
404 }
405 EXPORT_SYMBOL(udelay);
406 
407 #ifdef CONFIG_SMP
408 unsigned long profile_pc(struct pt_regs *regs)
409 {
410 	unsigned long pc = instruction_pointer(regs);
411 
412 	if (in_lock_functions(pc))
413 		return regs->link;
414 
415 	return pc;
416 }
417 EXPORT_SYMBOL(profile_pc);
418 #endif
419 
420 #ifdef CONFIG_IRQ_WORK
421 
422 /*
423  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
424  */
425 #ifdef CONFIG_PPC64
426 static inline unsigned long test_irq_work_pending(void)
427 {
428 	unsigned long x;
429 
430 	asm volatile("lbz %0,%1(13)"
431 		: "=r" (x)
432 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
433 	return x;
434 }
435 
436 static inline void set_irq_work_pending_flag(void)
437 {
438 	asm volatile("stb %0,%1(13)" : :
439 		"r" (1),
440 		"i" (offsetof(struct paca_struct, irq_work_pending)));
441 }
442 
443 static inline void clear_irq_work_pending(void)
444 {
445 	asm volatile("stb %0,%1(13)" : :
446 		"r" (0),
447 		"i" (offsetof(struct paca_struct, irq_work_pending)));
448 }
449 
450 #else /* 32-bit */
451 
452 DEFINE_PER_CPU(u8, irq_work_pending);
453 
454 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
455 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
456 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
457 
458 #endif /* 32 vs 64 bit */
459 
460 void arch_irq_work_raise(void)
461 {
462 	/*
463 	 * 64-bit code that uses irq soft-mask can just cause an immediate
464 	 * interrupt here that gets soft masked, if this is called under
465 	 * local_irq_disable(). It might be possible to prevent that happening
466 	 * by noticing interrupts are disabled and setting decrementer pending
467 	 * to be replayed when irqs are enabled. The problem there is that
468 	 * tracing can call irq_work_raise, including in code that does low
469 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
470 	 * which could get tangled up if we're messing with the same state
471 	 * here.
472 	 */
473 	preempt_disable();
474 	set_irq_work_pending_flag();
475 	set_dec(1);
476 	preempt_enable();
477 }
478 
479 static void set_dec_or_work(u64 val)
480 {
481 	set_dec(val);
482 	/* We may have raced with new irq work */
483 	if (unlikely(test_irq_work_pending()))
484 		set_dec(1);
485 }
486 
487 #else  /* CONFIG_IRQ_WORK */
488 
489 #define test_irq_work_pending()	0
490 #define clear_irq_work_pending()
491 
492 static void set_dec_or_work(u64 val)
493 {
494 	set_dec(val);
495 }
496 #endif /* CONFIG_IRQ_WORK */
497 
498 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
499 void timer_rearm_host_dec(u64 now)
500 {
501 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
502 
503 	WARN_ON_ONCE(!arch_irqs_disabled());
504 	WARN_ON_ONCE(mfmsr() & MSR_EE);
505 
506 	if (now >= *next_tb) {
507 		local_paca->irq_happened |= PACA_IRQ_DEC;
508 	} else {
509 		now = *next_tb - now;
510 		if (now > decrementer_max)
511 			now = decrementer_max;
512 		set_dec_or_work(now);
513 	}
514 }
515 EXPORT_SYMBOL_GPL(timer_rearm_host_dec);
516 #endif
517 
518 /*
519  * timer_interrupt - gets called when the decrementer overflows,
520  * with interrupts disabled.
521  */
522 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
523 {
524 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
525 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
526 	struct pt_regs *old_regs;
527 	u64 now;
528 
529 	/*
530 	 * Some implementations of hotplug will get timer interrupts while
531 	 * offline, just ignore these.
532 	 */
533 	if (unlikely(!cpu_online(smp_processor_id()))) {
534 		set_dec(decrementer_max);
535 		return;
536 	}
537 
538 	/* Conditionally hard-enable interrupts. */
539 	if (should_hard_irq_enable(regs)) {
540 		/*
541 		 * Ensure a positive value is written to the decrementer, or
542 		 * else some CPUs will continue to take decrementer exceptions.
543 		 * When the PPC_WATCHDOG (decrementer based) is configured,
544 		 * keep this at most 31 bits, which is about 4 seconds on most
545 		 * systems, which gives the watchdog a chance of catching timer
546 		 * interrupt hard lockups.
547 		 */
548 		if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
549 			set_dec(0x7fffffff);
550 		else
551 			set_dec(decrementer_max);
552 
553 		do_hard_irq_enable();
554 	}
555 
556 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
557 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
558 		__do_IRQ(regs);
559 #endif
560 
561 	old_regs = set_irq_regs(regs);
562 
563 	trace_timer_interrupt_entry(regs);
564 
565 	if (test_irq_work_pending()) {
566 		clear_irq_work_pending();
567 		mce_run_irq_context_handlers();
568 		irq_work_run();
569 	}
570 
571 	now = get_tb();
572 	if (now >= *next_tb) {
573 		evt->event_handler(evt);
574 		__this_cpu_inc(irq_stat.timer_irqs_event);
575 	} else {
576 		now = *next_tb - now;
577 		if (now > decrementer_max)
578 			now = decrementer_max;
579 		set_dec_or_work(now);
580 		__this_cpu_inc(irq_stat.timer_irqs_others);
581 	}
582 
583 	trace_timer_interrupt_exit(regs);
584 
585 	set_irq_regs(old_regs);
586 }
587 EXPORT_SYMBOL(timer_interrupt);
588 
589 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
590 void timer_broadcast_interrupt(void)
591 {
592 	tick_receive_broadcast();
593 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
594 }
595 #endif
596 
597 #ifdef CONFIG_SUSPEND
598 /* Overrides the weak version in kernel/power/main.c */
599 void arch_suspend_disable_irqs(void)
600 {
601 	if (ppc_md.suspend_disable_irqs)
602 		ppc_md.suspend_disable_irqs();
603 
604 	/* Disable the decrementer, so that it doesn't interfere
605 	 * with suspending.
606 	 */
607 
608 	set_dec(decrementer_max);
609 	local_irq_disable();
610 	set_dec(decrementer_max);
611 }
612 
613 /* Overrides the weak version in kernel/power/main.c */
614 void arch_suspend_enable_irqs(void)
615 {
616 	local_irq_enable();
617 
618 	if (ppc_md.suspend_enable_irqs)
619 		ppc_md.suspend_enable_irqs();
620 }
621 #endif
622 
623 unsigned long long tb_to_ns(unsigned long long ticks)
624 {
625 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
626 }
627 EXPORT_SYMBOL_GPL(tb_to_ns);
628 
629 /*
630  * Scheduler clock - returns current time in nanosec units.
631  *
632  * Note: mulhdu(a, b) (multiply high double unsigned) returns
633  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
634  * are 64-bit unsigned numbers.
635  */
636 notrace unsigned long long sched_clock(void)
637 {
638 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
639 }
640 
641 
642 #ifdef CONFIG_PPC_PSERIES
643 
644 /*
645  * Running clock - attempts to give a view of time passing for a virtualised
646  * kernels.
647  * Uses the VTB register if available otherwise a next best guess.
648  */
649 unsigned long long running_clock(void)
650 {
651 	/*
652 	 * Don't read the VTB as a host since KVM does not switch in host
653 	 * timebase into the VTB when it takes a guest off the CPU, reading the
654 	 * VTB would result in reading 'last switched out' guest VTB.
655 	 *
656 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
657 	 * would be unsafe to rely only on the #ifdef above.
658 	 */
659 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
660 	    cpu_has_feature(CPU_FTR_ARCH_207S))
661 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
662 
663 	/*
664 	 * This is a next best approximation without a VTB.
665 	 * On a host which is running bare metal there should never be any stolen
666 	 * time and on a host which doesn't do any virtualisation TB *should* equal
667 	 * VTB so it makes no difference anyway.
668 	 */
669 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
670 }
671 #endif
672 
673 static int __init get_freq(char *name, int cells, unsigned long *val)
674 {
675 	struct device_node *cpu;
676 	const __be32 *fp;
677 	int found = 0;
678 
679 	/* The cpu node should have timebase and clock frequency properties */
680 	cpu = of_find_node_by_type(NULL, "cpu");
681 
682 	if (cpu) {
683 		fp = of_get_property(cpu, name, NULL);
684 		if (fp) {
685 			found = 1;
686 			*val = of_read_ulong(fp, cells);
687 		}
688 
689 		of_node_put(cpu);
690 	}
691 
692 	return found;
693 }
694 
695 static void start_cpu_decrementer(void)
696 {
697 #ifdef CONFIG_BOOKE
698 	unsigned int tcr;
699 
700 	/* Clear any pending timer interrupts */
701 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
702 
703 	tcr = mfspr(SPRN_TCR);
704 	/*
705 	 * The watchdog may have already been enabled by u-boot. So leave
706 	 * TRC[WP] (Watchdog Period) alone.
707 	 */
708 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
709 	tcr |= TCR_DIE;		/* Enable decrementer */
710 	mtspr(SPRN_TCR, tcr);
711 #endif
712 }
713 
714 void __init generic_calibrate_decr(void)
715 {
716 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
717 
718 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
719 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
720 
721 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
722 				"(not found)\n");
723 	}
724 
725 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
726 
727 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
728 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
729 
730 		printk(KERN_ERR "WARNING: Estimating processor frequency "
731 				"(not found)\n");
732 	}
733 }
734 
735 int update_persistent_clock64(struct timespec64 now)
736 {
737 	struct rtc_time tm;
738 
739 	if (!ppc_md.set_rtc_time)
740 		return -ENODEV;
741 
742 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
743 
744 	return ppc_md.set_rtc_time(&tm);
745 }
746 
747 static void __read_persistent_clock(struct timespec64 *ts)
748 {
749 	struct rtc_time tm;
750 	static int first = 1;
751 
752 	ts->tv_nsec = 0;
753 	/* XXX this is a little fragile but will work okay in the short term */
754 	if (first) {
755 		first = 0;
756 		if (ppc_md.time_init)
757 			timezone_offset = ppc_md.time_init();
758 
759 		/* get_boot_time() isn't guaranteed to be safe to call late */
760 		if (ppc_md.get_boot_time) {
761 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
762 			return;
763 		}
764 	}
765 	if (!ppc_md.get_rtc_time) {
766 		ts->tv_sec = 0;
767 		return;
768 	}
769 	ppc_md.get_rtc_time(&tm);
770 
771 	ts->tv_sec = rtc_tm_to_time64(&tm);
772 }
773 
774 void read_persistent_clock64(struct timespec64 *ts)
775 {
776 	__read_persistent_clock(ts);
777 
778 	/* Sanitize it in case real time clock is set below EPOCH */
779 	if (ts->tv_sec < 0) {
780 		ts->tv_sec = 0;
781 		ts->tv_nsec = 0;
782 	}
783 
784 }
785 
786 /* clocksource code */
787 static notrace u64 timebase_read(struct clocksource *cs)
788 {
789 	return (u64)get_tb();
790 }
791 
792 static void __init clocksource_init(void)
793 {
794 	struct clocksource *clock = &clocksource_timebase;
795 
796 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
797 		printk(KERN_ERR "clocksource: %s is already registered\n",
798 		       clock->name);
799 		return;
800 	}
801 
802 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
803 	       clock->name, clock->mult, clock->shift);
804 }
805 
806 static int decrementer_set_next_event(unsigned long evt,
807 				      struct clock_event_device *dev)
808 {
809 	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
810 	set_dec_or_work(evt);
811 
812 	return 0;
813 }
814 
815 static int decrementer_shutdown(struct clock_event_device *dev)
816 {
817 	__this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED);
818 	set_dec_or_work(decrementer_max);
819 
820 	return 0;
821 }
822 
823 static void register_decrementer_clockevent(int cpu)
824 {
825 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
826 
827 	*dec = decrementer_clockevent;
828 	dec->cpumask = cpumask_of(cpu);
829 
830 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
831 
832 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
833 		    dec->name, dec->mult, dec->shift, cpu);
834 
835 	/* Set values for KVM, see kvm_emulate_dec() */
836 	decrementer_clockevent.mult = dec->mult;
837 	decrementer_clockevent.shift = dec->shift;
838 }
839 
840 static void enable_large_decrementer(void)
841 {
842 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
843 		return;
844 
845 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
846 		return;
847 
848 	/*
849 	 * If we're running as the hypervisor we need to enable the LD manually
850 	 * otherwise firmware should have done it for us.
851 	 */
852 	if (cpu_has_feature(CPU_FTR_HVMODE))
853 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
854 }
855 
856 static void __init set_decrementer_max(void)
857 {
858 	struct device_node *cpu;
859 	u32 bits = 32;
860 
861 	/* Prior to ISAv3 the decrementer is always 32 bit */
862 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
863 		return;
864 
865 	cpu = of_find_node_by_type(NULL, "cpu");
866 
867 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
868 		if (bits > 64 || bits < 32) {
869 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
870 			bits = 32;
871 		}
872 
873 		/* calculate the signed maximum given this many bits */
874 		decrementer_max = (1ul << (bits - 1)) - 1;
875 	}
876 
877 	of_node_put(cpu);
878 
879 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
880 		bits, decrementer_max);
881 }
882 
883 static void __init init_decrementer_clockevent(void)
884 {
885 	register_decrementer_clockevent(smp_processor_id());
886 }
887 
888 void secondary_cpu_time_init(void)
889 {
890 	/* Enable and test the large decrementer for this cpu */
891 	enable_large_decrementer();
892 
893 	/* Start the decrementer on CPUs that have manual control
894 	 * such as BookE
895 	 */
896 	start_cpu_decrementer();
897 
898 	/* FIME: Should make unrelated change to move snapshot_timebase
899 	 * call here ! */
900 	register_decrementer_clockevent(smp_processor_id());
901 }
902 
903 /* This function is only called on the boot processor */
904 void __init time_init(void)
905 {
906 	struct div_result res;
907 	u64 scale;
908 	unsigned shift;
909 
910 	/* Normal PowerPC with timebase register */
911 	if (ppc_md.calibrate_decr)
912 		ppc_md.calibrate_decr();
913 	else
914 		generic_calibrate_decr();
915 
916 	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
917 	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
918 	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
919 	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
920 
921 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
922 	tb_ticks_per_sec = ppc_tb_freq;
923 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
924 
925 	/*
926 	 * Compute scale factor for sched_clock.
927 	 * The calibrate_decr() function has set tb_ticks_per_sec,
928 	 * which is the timebase frequency.
929 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
930 	 * the 128-bit result as a 64.64 fixed-point number.
931 	 * We then shift that number right until it is less than 1.0,
932 	 * giving us the scale factor and shift count to use in
933 	 * sched_clock().
934 	 */
935 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
936 	scale = res.result_low;
937 	for (shift = 0; res.result_high != 0; ++shift) {
938 		scale = (scale >> 1) | (res.result_high << 63);
939 		res.result_high >>= 1;
940 	}
941 	tb_to_ns_scale = scale;
942 	tb_to_ns_shift = shift;
943 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
944 	boot_tb = get_tb();
945 
946 	/* If platform provided a timezone (pmac), we correct the time */
947 	if (timezone_offset) {
948 		sys_tz.tz_minuteswest = -timezone_offset / 60;
949 		sys_tz.tz_dsttime = 0;
950 	}
951 
952 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
953 
954 	/* initialise and enable the large decrementer (if we have one) */
955 	set_decrementer_max();
956 	enable_large_decrementer();
957 
958 	/* Start the decrementer on CPUs that have manual control
959 	 * such as BookE
960 	 */
961 	start_cpu_decrementer();
962 
963 	/* Register the clocksource */
964 	clocksource_init();
965 
966 	init_decrementer_clockevent();
967 	tick_setup_hrtimer_broadcast();
968 
969 	of_clk_init(NULL);
970 	enable_sched_clock_irqtime();
971 }
972 
973 /*
974  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
975  * result.
976  */
977 void div128_by_32(u64 dividend_high, u64 dividend_low,
978 		  unsigned divisor, struct div_result *dr)
979 {
980 	unsigned long a, b, c, d;
981 	unsigned long w, x, y, z;
982 	u64 ra, rb, rc;
983 
984 	a = dividend_high >> 32;
985 	b = dividend_high & 0xffffffff;
986 	c = dividend_low >> 32;
987 	d = dividend_low & 0xffffffff;
988 
989 	w = a / divisor;
990 	ra = ((u64)(a - (w * divisor)) << 32) + b;
991 
992 	rb = ((u64) do_div(ra, divisor) << 32) + c;
993 	x = ra;
994 
995 	rc = ((u64) do_div(rb, divisor) << 32) + d;
996 	y = rb;
997 
998 	do_div(rc, divisor);
999 	z = rc;
1000 
1001 	dr->result_high = ((u64)w << 32) + x;
1002 	dr->result_low  = ((u64)y << 32) + z;
1003 
1004 }
1005 
1006 /* We don't need to calibrate delay, we use the CPU timebase for that */
1007 void calibrate_delay(void)
1008 {
1009 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1010 	 * as the number of __delay(1) in a jiffy, so make it so
1011 	 */
1012 	loops_per_jiffy = tb_ticks_per_jiffy;
1013 }
1014 
1015 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1016 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1017 {
1018 	ppc_md.get_rtc_time(tm);
1019 	return 0;
1020 }
1021 
1022 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1023 {
1024 	if (!ppc_md.set_rtc_time)
1025 		return -EOPNOTSUPP;
1026 
1027 	if (ppc_md.set_rtc_time(tm) < 0)
1028 		return -EOPNOTSUPP;
1029 
1030 	return 0;
1031 }
1032 
1033 static const struct rtc_class_ops rtc_generic_ops = {
1034 	.read_time = rtc_generic_get_time,
1035 	.set_time = rtc_generic_set_time,
1036 };
1037 
1038 static int __init rtc_init(void)
1039 {
1040 	struct platform_device *pdev;
1041 
1042 	if (!ppc_md.get_rtc_time)
1043 		return -ENODEV;
1044 
1045 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1046 					     &rtc_generic_ops,
1047 					     sizeof(rtc_generic_ops));
1048 
1049 	return PTR_ERR_OR_ZERO(pdev);
1050 }
1051 
1052 device_initcall(rtc_init);
1053 #endif
1054