xref: /linux/arch/powerpc/kernel/time.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time.
21  * - for astronomical applications: add a new function to get
22  * non ambiguous timestamps even around leap seconds. This needs
23  * a new timestamp format and a good name.
24  *
25  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
26  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
27  *
28  *      This program is free software; you can redistribute it and/or
29  *      modify it under the terms of the GNU General Public License
30  *      as published by the Free Software Foundation; either version
31  *      2 of the License, or (at your option) any later version.
32  */
33 
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/init.h>
46 #include <linux/profile.h>
47 #include <linux/cpu.h>
48 #include <linux/security.h>
49 #include <linux/percpu.h>
50 #include <linux/rtc.h>
51 #include <linux/jiffies.h>
52 #include <linux/posix-timers.h>
53 #include <linux/irq.h>
54 #include <linux/delay.h>
55 #include <linux/irq_work.h>
56 #include <asm/trace.h>
57 
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 
73 /* powerpc clocksource/clockevent code */
74 
75 #include <linux/clockchips.h>
76 #include <linux/timekeeper_internal.h>
77 
78 static cycle_t rtc_read(struct clocksource *);
79 static struct clocksource clocksource_rtc = {
80 	.name         = "rtc",
81 	.rating       = 400,
82 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
83 	.mask         = CLOCKSOURCE_MASK(64),
84 	.read         = rtc_read,
85 };
86 
87 static cycle_t timebase_read(struct clocksource *);
88 static struct clocksource clocksource_timebase = {
89 	.name         = "timebase",
90 	.rating       = 400,
91 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
92 	.mask         = CLOCKSOURCE_MASK(64),
93 	.read         = timebase_read,
94 };
95 
96 #define DECREMENTER_MAX	0x7fffffff
97 
98 static int decrementer_set_next_event(unsigned long evt,
99 				      struct clock_event_device *dev);
100 static void decrementer_set_mode(enum clock_event_mode mode,
101 				 struct clock_event_device *dev);
102 
103 struct clock_event_device decrementer_clockevent = {
104 	.name           = "decrementer",
105 	.rating         = 200,
106 	.irq            = 0,
107 	.set_next_event = decrementer_set_next_event,
108 	.set_mode       = decrementer_set_mode,
109 	.features       = CLOCK_EVT_FEAT_ONESHOT,
110 };
111 EXPORT_SYMBOL(decrementer_clockevent);
112 
113 DEFINE_PER_CPU(u64, decrementers_next_tb);
114 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
115 
116 #define XSEC_PER_SEC (1024*1024)
117 
118 #ifdef CONFIG_PPC64
119 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
120 #else
121 /* compute ((xsec << 12) * max) >> 32 */
122 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
123 #endif
124 
125 unsigned long tb_ticks_per_jiffy;
126 unsigned long tb_ticks_per_usec = 100; /* sane default */
127 EXPORT_SYMBOL(tb_ticks_per_usec);
128 unsigned long tb_ticks_per_sec;
129 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
130 
131 DEFINE_SPINLOCK(rtc_lock);
132 EXPORT_SYMBOL_GPL(rtc_lock);
133 
134 static u64 tb_to_ns_scale __read_mostly;
135 static unsigned tb_to_ns_shift __read_mostly;
136 static u64 boot_tb __read_mostly;
137 
138 extern struct timezone sys_tz;
139 static long timezone_offset;
140 
141 unsigned long ppc_proc_freq;
142 EXPORT_SYMBOL_GPL(ppc_proc_freq);
143 unsigned long ppc_tb_freq;
144 EXPORT_SYMBOL_GPL(ppc_tb_freq);
145 
146 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
147 /*
148  * Factors for converting from cputime_t (timebase ticks) to
149  * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
150  * These are all stored as 0.64 fixed-point binary fractions.
151  */
152 u64 __cputime_jiffies_factor;
153 EXPORT_SYMBOL(__cputime_jiffies_factor);
154 u64 __cputime_usec_factor;
155 EXPORT_SYMBOL(__cputime_usec_factor);
156 u64 __cputime_sec_factor;
157 EXPORT_SYMBOL(__cputime_sec_factor);
158 u64 __cputime_clockt_factor;
159 EXPORT_SYMBOL(__cputime_clockt_factor);
160 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
161 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
162 
163 cputime_t cputime_one_jiffy;
164 
165 void (*dtl_consumer)(struct dtl_entry *, u64);
166 
167 static void calc_cputime_factors(void)
168 {
169 	struct div_result res;
170 
171 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
172 	__cputime_jiffies_factor = res.result_low;
173 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
174 	__cputime_usec_factor = res.result_low;
175 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
176 	__cputime_sec_factor = res.result_low;
177 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
178 	__cputime_clockt_factor = res.result_low;
179 }
180 
181 /*
182  * Read the SPURR on systems that have it, otherwise the PURR,
183  * or if that doesn't exist return the timebase value passed in.
184  */
185 static u64 read_spurr(u64 tb)
186 {
187 	if (cpu_has_feature(CPU_FTR_SPURR))
188 		return mfspr(SPRN_SPURR);
189 	if (cpu_has_feature(CPU_FTR_PURR))
190 		return mfspr(SPRN_PURR);
191 	return tb;
192 }
193 
194 #ifdef CONFIG_PPC_SPLPAR
195 
196 /*
197  * Scan the dispatch trace log and count up the stolen time.
198  * Should be called with interrupts disabled.
199  */
200 static u64 scan_dispatch_log(u64 stop_tb)
201 {
202 	u64 i = local_paca->dtl_ridx;
203 	struct dtl_entry *dtl = local_paca->dtl_curr;
204 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
205 	struct lppaca *vpa = local_paca->lppaca_ptr;
206 	u64 tb_delta;
207 	u64 stolen = 0;
208 	u64 dtb;
209 
210 	if (!dtl)
211 		return 0;
212 
213 	if (i == vpa->dtl_idx)
214 		return 0;
215 	while (i < vpa->dtl_idx) {
216 		if (dtl_consumer)
217 			dtl_consumer(dtl, i);
218 		dtb = dtl->timebase;
219 		tb_delta = dtl->enqueue_to_dispatch_time +
220 			dtl->ready_to_enqueue_time;
221 		barrier();
222 		if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
223 			/* buffer has overflowed */
224 			i = vpa->dtl_idx - N_DISPATCH_LOG;
225 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
226 			continue;
227 		}
228 		if (dtb > stop_tb)
229 			break;
230 		stolen += tb_delta;
231 		++i;
232 		++dtl;
233 		if (dtl == dtl_end)
234 			dtl = local_paca->dispatch_log;
235 	}
236 	local_paca->dtl_ridx = i;
237 	local_paca->dtl_curr = dtl;
238 	return stolen;
239 }
240 
241 /*
242  * Accumulate stolen time by scanning the dispatch trace log.
243  * Called on entry from user mode.
244  */
245 void accumulate_stolen_time(void)
246 {
247 	u64 sst, ust;
248 
249 	u8 save_soft_enabled = local_paca->soft_enabled;
250 
251 	/* We are called early in the exception entry, before
252 	 * soft/hard_enabled are sync'ed to the expected state
253 	 * for the exception. We are hard disabled but the PACA
254 	 * needs to reflect that so various debug stuff doesn't
255 	 * complain
256 	 */
257 	local_paca->soft_enabled = 0;
258 
259 	sst = scan_dispatch_log(local_paca->starttime_user);
260 	ust = scan_dispatch_log(local_paca->starttime);
261 	local_paca->system_time -= sst;
262 	local_paca->user_time -= ust;
263 	local_paca->stolen_time += ust + sst;
264 
265 	local_paca->soft_enabled = save_soft_enabled;
266 }
267 
268 static inline u64 calculate_stolen_time(u64 stop_tb)
269 {
270 	u64 stolen = 0;
271 
272 	if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
273 		stolen = scan_dispatch_log(stop_tb);
274 		get_paca()->system_time -= stolen;
275 	}
276 
277 	stolen += get_paca()->stolen_time;
278 	get_paca()->stolen_time = 0;
279 	return stolen;
280 }
281 
282 #else /* CONFIG_PPC_SPLPAR */
283 static inline u64 calculate_stolen_time(u64 stop_tb)
284 {
285 	return 0;
286 }
287 
288 #endif /* CONFIG_PPC_SPLPAR */
289 
290 /*
291  * Account time for a transition between system, hard irq
292  * or soft irq state.
293  */
294 static u64 vtime_delta(struct task_struct *tsk,
295 			u64 *sys_scaled, u64 *stolen)
296 {
297 	u64 now, nowscaled, deltascaled;
298 	u64 udelta, delta, user_scaled;
299 
300 	now = mftb();
301 	nowscaled = read_spurr(now);
302 	get_paca()->system_time += now - get_paca()->starttime;
303 	get_paca()->starttime = now;
304 	deltascaled = nowscaled - get_paca()->startspurr;
305 	get_paca()->startspurr = nowscaled;
306 
307 	*stolen = calculate_stolen_time(now);
308 
309 	delta = get_paca()->system_time;
310 	get_paca()->system_time = 0;
311 	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
312 	get_paca()->utime_sspurr = get_paca()->user_time;
313 
314 	/*
315 	 * Because we don't read the SPURR on every kernel entry/exit,
316 	 * deltascaled includes both user and system SPURR ticks.
317 	 * Apportion these ticks to system SPURR ticks and user
318 	 * SPURR ticks in the same ratio as the system time (delta)
319 	 * and user time (udelta) values obtained from the timebase
320 	 * over the same interval.  The system ticks get accounted here;
321 	 * the user ticks get saved up in paca->user_time_scaled to be
322 	 * used by account_process_tick.
323 	 */
324 	*sys_scaled = delta;
325 	user_scaled = udelta;
326 	if (deltascaled != delta + udelta) {
327 		if (udelta) {
328 			*sys_scaled = deltascaled * delta / (delta + udelta);
329 			user_scaled = deltascaled - *sys_scaled;
330 		} else {
331 			*sys_scaled = deltascaled;
332 		}
333 	}
334 	get_paca()->user_time_scaled += user_scaled;
335 
336 	return delta;
337 }
338 
339 void vtime_account_system(struct task_struct *tsk)
340 {
341 	u64 delta, sys_scaled, stolen;
342 
343 	delta = vtime_delta(tsk, &sys_scaled, &stolen);
344 	account_system_time(tsk, 0, delta, sys_scaled);
345 	if (stolen)
346 		account_steal_time(stolen);
347 }
348 
349 void vtime_account_idle(struct task_struct *tsk)
350 {
351 	u64 delta, sys_scaled, stolen;
352 
353 	delta = vtime_delta(tsk, &sys_scaled, &stolen);
354 	account_idle_time(delta + stolen);
355 }
356 
357 /*
358  * Transfer the user and system times accumulated in the paca
359  * by the exception entry and exit code to the generic process
360  * user and system time records.
361  * Must be called with interrupts disabled.
362  * Assumes that vtime_account() has been called recently
363  * (i.e. since the last entry from usermode) so that
364  * get_paca()->user_time_scaled is up to date.
365  */
366 void account_process_tick(struct task_struct *tsk, int user_tick)
367 {
368 	cputime_t utime, utimescaled;
369 
370 	utime = get_paca()->user_time;
371 	utimescaled = get_paca()->user_time_scaled;
372 	get_paca()->user_time = 0;
373 	get_paca()->user_time_scaled = 0;
374 	get_paca()->utime_sspurr = 0;
375 	account_user_time(tsk, utime, utimescaled);
376 }
377 
378 void vtime_task_switch(struct task_struct *prev)
379 {
380 	vtime_account(prev);
381 	account_process_tick(prev, 0);
382 }
383 
384 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
385 #define calc_cputime_factors()
386 #endif
387 
388 void __delay(unsigned long loops)
389 {
390 	unsigned long start;
391 	int diff;
392 
393 	if (__USE_RTC()) {
394 		start = get_rtcl();
395 		do {
396 			/* the RTCL register wraps at 1000000000 */
397 			diff = get_rtcl() - start;
398 			if (diff < 0)
399 				diff += 1000000000;
400 		} while (diff < loops);
401 	} else {
402 		start = get_tbl();
403 		while (get_tbl() - start < loops)
404 			HMT_low();
405 		HMT_medium();
406 	}
407 }
408 EXPORT_SYMBOL(__delay);
409 
410 void udelay(unsigned long usecs)
411 {
412 	__delay(tb_ticks_per_usec * usecs);
413 }
414 EXPORT_SYMBOL(udelay);
415 
416 #ifdef CONFIG_SMP
417 unsigned long profile_pc(struct pt_regs *regs)
418 {
419 	unsigned long pc = instruction_pointer(regs);
420 
421 	if (in_lock_functions(pc))
422 		return regs->link;
423 
424 	return pc;
425 }
426 EXPORT_SYMBOL(profile_pc);
427 #endif
428 
429 #ifdef CONFIG_IRQ_WORK
430 
431 /*
432  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
433  */
434 #ifdef CONFIG_PPC64
435 static inline unsigned long test_irq_work_pending(void)
436 {
437 	unsigned long x;
438 
439 	asm volatile("lbz %0,%1(13)"
440 		: "=r" (x)
441 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
442 	return x;
443 }
444 
445 static inline void set_irq_work_pending_flag(void)
446 {
447 	asm volatile("stb %0,%1(13)" : :
448 		"r" (1),
449 		"i" (offsetof(struct paca_struct, irq_work_pending)));
450 }
451 
452 static inline void clear_irq_work_pending(void)
453 {
454 	asm volatile("stb %0,%1(13)" : :
455 		"r" (0),
456 		"i" (offsetof(struct paca_struct, irq_work_pending)));
457 }
458 
459 #else /* 32-bit */
460 
461 DEFINE_PER_CPU(u8, irq_work_pending);
462 
463 #define set_irq_work_pending_flag()	__get_cpu_var(irq_work_pending) = 1
464 #define test_irq_work_pending()		__get_cpu_var(irq_work_pending)
465 #define clear_irq_work_pending()	__get_cpu_var(irq_work_pending) = 0
466 
467 #endif /* 32 vs 64 bit */
468 
469 void arch_irq_work_raise(void)
470 {
471 	preempt_disable();
472 	set_irq_work_pending_flag();
473 	set_dec(1);
474 	preempt_enable();
475 }
476 
477 #else  /* CONFIG_IRQ_WORK */
478 
479 #define test_irq_work_pending()	0
480 #define clear_irq_work_pending()
481 
482 #endif /* CONFIG_IRQ_WORK */
483 
484 /*
485  * timer_interrupt - gets called when the decrementer overflows,
486  * with interrupts disabled.
487  */
488 void timer_interrupt(struct pt_regs * regs)
489 {
490 	struct pt_regs *old_regs;
491 	u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
492 	struct clock_event_device *evt = &__get_cpu_var(decrementers);
493 	u64 now;
494 
495 	/* Ensure a positive value is written to the decrementer, or else
496 	 * some CPUs will continue to take decrementer exceptions.
497 	 */
498 	set_dec(DECREMENTER_MAX);
499 
500 	/* Some implementations of hotplug will get timer interrupts while
501 	 * offline, just ignore these
502 	 */
503 	if (!cpu_online(smp_processor_id()))
504 		return;
505 
506 	/* Conditionally hard-enable interrupts now that the DEC has been
507 	 * bumped to its maximum value
508 	 */
509 	may_hard_irq_enable();
510 
511 	__get_cpu_var(irq_stat).timer_irqs++;
512 
513 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
514 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
515 		do_IRQ(regs);
516 #endif
517 
518 	old_regs = set_irq_regs(regs);
519 	irq_enter();
520 
521 	trace_timer_interrupt_entry(regs);
522 
523 	if (test_irq_work_pending()) {
524 		clear_irq_work_pending();
525 		irq_work_run();
526 	}
527 
528 	now = get_tb_or_rtc();
529 	if (now >= *next_tb) {
530 		*next_tb = ~(u64)0;
531 		if (evt->event_handler)
532 			evt->event_handler(evt);
533 	} else {
534 		now = *next_tb - now;
535 		if (now <= DECREMENTER_MAX)
536 			set_dec((int)now);
537 	}
538 
539 #ifdef CONFIG_PPC64
540 	/* collect purr register values often, for accurate calculations */
541 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
542 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
543 		cu->current_tb = mfspr(SPRN_PURR);
544 	}
545 #endif
546 
547 	trace_timer_interrupt_exit(regs);
548 
549 	irq_exit();
550 	set_irq_regs(old_regs);
551 }
552 
553 /*
554  * Hypervisor decrementer interrupts shouldn't occur but are sometimes
555  * left pending on exit from a KVM guest.  We don't need to do anything
556  * to clear them, as they are edge-triggered.
557  */
558 void hdec_interrupt(struct pt_regs *regs)
559 {
560 }
561 
562 #ifdef CONFIG_SUSPEND
563 static void generic_suspend_disable_irqs(void)
564 {
565 	/* Disable the decrementer, so that it doesn't interfere
566 	 * with suspending.
567 	 */
568 
569 	set_dec(DECREMENTER_MAX);
570 	local_irq_disable();
571 	set_dec(DECREMENTER_MAX);
572 }
573 
574 static void generic_suspend_enable_irqs(void)
575 {
576 	local_irq_enable();
577 }
578 
579 /* Overrides the weak version in kernel/power/main.c */
580 void arch_suspend_disable_irqs(void)
581 {
582 	if (ppc_md.suspend_disable_irqs)
583 		ppc_md.suspend_disable_irqs();
584 	generic_suspend_disable_irqs();
585 }
586 
587 /* Overrides the weak version in kernel/power/main.c */
588 void arch_suspend_enable_irqs(void)
589 {
590 	generic_suspend_enable_irqs();
591 	if (ppc_md.suspend_enable_irqs)
592 		ppc_md.suspend_enable_irqs();
593 }
594 #endif
595 
596 /*
597  * Scheduler clock - returns current time in nanosec units.
598  *
599  * Note: mulhdu(a, b) (multiply high double unsigned) returns
600  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
601  * are 64-bit unsigned numbers.
602  */
603 unsigned long long sched_clock(void)
604 {
605 	if (__USE_RTC())
606 		return get_rtc();
607 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
608 }
609 
610 static int __init get_freq(char *name, int cells, unsigned long *val)
611 {
612 	struct device_node *cpu;
613 	const unsigned int *fp;
614 	int found = 0;
615 
616 	/* The cpu node should have timebase and clock frequency properties */
617 	cpu = of_find_node_by_type(NULL, "cpu");
618 
619 	if (cpu) {
620 		fp = of_get_property(cpu, name, NULL);
621 		if (fp) {
622 			found = 1;
623 			*val = of_read_ulong(fp, cells);
624 		}
625 
626 		of_node_put(cpu);
627 	}
628 
629 	return found;
630 }
631 
632 /* should become __cpuinit when secondary_cpu_time_init also is */
633 void start_cpu_decrementer(void)
634 {
635 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
636 	/* Clear any pending timer interrupts */
637 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
638 
639 	/* Enable decrementer interrupt */
640 	mtspr(SPRN_TCR, TCR_DIE);
641 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
642 }
643 
644 void __init generic_calibrate_decr(void)
645 {
646 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
647 
648 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
649 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
650 
651 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
652 				"(not found)\n");
653 	}
654 
655 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
656 
657 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
658 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
659 
660 		printk(KERN_ERR "WARNING: Estimating processor frequency "
661 				"(not found)\n");
662 	}
663 }
664 
665 int update_persistent_clock(struct timespec now)
666 {
667 	struct rtc_time tm;
668 
669 	if (!ppc_md.set_rtc_time)
670 		return 0;
671 
672 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
673 	tm.tm_year -= 1900;
674 	tm.tm_mon -= 1;
675 
676 	return ppc_md.set_rtc_time(&tm);
677 }
678 
679 static void __read_persistent_clock(struct timespec *ts)
680 {
681 	struct rtc_time tm;
682 	static int first = 1;
683 
684 	ts->tv_nsec = 0;
685 	/* XXX this is a litle fragile but will work okay in the short term */
686 	if (first) {
687 		first = 0;
688 		if (ppc_md.time_init)
689 			timezone_offset = ppc_md.time_init();
690 
691 		/* get_boot_time() isn't guaranteed to be safe to call late */
692 		if (ppc_md.get_boot_time) {
693 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
694 			return;
695 		}
696 	}
697 	if (!ppc_md.get_rtc_time) {
698 		ts->tv_sec = 0;
699 		return;
700 	}
701 	ppc_md.get_rtc_time(&tm);
702 
703 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
704 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
705 }
706 
707 void read_persistent_clock(struct timespec *ts)
708 {
709 	__read_persistent_clock(ts);
710 
711 	/* Sanitize it in case real time clock is set below EPOCH */
712 	if (ts->tv_sec < 0) {
713 		ts->tv_sec = 0;
714 		ts->tv_nsec = 0;
715 	}
716 
717 }
718 
719 /* clocksource code */
720 static cycle_t rtc_read(struct clocksource *cs)
721 {
722 	return (cycle_t)get_rtc();
723 }
724 
725 static cycle_t timebase_read(struct clocksource *cs)
726 {
727 	return (cycle_t)get_tb();
728 }
729 
730 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
731 			struct clocksource *clock, u32 mult)
732 {
733 	u64 new_tb_to_xs, new_stamp_xsec;
734 	u32 frac_sec;
735 
736 	if (clock != &clocksource_timebase)
737 		return;
738 
739 	/* Make userspace gettimeofday spin until we're done. */
740 	++vdso_data->tb_update_count;
741 	smp_mb();
742 
743 	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
744 	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
745 	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
746 	do_div(new_stamp_xsec, 1000000000);
747 	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
748 
749 	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
750 	/* this is tv_nsec / 1e9 as a 0.32 fraction */
751 	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
752 
753 	/*
754 	 * tb_update_count is used to allow the userspace gettimeofday code
755 	 * to assure itself that it sees a consistent view of the tb_to_xs and
756 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
757 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
758 	 * the two values of tb_update_count match and are even then the
759 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
760 	 * loops back and reads them again until this criteria is met.
761 	 * We expect the caller to have done the first increment of
762 	 * vdso_data->tb_update_count already.
763 	 */
764 	vdso_data->tb_orig_stamp = clock->cycle_last;
765 	vdso_data->stamp_xsec = new_stamp_xsec;
766 	vdso_data->tb_to_xs = new_tb_to_xs;
767 	vdso_data->wtom_clock_sec = wtm->tv_sec;
768 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
769 	vdso_data->stamp_xtime = *wall_time;
770 	vdso_data->stamp_sec_fraction = frac_sec;
771 	smp_wmb();
772 	++(vdso_data->tb_update_count);
773 }
774 
775 void update_vsyscall_tz(void)
776 {
777 	/* Make userspace gettimeofday spin until we're done. */
778 	++vdso_data->tb_update_count;
779 	smp_mb();
780 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
781 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
782 	smp_mb();
783 	++vdso_data->tb_update_count;
784 }
785 
786 static void __init clocksource_init(void)
787 {
788 	struct clocksource *clock;
789 
790 	if (__USE_RTC())
791 		clock = &clocksource_rtc;
792 	else
793 		clock = &clocksource_timebase;
794 
795 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
796 		printk(KERN_ERR "clocksource: %s is already registered\n",
797 		       clock->name);
798 		return;
799 	}
800 
801 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
802 	       clock->name, clock->mult, clock->shift);
803 }
804 
805 static int decrementer_set_next_event(unsigned long evt,
806 				      struct clock_event_device *dev)
807 {
808 	__get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
809 	set_dec(evt);
810 	return 0;
811 }
812 
813 static void decrementer_set_mode(enum clock_event_mode mode,
814 				 struct clock_event_device *dev)
815 {
816 	if (mode != CLOCK_EVT_MODE_ONESHOT)
817 		decrementer_set_next_event(DECREMENTER_MAX, dev);
818 }
819 
820 static void register_decrementer_clockevent(int cpu)
821 {
822 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
823 
824 	*dec = decrementer_clockevent;
825 	dec->cpumask = cpumask_of(cpu);
826 
827 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
828 		    dec->name, dec->mult, dec->shift, cpu);
829 
830 	clockevents_register_device(dec);
831 }
832 
833 static void __init init_decrementer_clockevent(void)
834 {
835 	int cpu = smp_processor_id();
836 
837 	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
838 
839 	decrementer_clockevent.max_delta_ns =
840 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
841 	decrementer_clockevent.min_delta_ns =
842 		clockevent_delta2ns(2, &decrementer_clockevent);
843 
844 	register_decrementer_clockevent(cpu);
845 }
846 
847 void secondary_cpu_time_init(void)
848 {
849 	/* Start the decrementer on CPUs that have manual control
850 	 * such as BookE
851 	 */
852 	start_cpu_decrementer();
853 
854 	/* FIME: Should make unrelatred change to move snapshot_timebase
855 	 * call here ! */
856 	register_decrementer_clockevent(smp_processor_id());
857 }
858 
859 /* This function is only called on the boot processor */
860 void __init time_init(void)
861 {
862 	struct div_result res;
863 	u64 scale;
864 	unsigned shift;
865 
866 	if (__USE_RTC()) {
867 		/* 601 processor: dec counts down by 128 every 128ns */
868 		ppc_tb_freq = 1000000000;
869 	} else {
870 		/* Normal PowerPC with timebase register */
871 		ppc_md.calibrate_decr();
872 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
873 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
874 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
875 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
876 	}
877 
878 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
879 	tb_ticks_per_sec = ppc_tb_freq;
880 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
881 	calc_cputime_factors();
882 	setup_cputime_one_jiffy();
883 
884 	/*
885 	 * Compute scale factor for sched_clock.
886 	 * The calibrate_decr() function has set tb_ticks_per_sec,
887 	 * which is the timebase frequency.
888 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
889 	 * the 128-bit result as a 64.64 fixed-point number.
890 	 * We then shift that number right until it is less than 1.0,
891 	 * giving us the scale factor and shift count to use in
892 	 * sched_clock().
893 	 */
894 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
895 	scale = res.result_low;
896 	for (shift = 0; res.result_high != 0; ++shift) {
897 		scale = (scale >> 1) | (res.result_high << 63);
898 		res.result_high >>= 1;
899 	}
900 	tb_to_ns_scale = scale;
901 	tb_to_ns_shift = shift;
902 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
903 	boot_tb = get_tb_or_rtc();
904 
905 	/* If platform provided a timezone (pmac), we correct the time */
906 	if (timezone_offset) {
907 		sys_tz.tz_minuteswest = -timezone_offset / 60;
908 		sys_tz.tz_dsttime = 0;
909 	}
910 
911 	vdso_data->tb_update_count = 0;
912 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
913 
914 	/* Start the decrementer on CPUs that have manual control
915 	 * such as BookE
916 	 */
917 	start_cpu_decrementer();
918 
919 	/* Register the clocksource */
920 	clocksource_init();
921 
922 	init_decrementer_clockevent();
923 }
924 
925 
926 #define FEBRUARY	2
927 #define	STARTOFTIME	1970
928 #define SECDAY		86400L
929 #define SECYR		(SECDAY * 365)
930 #define	leapyear(year)		((year) % 4 == 0 && \
931 				 ((year) % 100 != 0 || (year) % 400 == 0))
932 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
933 #define	days_in_month(a) 	(month_days[(a) - 1])
934 
935 static int month_days[12] = {
936 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
937 };
938 
939 /*
940  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
941  */
942 void GregorianDay(struct rtc_time * tm)
943 {
944 	int leapsToDate;
945 	int lastYear;
946 	int day;
947 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
948 
949 	lastYear = tm->tm_year - 1;
950 
951 	/*
952 	 * Number of leap corrections to apply up to end of last year
953 	 */
954 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
955 
956 	/*
957 	 * This year is a leap year if it is divisible by 4 except when it is
958 	 * divisible by 100 unless it is divisible by 400
959 	 *
960 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
961 	 */
962 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
963 
964 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
965 		   tm->tm_mday;
966 
967 	tm->tm_wday = day % 7;
968 }
969 
970 void to_tm(int tim, struct rtc_time * tm)
971 {
972 	register int    i;
973 	register long   hms, day;
974 
975 	day = tim / SECDAY;
976 	hms = tim % SECDAY;
977 
978 	/* Hours, minutes, seconds are easy */
979 	tm->tm_hour = hms / 3600;
980 	tm->tm_min = (hms % 3600) / 60;
981 	tm->tm_sec = (hms % 3600) % 60;
982 
983 	/* Number of years in days */
984 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
985 		day -= days_in_year(i);
986 	tm->tm_year = i;
987 
988 	/* Number of months in days left */
989 	if (leapyear(tm->tm_year))
990 		days_in_month(FEBRUARY) = 29;
991 	for (i = 1; day >= days_in_month(i); i++)
992 		day -= days_in_month(i);
993 	days_in_month(FEBRUARY) = 28;
994 	tm->tm_mon = i;
995 
996 	/* Days are what is left over (+1) from all that. */
997 	tm->tm_mday = day + 1;
998 
999 	/*
1000 	 * Determine the day of week
1001 	 */
1002 	GregorianDay(tm);
1003 }
1004 
1005 /*
1006  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1007  * result.
1008  */
1009 void div128_by_32(u64 dividend_high, u64 dividend_low,
1010 		  unsigned divisor, struct div_result *dr)
1011 {
1012 	unsigned long a, b, c, d;
1013 	unsigned long w, x, y, z;
1014 	u64 ra, rb, rc;
1015 
1016 	a = dividend_high >> 32;
1017 	b = dividend_high & 0xffffffff;
1018 	c = dividend_low >> 32;
1019 	d = dividend_low & 0xffffffff;
1020 
1021 	w = a / divisor;
1022 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1023 
1024 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1025 	x = ra;
1026 
1027 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1028 	y = rb;
1029 
1030 	do_div(rc, divisor);
1031 	z = rc;
1032 
1033 	dr->result_high = ((u64)w << 32) + x;
1034 	dr->result_low  = ((u64)y << 32) + z;
1035 
1036 }
1037 
1038 /* We don't need to calibrate delay, we use the CPU timebase for that */
1039 void calibrate_delay(void)
1040 {
1041 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1042 	 * as the number of __delay(1) in a jiffy, so make it so
1043 	 */
1044 	loops_per_jiffy = tb_ticks_per_jiffy;
1045 }
1046 
1047 static int __init rtc_init(void)
1048 {
1049 	struct platform_device *pdev;
1050 
1051 	if (!ppc_md.get_rtc_time)
1052 		return -ENODEV;
1053 
1054 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1055 	if (IS_ERR(pdev))
1056 		return PTR_ERR(pdev);
1057 
1058 	return 0;
1059 }
1060 
1061 module_init(rtc_init);
1062