1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. 21 * - for astronomical applications: add a new function to get 22 * non ambiguous timestamps even around leap seconds. This needs 23 * a new timestamp format and a good name. 24 * 25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 26 * "A Kernel Model for Precision Timekeeping" by Dave Mills 27 * 28 * This program is free software; you can redistribute it and/or 29 * modify it under the terms of the GNU General Public License 30 * as published by the Free Software Foundation; either version 31 * 2 of the License, or (at your option) any later version. 32 */ 33 34 #include <linux/errno.h> 35 #include <linux/export.h> 36 #include <linux/sched.h> 37 #include <linux/kernel.h> 38 #include <linux/param.h> 39 #include <linux/string.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/timex.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/time.h> 45 #include <linux/init.h> 46 #include <linux/profile.h> 47 #include <linux/cpu.h> 48 #include <linux/security.h> 49 #include <linux/percpu.h> 50 #include <linux/rtc.h> 51 #include <linux/jiffies.h> 52 #include <linux/posix-timers.h> 53 #include <linux/irq.h> 54 #include <linux/delay.h> 55 #include <linux/irq_work.h> 56 #include <asm/trace.h> 57 58 #include <asm/io.h> 59 #include <asm/processor.h> 60 #include <asm/nvram.h> 61 #include <asm/cache.h> 62 #include <asm/machdep.h> 63 #include <asm/uaccess.h> 64 #include <asm/time.h> 65 #include <asm/prom.h> 66 #include <asm/irq.h> 67 #include <asm/div64.h> 68 #include <asm/smp.h> 69 #include <asm/vdso_datapage.h> 70 #include <asm/firmware.h> 71 #include <asm/cputime.h> 72 73 /* powerpc clocksource/clockevent code */ 74 75 #include <linux/clockchips.h> 76 #include <linux/timekeeper_internal.h> 77 78 static cycle_t rtc_read(struct clocksource *); 79 static struct clocksource clocksource_rtc = { 80 .name = "rtc", 81 .rating = 400, 82 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 83 .mask = CLOCKSOURCE_MASK(64), 84 .read = rtc_read, 85 }; 86 87 static cycle_t timebase_read(struct clocksource *); 88 static struct clocksource clocksource_timebase = { 89 .name = "timebase", 90 .rating = 400, 91 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 92 .mask = CLOCKSOURCE_MASK(64), 93 .read = timebase_read, 94 }; 95 96 #define DECREMENTER_MAX 0x7fffffff 97 98 static int decrementer_set_next_event(unsigned long evt, 99 struct clock_event_device *dev); 100 static void decrementer_set_mode(enum clock_event_mode mode, 101 struct clock_event_device *dev); 102 103 struct clock_event_device decrementer_clockevent = { 104 .name = "decrementer", 105 .rating = 200, 106 .irq = 0, 107 .set_next_event = decrementer_set_next_event, 108 .set_mode = decrementer_set_mode, 109 .features = CLOCK_EVT_FEAT_ONESHOT, 110 }; 111 EXPORT_SYMBOL(decrementer_clockevent); 112 113 DEFINE_PER_CPU(u64, decrementers_next_tb); 114 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 115 116 #define XSEC_PER_SEC (1024*1024) 117 118 #ifdef CONFIG_PPC64 119 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 120 #else 121 /* compute ((xsec << 12) * max) >> 32 */ 122 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 123 #endif 124 125 unsigned long tb_ticks_per_jiffy; 126 unsigned long tb_ticks_per_usec = 100; /* sane default */ 127 EXPORT_SYMBOL(tb_ticks_per_usec); 128 unsigned long tb_ticks_per_sec; 129 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 130 131 DEFINE_SPINLOCK(rtc_lock); 132 EXPORT_SYMBOL_GPL(rtc_lock); 133 134 static u64 tb_to_ns_scale __read_mostly; 135 static unsigned tb_to_ns_shift __read_mostly; 136 static u64 boot_tb __read_mostly; 137 138 extern struct timezone sys_tz; 139 static long timezone_offset; 140 141 unsigned long ppc_proc_freq; 142 EXPORT_SYMBOL_GPL(ppc_proc_freq); 143 unsigned long ppc_tb_freq; 144 EXPORT_SYMBOL_GPL(ppc_tb_freq); 145 146 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 147 /* 148 * Factors for converting from cputime_t (timebase ticks) to 149 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds). 150 * These are all stored as 0.64 fixed-point binary fractions. 151 */ 152 u64 __cputime_jiffies_factor; 153 EXPORT_SYMBOL(__cputime_jiffies_factor); 154 u64 __cputime_usec_factor; 155 EXPORT_SYMBOL(__cputime_usec_factor); 156 u64 __cputime_sec_factor; 157 EXPORT_SYMBOL(__cputime_sec_factor); 158 u64 __cputime_clockt_factor; 159 EXPORT_SYMBOL(__cputime_clockt_factor); 160 DEFINE_PER_CPU(unsigned long, cputime_last_delta); 161 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); 162 163 cputime_t cputime_one_jiffy; 164 165 void (*dtl_consumer)(struct dtl_entry *, u64); 166 167 static void calc_cputime_factors(void) 168 { 169 struct div_result res; 170 171 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 172 __cputime_jiffies_factor = res.result_low; 173 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 174 __cputime_usec_factor = res.result_low; 175 div128_by_32(1, 0, tb_ticks_per_sec, &res); 176 __cputime_sec_factor = res.result_low; 177 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 178 __cputime_clockt_factor = res.result_low; 179 } 180 181 /* 182 * Read the SPURR on systems that have it, otherwise the PURR, 183 * or if that doesn't exist return the timebase value passed in. 184 */ 185 static u64 read_spurr(u64 tb) 186 { 187 if (cpu_has_feature(CPU_FTR_SPURR)) 188 return mfspr(SPRN_SPURR); 189 if (cpu_has_feature(CPU_FTR_PURR)) 190 return mfspr(SPRN_PURR); 191 return tb; 192 } 193 194 #ifdef CONFIG_PPC_SPLPAR 195 196 /* 197 * Scan the dispatch trace log and count up the stolen time. 198 * Should be called with interrupts disabled. 199 */ 200 static u64 scan_dispatch_log(u64 stop_tb) 201 { 202 u64 i = local_paca->dtl_ridx; 203 struct dtl_entry *dtl = local_paca->dtl_curr; 204 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 205 struct lppaca *vpa = local_paca->lppaca_ptr; 206 u64 tb_delta; 207 u64 stolen = 0; 208 u64 dtb; 209 210 if (!dtl) 211 return 0; 212 213 if (i == vpa->dtl_idx) 214 return 0; 215 while (i < vpa->dtl_idx) { 216 if (dtl_consumer) 217 dtl_consumer(dtl, i); 218 dtb = dtl->timebase; 219 tb_delta = dtl->enqueue_to_dispatch_time + 220 dtl->ready_to_enqueue_time; 221 barrier(); 222 if (i + N_DISPATCH_LOG < vpa->dtl_idx) { 223 /* buffer has overflowed */ 224 i = vpa->dtl_idx - N_DISPATCH_LOG; 225 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 226 continue; 227 } 228 if (dtb > stop_tb) 229 break; 230 stolen += tb_delta; 231 ++i; 232 ++dtl; 233 if (dtl == dtl_end) 234 dtl = local_paca->dispatch_log; 235 } 236 local_paca->dtl_ridx = i; 237 local_paca->dtl_curr = dtl; 238 return stolen; 239 } 240 241 /* 242 * Accumulate stolen time by scanning the dispatch trace log. 243 * Called on entry from user mode. 244 */ 245 void accumulate_stolen_time(void) 246 { 247 u64 sst, ust; 248 249 u8 save_soft_enabled = local_paca->soft_enabled; 250 251 /* We are called early in the exception entry, before 252 * soft/hard_enabled are sync'ed to the expected state 253 * for the exception. We are hard disabled but the PACA 254 * needs to reflect that so various debug stuff doesn't 255 * complain 256 */ 257 local_paca->soft_enabled = 0; 258 259 sst = scan_dispatch_log(local_paca->starttime_user); 260 ust = scan_dispatch_log(local_paca->starttime); 261 local_paca->system_time -= sst; 262 local_paca->user_time -= ust; 263 local_paca->stolen_time += ust + sst; 264 265 local_paca->soft_enabled = save_soft_enabled; 266 } 267 268 static inline u64 calculate_stolen_time(u64 stop_tb) 269 { 270 u64 stolen = 0; 271 272 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) { 273 stolen = scan_dispatch_log(stop_tb); 274 get_paca()->system_time -= stolen; 275 } 276 277 stolen += get_paca()->stolen_time; 278 get_paca()->stolen_time = 0; 279 return stolen; 280 } 281 282 #else /* CONFIG_PPC_SPLPAR */ 283 static inline u64 calculate_stolen_time(u64 stop_tb) 284 { 285 return 0; 286 } 287 288 #endif /* CONFIG_PPC_SPLPAR */ 289 290 /* 291 * Account time for a transition between system, hard irq 292 * or soft irq state. 293 */ 294 static u64 vtime_delta(struct task_struct *tsk, 295 u64 *sys_scaled, u64 *stolen) 296 { 297 u64 now, nowscaled, deltascaled; 298 u64 udelta, delta, user_scaled; 299 300 now = mftb(); 301 nowscaled = read_spurr(now); 302 get_paca()->system_time += now - get_paca()->starttime; 303 get_paca()->starttime = now; 304 deltascaled = nowscaled - get_paca()->startspurr; 305 get_paca()->startspurr = nowscaled; 306 307 *stolen = calculate_stolen_time(now); 308 309 delta = get_paca()->system_time; 310 get_paca()->system_time = 0; 311 udelta = get_paca()->user_time - get_paca()->utime_sspurr; 312 get_paca()->utime_sspurr = get_paca()->user_time; 313 314 /* 315 * Because we don't read the SPURR on every kernel entry/exit, 316 * deltascaled includes both user and system SPURR ticks. 317 * Apportion these ticks to system SPURR ticks and user 318 * SPURR ticks in the same ratio as the system time (delta) 319 * and user time (udelta) values obtained from the timebase 320 * over the same interval. The system ticks get accounted here; 321 * the user ticks get saved up in paca->user_time_scaled to be 322 * used by account_process_tick. 323 */ 324 *sys_scaled = delta; 325 user_scaled = udelta; 326 if (deltascaled != delta + udelta) { 327 if (udelta) { 328 *sys_scaled = deltascaled * delta / (delta + udelta); 329 user_scaled = deltascaled - *sys_scaled; 330 } else { 331 *sys_scaled = deltascaled; 332 } 333 } 334 get_paca()->user_time_scaled += user_scaled; 335 336 return delta; 337 } 338 339 void vtime_account_system(struct task_struct *tsk) 340 { 341 u64 delta, sys_scaled, stolen; 342 343 delta = vtime_delta(tsk, &sys_scaled, &stolen); 344 account_system_time(tsk, 0, delta, sys_scaled); 345 if (stolen) 346 account_steal_time(stolen); 347 } 348 349 void vtime_account_idle(struct task_struct *tsk) 350 { 351 u64 delta, sys_scaled, stolen; 352 353 delta = vtime_delta(tsk, &sys_scaled, &stolen); 354 account_idle_time(delta + stolen); 355 } 356 357 /* 358 * Transfer the user and system times accumulated in the paca 359 * by the exception entry and exit code to the generic process 360 * user and system time records. 361 * Must be called with interrupts disabled. 362 * Assumes that vtime_account() has been called recently 363 * (i.e. since the last entry from usermode) so that 364 * get_paca()->user_time_scaled is up to date. 365 */ 366 void account_process_tick(struct task_struct *tsk, int user_tick) 367 { 368 cputime_t utime, utimescaled; 369 370 utime = get_paca()->user_time; 371 utimescaled = get_paca()->user_time_scaled; 372 get_paca()->user_time = 0; 373 get_paca()->user_time_scaled = 0; 374 get_paca()->utime_sspurr = 0; 375 account_user_time(tsk, utime, utimescaled); 376 } 377 378 void vtime_task_switch(struct task_struct *prev) 379 { 380 vtime_account(prev); 381 account_process_tick(prev, 0); 382 } 383 384 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 385 #define calc_cputime_factors() 386 #endif 387 388 void __delay(unsigned long loops) 389 { 390 unsigned long start; 391 int diff; 392 393 if (__USE_RTC()) { 394 start = get_rtcl(); 395 do { 396 /* the RTCL register wraps at 1000000000 */ 397 diff = get_rtcl() - start; 398 if (diff < 0) 399 diff += 1000000000; 400 } while (diff < loops); 401 } else { 402 start = get_tbl(); 403 while (get_tbl() - start < loops) 404 HMT_low(); 405 HMT_medium(); 406 } 407 } 408 EXPORT_SYMBOL(__delay); 409 410 void udelay(unsigned long usecs) 411 { 412 __delay(tb_ticks_per_usec * usecs); 413 } 414 EXPORT_SYMBOL(udelay); 415 416 #ifdef CONFIG_SMP 417 unsigned long profile_pc(struct pt_regs *regs) 418 { 419 unsigned long pc = instruction_pointer(regs); 420 421 if (in_lock_functions(pc)) 422 return regs->link; 423 424 return pc; 425 } 426 EXPORT_SYMBOL(profile_pc); 427 #endif 428 429 #ifdef CONFIG_IRQ_WORK 430 431 /* 432 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 433 */ 434 #ifdef CONFIG_PPC64 435 static inline unsigned long test_irq_work_pending(void) 436 { 437 unsigned long x; 438 439 asm volatile("lbz %0,%1(13)" 440 : "=r" (x) 441 : "i" (offsetof(struct paca_struct, irq_work_pending))); 442 return x; 443 } 444 445 static inline void set_irq_work_pending_flag(void) 446 { 447 asm volatile("stb %0,%1(13)" : : 448 "r" (1), 449 "i" (offsetof(struct paca_struct, irq_work_pending))); 450 } 451 452 static inline void clear_irq_work_pending(void) 453 { 454 asm volatile("stb %0,%1(13)" : : 455 "r" (0), 456 "i" (offsetof(struct paca_struct, irq_work_pending))); 457 } 458 459 #else /* 32-bit */ 460 461 DEFINE_PER_CPU(u8, irq_work_pending); 462 463 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 464 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) 465 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 466 467 #endif /* 32 vs 64 bit */ 468 469 void arch_irq_work_raise(void) 470 { 471 preempt_disable(); 472 set_irq_work_pending_flag(); 473 set_dec(1); 474 preempt_enable(); 475 } 476 477 #else /* CONFIG_IRQ_WORK */ 478 479 #define test_irq_work_pending() 0 480 #define clear_irq_work_pending() 481 482 #endif /* CONFIG_IRQ_WORK */ 483 484 /* 485 * timer_interrupt - gets called when the decrementer overflows, 486 * with interrupts disabled. 487 */ 488 void timer_interrupt(struct pt_regs * regs) 489 { 490 struct pt_regs *old_regs; 491 u64 *next_tb = &__get_cpu_var(decrementers_next_tb); 492 struct clock_event_device *evt = &__get_cpu_var(decrementers); 493 u64 now; 494 495 /* Ensure a positive value is written to the decrementer, or else 496 * some CPUs will continue to take decrementer exceptions. 497 */ 498 set_dec(DECREMENTER_MAX); 499 500 /* Some implementations of hotplug will get timer interrupts while 501 * offline, just ignore these 502 */ 503 if (!cpu_online(smp_processor_id())) 504 return; 505 506 /* Conditionally hard-enable interrupts now that the DEC has been 507 * bumped to its maximum value 508 */ 509 may_hard_irq_enable(); 510 511 __get_cpu_var(irq_stat).timer_irqs++; 512 513 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC) 514 if (atomic_read(&ppc_n_lost_interrupts) != 0) 515 do_IRQ(regs); 516 #endif 517 518 old_regs = set_irq_regs(regs); 519 irq_enter(); 520 521 trace_timer_interrupt_entry(regs); 522 523 if (test_irq_work_pending()) { 524 clear_irq_work_pending(); 525 irq_work_run(); 526 } 527 528 now = get_tb_or_rtc(); 529 if (now >= *next_tb) { 530 *next_tb = ~(u64)0; 531 if (evt->event_handler) 532 evt->event_handler(evt); 533 } else { 534 now = *next_tb - now; 535 if (now <= DECREMENTER_MAX) 536 set_dec((int)now); 537 } 538 539 #ifdef CONFIG_PPC64 540 /* collect purr register values often, for accurate calculations */ 541 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 542 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 543 cu->current_tb = mfspr(SPRN_PURR); 544 } 545 #endif 546 547 trace_timer_interrupt_exit(regs); 548 549 irq_exit(); 550 set_irq_regs(old_regs); 551 } 552 553 /* 554 * Hypervisor decrementer interrupts shouldn't occur but are sometimes 555 * left pending on exit from a KVM guest. We don't need to do anything 556 * to clear them, as they are edge-triggered. 557 */ 558 void hdec_interrupt(struct pt_regs *regs) 559 { 560 } 561 562 #ifdef CONFIG_SUSPEND 563 static void generic_suspend_disable_irqs(void) 564 { 565 /* Disable the decrementer, so that it doesn't interfere 566 * with suspending. 567 */ 568 569 set_dec(DECREMENTER_MAX); 570 local_irq_disable(); 571 set_dec(DECREMENTER_MAX); 572 } 573 574 static void generic_suspend_enable_irqs(void) 575 { 576 local_irq_enable(); 577 } 578 579 /* Overrides the weak version in kernel/power/main.c */ 580 void arch_suspend_disable_irqs(void) 581 { 582 if (ppc_md.suspend_disable_irqs) 583 ppc_md.suspend_disable_irqs(); 584 generic_suspend_disable_irqs(); 585 } 586 587 /* Overrides the weak version in kernel/power/main.c */ 588 void arch_suspend_enable_irqs(void) 589 { 590 generic_suspend_enable_irqs(); 591 if (ppc_md.suspend_enable_irqs) 592 ppc_md.suspend_enable_irqs(); 593 } 594 #endif 595 596 /* 597 * Scheduler clock - returns current time in nanosec units. 598 * 599 * Note: mulhdu(a, b) (multiply high double unsigned) returns 600 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 601 * are 64-bit unsigned numbers. 602 */ 603 unsigned long long sched_clock(void) 604 { 605 if (__USE_RTC()) 606 return get_rtc(); 607 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 608 } 609 610 static int __init get_freq(char *name, int cells, unsigned long *val) 611 { 612 struct device_node *cpu; 613 const unsigned int *fp; 614 int found = 0; 615 616 /* The cpu node should have timebase and clock frequency properties */ 617 cpu = of_find_node_by_type(NULL, "cpu"); 618 619 if (cpu) { 620 fp = of_get_property(cpu, name, NULL); 621 if (fp) { 622 found = 1; 623 *val = of_read_ulong(fp, cells); 624 } 625 626 of_node_put(cpu); 627 } 628 629 return found; 630 } 631 632 /* should become __cpuinit when secondary_cpu_time_init also is */ 633 void start_cpu_decrementer(void) 634 { 635 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 636 /* Clear any pending timer interrupts */ 637 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 638 639 /* Enable decrementer interrupt */ 640 mtspr(SPRN_TCR, TCR_DIE); 641 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */ 642 } 643 644 void __init generic_calibrate_decr(void) 645 { 646 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 647 648 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 649 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 650 651 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 652 "(not found)\n"); 653 } 654 655 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 656 657 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 658 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 659 660 printk(KERN_ERR "WARNING: Estimating processor frequency " 661 "(not found)\n"); 662 } 663 } 664 665 int update_persistent_clock(struct timespec now) 666 { 667 struct rtc_time tm; 668 669 if (!ppc_md.set_rtc_time) 670 return 0; 671 672 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 673 tm.tm_year -= 1900; 674 tm.tm_mon -= 1; 675 676 return ppc_md.set_rtc_time(&tm); 677 } 678 679 static void __read_persistent_clock(struct timespec *ts) 680 { 681 struct rtc_time tm; 682 static int first = 1; 683 684 ts->tv_nsec = 0; 685 /* XXX this is a litle fragile but will work okay in the short term */ 686 if (first) { 687 first = 0; 688 if (ppc_md.time_init) 689 timezone_offset = ppc_md.time_init(); 690 691 /* get_boot_time() isn't guaranteed to be safe to call late */ 692 if (ppc_md.get_boot_time) { 693 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 694 return; 695 } 696 } 697 if (!ppc_md.get_rtc_time) { 698 ts->tv_sec = 0; 699 return; 700 } 701 ppc_md.get_rtc_time(&tm); 702 703 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 704 tm.tm_hour, tm.tm_min, tm.tm_sec); 705 } 706 707 void read_persistent_clock(struct timespec *ts) 708 { 709 __read_persistent_clock(ts); 710 711 /* Sanitize it in case real time clock is set below EPOCH */ 712 if (ts->tv_sec < 0) { 713 ts->tv_sec = 0; 714 ts->tv_nsec = 0; 715 } 716 717 } 718 719 /* clocksource code */ 720 static cycle_t rtc_read(struct clocksource *cs) 721 { 722 return (cycle_t)get_rtc(); 723 } 724 725 static cycle_t timebase_read(struct clocksource *cs) 726 { 727 return (cycle_t)get_tb(); 728 } 729 730 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm, 731 struct clocksource *clock, u32 mult) 732 { 733 u64 new_tb_to_xs, new_stamp_xsec; 734 u32 frac_sec; 735 736 if (clock != &clocksource_timebase) 737 return; 738 739 /* Make userspace gettimeofday spin until we're done. */ 740 ++vdso_data->tb_update_count; 741 smp_mb(); 742 743 /* 19342813113834067 ~= 2^(20+64) / 1e9 */ 744 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift); 745 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC; 746 do_div(new_stamp_xsec, 1000000000); 747 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC; 748 749 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC); 750 /* this is tv_nsec / 1e9 as a 0.32 fraction */ 751 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32; 752 753 /* 754 * tb_update_count is used to allow the userspace gettimeofday code 755 * to assure itself that it sees a consistent view of the tb_to_xs and 756 * stamp_xsec variables. It reads the tb_update_count, then reads 757 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 758 * the two values of tb_update_count match and are even then the 759 * tb_to_xs and stamp_xsec values are consistent. If not, then it 760 * loops back and reads them again until this criteria is met. 761 * We expect the caller to have done the first increment of 762 * vdso_data->tb_update_count already. 763 */ 764 vdso_data->tb_orig_stamp = clock->cycle_last; 765 vdso_data->stamp_xsec = new_stamp_xsec; 766 vdso_data->tb_to_xs = new_tb_to_xs; 767 vdso_data->wtom_clock_sec = wtm->tv_sec; 768 vdso_data->wtom_clock_nsec = wtm->tv_nsec; 769 vdso_data->stamp_xtime = *wall_time; 770 vdso_data->stamp_sec_fraction = frac_sec; 771 smp_wmb(); 772 ++(vdso_data->tb_update_count); 773 } 774 775 void update_vsyscall_tz(void) 776 { 777 /* Make userspace gettimeofday spin until we're done. */ 778 ++vdso_data->tb_update_count; 779 smp_mb(); 780 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 781 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 782 smp_mb(); 783 ++vdso_data->tb_update_count; 784 } 785 786 static void __init clocksource_init(void) 787 { 788 struct clocksource *clock; 789 790 if (__USE_RTC()) 791 clock = &clocksource_rtc; 792 else 793 clock = &clocksource_timebase; 794 795 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 796 printk(KERN_ERR "clocksource: %s is already registered\n", 797 clock->name); 798 return; 799 } 800 801 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 802 clock->name, clock->mult, clock->shift); 803 } 804 805 static int decrementer_set_next_event(unsigned long evt, 806 struct clock_event_device *dev) 807 { 808 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt; 809 set_dec(evt); 810 return 0; 811 } 812 813 static void decrementer_set_mode(enum clock_event_mode mode, 814 struct clock_event_device *dev) 815 { 816 if (mode != CLOCK_EVT_MODE_ONESHOT) 817 decrementer_set_next_event(DECREMENTER_MAX, dev); 818 } 819 820 static void register_decrementer_clockevent(int cpu) 821 { 822 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 823 824 *dec = decrementer_clockevent; 825 dec->cpumask = cpumask_of(cpu); 826 827 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 828 dec->name, dec->mult, dec->shift, cpu); 829 830 clockevents_register_device(dec); 831 } 832 833 static void __init init_decrementer_clockevent(void) 834 { 835 int cpu = smp_processor_id(); 836 837 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4); 838 839 decrementer_clockevent.max_delta_ns = 840 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); 841 decrementer_clockevent.min_delta_ns = 842 clockevent_delta2ns(2, &decrementer_clockevent); 843 844 register_decrementer_clockevent(cpu); 845 } 846 847 void secondary_cpu_time_init(void) 848 { 849 /* Start the decrementer on CPUs that have manual control 850 * such as BookE 851 */ 852 start_cpu_decrementer(); 853 854 /* FIME: Should make unrelatred change to move snapshot_timebase 855 * call here ! */ 856 register_decrementer_clockevent(smp_processor_id()); 857 } 858 859 /* This function is only called on the boot processor */ 860 void __init time_init(void) 861 { 862 struct div_result res; 863 u64 scale; 864 unsigned shift; 865 866 if (__USE_RTC()) { 867 /* 601 processor: dec counts down by 128 every 128ns */ 868 ppc_tb_freq = 1000000000; 869 } else { 870 /* Normal PowerPC with timebase register */ 871 ppc_md.calibrate_decr(); 872 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 873 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 874 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 875 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 876 } 877 878 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 879 tb_ticks_per_sec = ppc_tb_freq; 880 tb_ticks_per_usec = ppc_tb_freq / 1000000; 881 calc_cputime_factors(); 882 setup_cputime_one_jiffy(); 883 884 /* 885 * Compute scale factor for sched_clock. 886 * The calibrate_decr() function has set tb_ticks_per_sec, 887 * which is the timebase frequency. 888 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 889 * the 128-bit result as a 64.64 fixed-point number. 890 * We then shift that number right until it is less than 1.0, 891 * giving us the scale factor and shift count to use in 892 * sched_clock(). 893 */ 894 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 895 scale = res.result_low; 896 for (shift = 0; res.result_high != 0; ++shift) { 897 scale = (scale >> 1) | (res.result_high << 63); 898 res.result_high >>= 1; 899 } 900 tb_to_ns_scale = scale; 901 tb_to_ns_shift = shift; 902 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 903 boot_tb = get_tb_or_rtc(); 904 905 /* If platform provided a timezone (pmac), we correct the time */ 906 if (timezone_offset) { 907 sys_tz.tz_minuteswest = -timezone_offset / 60; 908 sys_tz.tz_dsttime = 0; 909 } 910 911 vdso_data->tb_update_count = 0; 912 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 913 914 /* Start the decrementer on CPUs that have manual control 915 * such as BookE 916 */ 917 start_cpu_decrementer(); 918 919 /* Register the clocksource */ 920 clocksource_init(); 921 922 init_decrementer_clockevent(); 923 } 924 925 926 #define FEBRUARY 2 927 #define STARTOFTIME 1970 928 #define SECDAY 86400L 929 #define SECYR (SECDAY * 365) 930 #define leapyear(year) ((year) % 4 == 0 && \ 931 ((year) % 100 != 0 || (year) % 400 == 0)) 932 #define days_in_year(a) (leapyear(a) ? 366 : 365) 933 #define days_in_month(a) (month_days[(a) - 1]) 934 935 static int month_days[12] = { 936 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 937 }; 938 939 /* 940 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 941 */ 942 void GregorianDay(struct rtc_time * tm) 943 { 944 int leapsToDate; 945 int lastYear; 946 int day; 947 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 948 949 lastYear = tm->tm_year - 1; 950 951 /* 952 * Number of leap corrections to apply up to end of last year 953 */ 954 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 955 956 /* 957 * This year is a leap year if it is divisible by 4 except when it is 958 * divisible by 100 unless it is divisible by 400 959 * 960 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 961 */ 962 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 963 964 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 965 tm->tm_mday; 966 967 tm->tm_wday = day % 7; 968 } 969 970 void to_tm(int tim, struct rtc_time * tm) 971 { 972 register int i; 973 register long hms, day; 974 975 day = tim / SECDAY; 976 hms = tim % SECDAY; 977 978 /* Hours, minutes, seconds are easy */ 979 tm->tm_hour = hms / 3600; 980 tm->tm_min = (hms % 3600) / 60; 981 tm->tm_sec = (hms % 3600) % 60; 982 983 /* Number of years in days */ 984 for (i = STARTOFTIME; day >= days_in_year(i); i++) 985 day -= days_in_year(i); 986 tm->tm_year = i; 987 988 /* Number of months in days left */ 989 if (leapyear(tm->tm_year)) 990 days_in_month(FEBRUARY) = 29; 991 for (i = 1; day >= days_in_month(i); i++) 992 day -= days_in_month(i); 993 days_in_month(FEBRUARY) = 28; 994 tm->tm_mon = i; 995 996 /* Days are what is left over (+1) from all that. */ 997 tm->tm_mday = day + 1; 998 999 /* 1000 * Determine the day of week 1001 */ 1002 GregorianDay(tm); 1003 } 1004 1005 /* 1006 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1007 * result. 1008 */ 1009 void div128_by_32(u64 dividend_high, u64 dividend_low, 1010 unsigned divisor, struct div_result *dr) 1011 { 1012 unsigned long a, b, c, d; 1013 unsigned long w, x, y, z; 1014 u64 ra, rb, rc; 1015 1016 a = dividend_high >> 32; 1017 b = dividend_high & 0xffffffff; 1018 c = dividend_low >> 32; 1019 d = dividend_low & 0xffffffff; 1020 1021 w = a / divisor; 1022 ra = ((u64)(a - (w * divisor)) << 32) + b; 1023 1024 rb = ((u64) do_div(ra, divisor) << 32) + c; 1025 x = ra; 1026 1027 rc = ((u64) do_div(rb, divisor) << 32) + d; 1028 y = rb; 1029 1030 do_div(rc, divisor); 1031 z = rc; 1032 1033 dr->result_high = ((u64)w << 32) + x; 1034 dr->result_low = ((u64)y << 32) + z; 1035 1036 } 1037 1038 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1039 void calibrate_delay(void) 1040 { 1041 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1042 * as the number of __delay(1) in a jiffy, so make it so 1043 */ 1044 loops_per_jiffy = tb_ticks_per_jiffy; 1045 } 1046 1047 static int __init rtc_init(void) 1048 { 1049 struct platform_device *pdev; 1050 1051 if (!ppc_md.get_rtc_time) 1052 return -ENODEV; 1053 1054 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); 1055 if (IS_ERR(pdev)) 1056 return PTR_ERR(pdev); 1057 1058 return 0; 1059 } 1060 1061 module_init(rtc_init); 1062