xref: /linux/arch/powerpc/kernel/smp.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17 
18 #undef DEBUG
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/topology.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/spinlock.h>
29 #include <linux/cache.h>
30 #include <linux/err.h>
31 #include <linux/device.h>
32 #include <linux/cpu.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/profile.h>
36 
37 #include <asm/ptrace.h>
38 #include <linux/atomic.h>
39 #include <asm/irq.h>
40 #include <asm/hw_irq.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/dbell.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/prom.h>
46 #include <asm/smp.h>
47 #include <asm/time.h>
48 #include <asm/machdep.h>
49 #include <asm/cputhreads.h>
50 #include <asm/cputable.h>
51 #include <asm/mpic.h>
52 #include <asm/vdso_datapage.h>
53 #ifdef CONFIG_PPC64
54 #include <asm/paca.h>
55 #endif
56 #include <asm/vdso.h>
57 #include <asm/debug.h>
58 #include <asm/kexec.h>
59 #include <asm/asm-prototypes.h>
60 #include <asm/cpu_has_feature.h>
61 
62 #ifdef DEBUG
63 #include <asm/udbg.h>
64 #define DBG(fmt...) udbg_printf(fmt)
65 #else
66 #define DBG(fmt...)
67 #endif
68 
69 #ifdef CONFIG_HOTPLUG_CPU
70 /* State of each CPU during hotplug phases */
71 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
72 #endif
73 
74 struct thread_info *secondary_ti;
75 
76 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
77 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
78 
79 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
80 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
81 
82 /* SMP operations for this machine */
83 struct smp_ops_t *smp_ops;
84 
85 /* Can't be static due to PowerMac hackery */
86 volatile unsigned int cpu_callin_map[NR_CPUS];
87 
88 int smt_enabled_at_boot = 1;
89 
90 /*
91  * Returns 1 if the specified cpu should be brought up during boot.
92  * Used to inhibit booting threads if they've been disabled or
93  * limited on the command line
94  */
95 int smp_generic_cpu_bootable(unsigned int nr)
96 {
97 	/* Special case - we inhibit secondary thread startup
98 	 * during boot if the user requests it.
99 	 */
100 	if (system_state == SYSTEM_BOOTING && cpu_has_feature(CPU_FTR_SMT)) {
101 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
102 			return 0;
103 		if (smt_enabled_at_boot
104 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
105 			return 0;
106 	}
107 
108 	return 1;
109 }
110 
111 
112 #ifdef CONFIG_PPC64
113 int smp_generic_kick_cpu(int nr)
114 {
115 	BUG_ON(nr < 0 || nr >= NR_CPUS);
116 
117 	/*
118 	 * The processor is currently spinning, waiting for the
119 	 * cpu_start field to become non-zero After we set cpu_start,
120 	 * the processor will continue on to secondary_start
121 	 */
122 	if (!paca[nr].cpu_start) {
123 		paca[nr].cpu_start = 1;
124 		smp_mb();
125 		return 0;
126 	}
127 
128 #ifdef CONFIG_HOTPLUG_CPU
129 	/*
130 	 * Ok it's not there, so it might be soft-unplugged, let's
131 	 * try to bring it back
132 	 */
133 	generic_set_cpu_up(nr);
134 	smp_wmb();
135 	smp_send_reschedule(nr);
136 #endif /* CONFIG_HOTPLUG_CPU */
137 
138 	return 0;
139 }
140 #endif /* CONFIG_PPC64 */
141 
142 static irqreturn_t call_function_action(int irq, void *data)
143 {
144 	generic_smp_call_function_interrupt();
145 	return IRQ_HANDLED;
146 }
147 
148 static irqreturn_t reschedule_action(int irq, void *data)
149 {
150 	scheduler_ipi();
151 	return IRQ_HANDLED;
152 }
153 
154 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
155 {
156 	tick_broadcast_ipi_handler();
157 	return IRQ_HANDLED;
158 }
159 
160 #ifdef CONFIG_NMI_IPI
161 static irqreturn_t nmi_ipi_action(int irq, void *data)
162 {
163 	smp_handle_nmi_ipi(get_irq_regs());
164 	return IRQ_HANDLED;
165 }
166 #endif
167 
168 static irq_handler_t smp_ipi_action[] = {
169 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
170 	[PPC_MSG_RESCHEDULE] = reschedule_action,
171 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
172 #ifdef CONFIG_NMI_IPI
173 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
174 #endif
175 };
176 
177 /*
178  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
179  * than going through the call function infrastructure, and strongly
180  * serialized, so it is more appropriate for debugging.
181  */
182 const char *smp_ipi_name[] = {
183 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
184 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
185 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
186 	[PPC_MSG_NMI_IPI] = "nmi ipi",
187 };
188 
189 /* optional function to request ipi, for controllers with >= 4 ipis */
190 int smp_request_message_ipi(int virq, int msg)
191 {
192 	int err;
193 
194 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
195 		return -EINVAL;
196 #ifndef CONFIG_NMI_IPI
197 	if (msg == PPC_MSG_NMI_IPI)
198 		return 1;
199 #endif
200 
201 	err = request_irq(virq, smp_ipi_action[msg],
202 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
203 			  smp_ipi_name[msg], NULL);
204 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
205 		virq, smp_ipi_name[msg], err);
206 
207 	return err;
208 }
209 
210 #ifdef CONFIG_PPC_SMP_MUXED_IPI
211 struct cpu_messages {
212 	long messages;			/* current messages */
213 };
214 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
215 
216 void smp_muxed_ipi_set_message(int cpu, int msg)
217 {
218 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
219 	char *message = (char *)&info->messages;
220 
221 	/*
222 	 * Order previous accesses before accesses in the IPI handler.
223 	 */
224 	smp_mb();
225 	message[msg] = 1;
226 }
227 
228 void smp_muxed_ipi_message_pass(int cpu, int msg)
229 {
230 	smp_muxed_ipi_set_message(cpu, msg);
231 
232 	/*
233 	 * cause_ipi functions are required to include a full barrier
234 	 * before doing whatever causes the IPI.
235 	 */
236 	smp_ops->cause_ipi(cpu);
237 }
238 
239 #ifdef __BIG_ENDIAN__
240 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
241 #else
242 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
243 #endif
244 
245 irqreturn_t smp_ipi_demux(void)
246 {
247 	mb();	/* order any irq clear */
248 
249 	return smp_ipi_demux_relaxed();
250 }
251 
252 /* sync-free variant. Callers should ensure synchronization */
253 irqreturn_t smp_ipi_demux_relaxed(void)
254 {
255 	struct cpu_messages *info;
256 	unsigned long all;
257 
258 	info = this_cpu_ptr(&ipi_message);
259 	do {
260 		all = xchg(&info->messages, 0);
261 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
262 		/*
263 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
264 		 * before PPC_MSG_CALL_FUNCTION messages because when
265 		 * a VM is destroyed, we call kick_all_cpus_sync()
266 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
267 		 * messages have completed before we free any VCPUs.
268 		 */
269 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
270 			kvmppc_xics_ipi_action();
271 #endif
272 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
273 			generic_smp_call_function_interrupt();
274 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
275 			scheduler_ipi();
276 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
277 			tick_broadcast_ipi_handler();
278 #ifdef CONFIG_NMI_IPI
279 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
280 			nmi_ipi_action(0, NULL);
281 #endif
282 	} while (info->messages);
283 
284 	return IRQ_HANDLED;
285 }
286 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
287 
288 static inline void do_message_pass(int cpu, int msg)
289 {
290 	if (smp_ops->message_pass)
291 		smp_ops->message_pass(cpu, msg);
292 #ifdef CONFIG_PPC_SMP_MUXED_IPI
293 	else
294 		smp_muxed_ipi_message_pass(cpu, msg);
295 #endif
296 }
297 
298 void smp_send_reschedule(int cpu)
299 {
300 	if (likely(smp_ops))
301 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
302 }
303 EXPORT_SYMBOL_GPL(smp_send_reschedule);
304 
305 void arch_send_call_function_single_ipi(int cpu)
306 {
307 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
308 }
309 
310 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
311 {
312 	unsigned int cpu;
313 
314 	for_each_cpu(cpu, mask)
315 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
316 }
317 
318 #ifdef CONFIG_NMI_IPI
319 
320 /*
321  * "NMI IPI" system.
322  *
323  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
324  * a running system. They can be used for crash, debug, halt/reboot, etc.
325  *
326  * NMI IPIs are globally single threaded. No more than one in progress at
327  * any time.
328  *
329  * The IPI call waits with interrupts disabled until all targets enter the
330  * NMI handler, then the call returns.
331  *
332  * No new NMI can be initiated until targets exit the handler.
333  *
334  * The IPI call may time out without all targets entering the NMI handler.
335  * In that case, there is some logic to recover (and ignore subsequent
336  * NMI interrupts that may eventually be raised), but the platform interrupt
337  * handler may not be able to distinguish this from other exception causes,
338  * which may cause a crash.
339  */
340 
341 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
342 static struct cpumask nmi_ipi_pending_mask;
343 static int nmi_ipi_busy_count = 0;
344 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
345 
346 static void nmi_ipi_lock_start(unsigned long *flags)
347 {
348 	raw_local_irq_save(*flags);
349 	hard_irq_disable();
350 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
351 		raw_local_irq_restore(*flags);
352 		cpu_relax();
353 		raw_local_irq_save(*flags);
354 		hard_irq_disable();
355 	}
356 }
357 
358 static void nmi_ipi_lock(void)
359 {
360 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
361 		cpu_relax();
362 }
363 
364 static void nmi_ipi_unlock(void)
365 {
366 	smp_mb();
367 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
368 	atomic_set(&__nmi_ipi_lock, 0);
369 }
370 
371 static void nmi_ipi_unlock_end(unsigned long *flags)
372 {
373 	nmi_ipi_unlock();
374 	raw_local_irq_restore(*flags);
375 }
376 
377 /*
378  * Platform NMI handler calls this to ack
379  */
380 int smp_handle_nmi_ipi(struct pt_regs *regs)
381 {
382 	void (*fn)(struct pt_regs *);
383 	unsigned long flags;
384 	int me = raw_smp_processor_id();
385 	int ret = 0;
386 
387 	/*
388 	 * Unexpected NMIs are possible here because the interrupt may not
389 	 * be able to distinguish NMI IPIs from other types of NMIs, or
390 	 * because the caller may have timed out.
391 	 */
392 	nmi_ipi_lock_start(&flags);
393 	if (!nmi_ipi_busy_count)
394 		goto out;
395 	if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
396 		goto out;
397 
398 	fn = nmi_ipi_function;
399 	if (!fn)
400 		goto out;
401 
402 	cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
403 	nmi_ipi_busy_count++;
404 	nmi_ipi_unlock();
405 
406 	ret = 1;
407 
408 	fn(regs);
409 
410 	nmi_ipi_lock();
411 	nmi_ipi_busy_count--;
412 out:
413 	nmi_ipi_unlock_end(&flags);
414 
415 	return ret;
416 }
417 
418 static void do_smp_send_nmi_ipi(int cpu)
419 {
420 	if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
421 		return;
422 
423 	if (cpu >= 0) {
424 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
425 	} else {
426 		int c;
427 
428 		for_each_online_cpu(c) {
429 			if (c == raw_smp_processor_id())
430 				continue;
431 			do_message_pass(c, PPC_MSG_NMI_IPI);
432 		}
433 	}
434 }
435 
436 /*
437  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
438  * - fn is the target callback function.
439  * - delay_us > 0 is the delay before giving up waiting for targets to
440  *   enter the handler, == 0 specifies indefinite delay.
441  */
442 static int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
443 {
444 	unsigned long flags;
445 	int me = raw_smp_processor_id();
446 	int ret = 1;
447 
448 	BUG_ON(cpu == me);
449 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
450 
451 	if (unlikely(!smp_ops))
452 		return 0;
453 
454 	/* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
455 	nmi_ipi_lock_start(&flags);
456 	while (nmi_ipi_busy_count) {
457 		nmi_ipi_unlock_end(&flags);
458 		cpu_relax();
459 		nmi_ipi_lock_start(&flags);
460 	}
461 
462 	nmi_ipi_function = fn;
463 
464 	if (cpu < 0) {
465 		/* ALL_OTHERS */
466 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
467 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
468 	} else {
469 		/* cpumask starts clear */
470 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
471 	}
472 	nmi_ipi_busy_count++;
473 	nmi_ipi_unlock();
474 
475 	do_smp_send_nmi_ipi(cpu);
476 
477 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
478 		udelay(1);
479 		if (delay_us) {
480 			delay_us--;
481 			if (!delay_us)
482 				break;
483 		}
484 	}
485 
486 	nmi_ipi_lock();
487 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
488 		/* Could not gather all CPUs */
489 		ret = 0;
490 		cpumask_clear(&nmi_ipi_pending_mask);
491 	}
492 	nmi_ipi_busy_count--;
493 	nmi_ipi_unlock_end(&flags);
494 
495 	return ret;
496 }
497 #endif /* CONFIG_NMI_IPI */
498 
499 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
500 void tick_broadcast(const struct cpumask *mask)
501 {
502 	unsigned int cpu;
503 
504 	for_each_cpu(cpu, mask)
505 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
506 }
507 #endif
508 
509 #ifdef CONFIG_DEBUGGER
510 void debugger_ipi_callback(struct pt_regs *regs)
511 {
512 	debugger_ipi(regs);
513 }
514 
515 void smp_send_debugger_break(void)
516 {
517 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
518 }
519 #endif
520 
521 #ifdef CONFIG_KEXEC_CORE
522 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
523 {
524 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
525 }
526 #endif
527 
528 static void stop_this_cpu(void *dummy)
529 {
530 	/* Remove this CPU */
531 	set_cpu_online(smp_processor_id(), false);
532 
533 	local_irq_disable();
534 	while (1)
535 		;
536 }
537 
538 void smp_send_stop(void)
539 {
540 	smp_call_function(stop_this_cpu, NULL, 0);
541 }
542 
543 struct thread_info *current_set[NR_CPUS];
544 
545 static void smp_store_cpu_info(int id)
546 {
547 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
548 #ifdef CONFIG_PPC_FSL_BOOK3E
549 	per_cpu(next_tlbcam_idx, id)
550 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
551 #endif
552 }
553 
554 void __init smp_prepare_cpus(unsigned int max_cpus)
555 {
556 	unsigned int cpu;
557 
558 	DBG("smp_prepare_cpus\n");
559 
560 	/*
561 	 * setup_cpu may need to be called on the boot cpu. We havent
562 	 * spun any cpus up but lets be paranoid.
563 	 */
564 	BUG_ON(boot_cpuid != smp_processor_id());
565 
566 	/* Fixup boot cpu */
567 	smp_store_cpu_info(boot_cpuid);
568 	cpu_callin_map[boot_cpuid] = 1;
569 
570 	for_each_possible_cpu(cpu) {
571 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
572 					GFP_KERNEL, cpu_to_node(cpu));
573 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
574 					GFP_KERNEL, cpu_to_node(cpu));
575 		/*
576 		 * numa_node_id() works after this.
577 		 */
578 		if (cpu_present(cpu)) {
579 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
580 			set_cpu_numa_mem(cpu,
581 				local_memory_node(numa_cpu_lookup_table[cpu]));
582 		}
583 	}
584 
585 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
586 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
587 
588 	if (smp_ops && smp_ops->probe)
589 		smp_ops->probe();
590 }
591 
592 void smp_prepare_boot_cpu(void)
593 {
594 	BUG_ON(smp_processor_id() != boot_cpuid);
595 #ifdef CONFIG_PPC64
596 	paca[boot_cpuid].__current = current;
597 #endif
598 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
599 	current_set[boot_cpuid] = task_thread_info(current);
600 }
601 
602 #ifdef CONFIG_HOTPLUG_CPU
603 
604 int generic_cpu_disable(void)
605 {
606 	unsigned int cpu = smp_processor_id();
607 
608 	if (cpu == boot_cpuid)
609 		return -EBUSY;
610 
611 	set_cpu_online(cpu, false);
612 #ifdef CONFIG_PPC64
613 	vdso_data->processorCount--;
614 #endif
615 	/* Update affinity of all IRQs previously aimed at this CPU */
616 	irq_migrate_all_off_this_cpu();
617 
618 	/*
619 	 * Depending on the details of the interrupt controller, it's possible
620 	 * that one of the interrupts we just migrated away from this CPU is
621 	 * actually already pending on this CPU. If we leave it in that state
622 	 * the interrupt will never be EOI'ed, and will never fire again. So
623 	 * temporarily enable interrupts here, to allow any pending interrupt to
624 	 * be received (and EOI'ed), before we take this CPU offline.
625 	 */
626 	local_irq_enable();
627 	mdelay(1);
628 	local_irq_disable();
629 
630 	return 0;
631 }
632 
633 void generic_cpu_die(unsigned int cpu)
634 {
635 	int i;
636 
637 	for (i = 0; i < 100; i++) {
638 		smp_rmb();
639 		if (is_cpu_dead(cpu))
640 			return;
641 		msleep(100);
642 	}
643 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
644 }
645 
646 void generic_set_cpu_dead(unsigned int cpu)
647 {
648 	per_cpu(cpu_state, cpu) = CPU_DEAD;
649 }
650 
651 /*
652  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
653  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
654  * which makes the delay in generic_cpu_die() not happen.
655  */
656 void generic_set_cpu_up(unsigned int cpu)
657 {
658 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
659 }
660 
661 int generic_check_cpu_restart(unsigned int cpu)
662 {
663 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
664 }
665 
666 int is_cpu_dead(unsigned int cpu)
667 {
668 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
669 }
670 
671 static bool secondaries_inhibited(void)
672 {
673 	return kvm_hv_mode_active();
674 }
675 
676 #else /* HOTPLUG_CPU */
677 
678 #define secondaries_inhibited()		0
679 
680 #endif
681 
682 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
683 {
684 	struct thread_info *ti = task_thread_info(idle);
685 
686 #ifdef CONFIG_PPC64
687 	paca[cpu].__current = idle;
688 	paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
689 #endif
690 	ti->cpu = cpu;
691 	secondary_ti = current_set[cpu] = ti;
692 }
693 
694 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
695 {
696 	int rc, c;
697 
698 	/*
699 	 * Don't allow secondary threads to come online if inhibited
700 	 */
701 	if (threads_per_core > 1 && secondaries_inhibited() &&
702 	    cpu_thread_in_subcore(cpu))
703 		return -EBUSY;
704 
705 	if (smp_ops == NULL ||
706 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
707 		return -EINVAL;
708 
709 	cpu_idle_thread_init(cpu, tidle);
710 
711 	/*
712 	 * The platform might need to allocate resources prior to bringing
713 	 * up the CPU
714 	 */
715 	if (smp_ops->prepare_cpu) {
716 		rc = smp_ops->prepare_cpu(cpu);
717 		if (rc)
718 			return rc;
719 	}
720 
721 	/* Make sure callin-map entry is 0 (can be leftover a CPU
722 	 * hotplug
723 	 */
724 	cpu_callin_map[cpu] = 0;
725 
726 	/* The information for processor bringup must
727 	 * be written out to main store before we release
728 	 * the processor.
729 	 */
730 	smp_mb();
731 
732 	/* wake up cpus */
733 	DBG("smp: kicking cpu %d\n", cpu);
734 	rc = smp_ops->kick_cpu(cpu);
735 	if (rc) {
736 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
737 		return rc;
738 	}
739 
740 	/*
741 	 * wait to see if the cpu made a callin (is actually up).
742 	 * use this value that I found through experimentation.
743 	 * -- Cort
744 	 */
745 	if (system_state < SYSTEM_RUNNING)
746 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
747 			udelay(100);
748 #ifdef CONFIG_HOTPLUG_CPU
749 	else
750 		/*
751 		 * CPUs can take much longer to come up in the
752 		 * hotplug case.  Wait five seconds.
753 		 */
754 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
755 			msleep(1);
756 #endif
757 
758 	if (!cpu_callin_map[cpu]) {
759 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
760 		return -ENOENT;
761 	}
762 
763 	DBG("Processor %u found.\n", cpu);
764 
765 	if (smp_ops->give_timebase)
766 		smp_ops->give_timebase();
767 
768 	/* Wait until cpu puts itself in the online & active maps */
769 	while (!cpu_online(cpu))
770 		cpu_relax();
771 
772 	return 0;
773 }
774 
775 /* Return the value of the reg property corresponding to the given
776  * logical cpu.
777  */
778 int cpu_to_core_id(int cpu)
779 {
780 	struct device_node *np;
781 	const __be32 *reg;
782 	int id = -1;
783 
784 	np = of_get_cpu_node(cpu, NULL);
785 	if (!np)
786 		goto out;
787 
788 	reg = of_get_property(np, "reg", NULL);
789 	if (!reg)
790 		goto out;
791 
792 	id = be32_to_cpup(reg);
793 out:
794 	of_node_put(np);
795 	return id;
796 }
797 EXPORT_SYMBOL_GPL(cpu_to_core_id);
798 
799 /* Helper routines for cpu to core mapping */
800 int cpu_core_index_of_thread(int cpu)
801 {
802 	return cpu >> threads_shift;
803 }
804 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
805 
806 int cpu_first_thread_of_core(int core)
807 {
808 	return core << threads_shift;
809 }
810 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
811 
812 static void traverse_siblings_chip_id(int cpu, bool add, int chipid)
813 {
814 	const struct cpumask *mask;
815 	struct device_node *np;
816 	int i, plen;
817 	const __be32 *prop;
818 
819 	mask = add ? cpu_online_mask : cpu_present_mask;
820 	for_each_cpu(i, mask) {
821 		np = of_get_cpu_node(i, NULL);
822 		if (!np)
823 			continue;
824 		prop = of_get_property(np, "ibm,chip-id", &plen);
825 		if (prop && plen == sizeof(int) &&
826 		    of_read_number(prop, 1) == chipid) {
827 			if (add) {
828 				cpumask_set_cpu(cpu, cpu_core_mask(i));
829 				cpumask_set_cpu(i, cpu_core_mask(cpu));
830 			} else {
831 				cpumask_clear_cpu(cpu, cpu_core_mask(i));
832 				cpumask_clear_cpu(i, cpu_core_mask(cpu));
833 			}
834 		}
835 		of_node_put(np);
836 	}
837 }
838 
839 /* Must be called when no change can occur to cpu_present_mask,
840  * i.e. during cpu online or offline.
841  */
842 static struct device_node *cpu_to_l2cache(int cpu)
843 {
844 	struct device_node *np;
845 	struct device_node *cache;
846 
847 	if (!cpu_present(cpu))
848 		return NULL;
849 
850 	np = of_get_cpu_node(cpu, NULL);
851 	if (np == NULL)
852 		return NULL;
853 
854 	cache = of_find_next_cache_node(np);
855 
856 	of_node_put(np);
857 
858 	return cache;
859 }
860 
861 static void traverse_core_siblings(int cpu, bool add)
862 {
863 	struct device_node *l2_cache, *np;
864 	const struct cpumask *mask;
865 	int i, chip, plen;
866 	const __be32 *prop;
867 
868 	/* First see if we have ibm,chip-id properties in cpu nodes */
869 	np = of_get_cpu_node(cpu, NULL);
870 	if (np) {
871 		chip = -1;
872 		prop = of_get_property(np, "ibm,chip-id", &plen);
873 		if (prop && plen == sizeof(int))
874 			chip = of_read_number(prop, 1);
875 		of_node_put(np);
876 		if (chip >= 0) {
877 			traverse_siblings_chip_id(cpu, add, chip);
878 			return;
879 		}
880 	}
881 
882 	l2_cache = cpu_to_l2cache(cpu);
883 	mask = add ? cpu_online_mask : cpu_present_mask;
884 	for_each_cpu(i, mask) {
885 		np = cpu_to_l2cache(i);
886 		if (!np)
887 			continue;
888 		if (np == l2_cache) {
889 			if (add) {
890 				cpumask_set_cpu(cpu, cpu_core_mask(i));
891 				cpumask_set_cpu(i, cpu_core_mask(cpu));
892 			} else {
893 				cpumask_clear_cpu(cpu, cpu_core_mask(i));
894 				cpumask_clear_cpu(i, cpu_core_mask(cpu));
895 			}
896 		}
897 		of_node_put(np);
898 	}
899 	of_node_put(l2_cache);
900 }
901 
902 /* Activate a secondary processor. */
903 void start_secondary(void *unused)
904 {
905 	unsigned int cpu = smp_processor_id();
906 	int i, base;
907 
908 	mmgrab(&init_mm);
909 	current->active_mm = &init_mm;
910 
911 	smp_store_cpu_info(cpu);
912 	set_dec(tb_ticks_per_jiffy);
913 	preempt_disable();
914 	cpu_callin_map[cpu] = 1;
915 
916 	if (smp_ops->setup_cpu)
917 		smp_ops->setup_cpu(cpu);
918 	if (smp_ops->take_timebase)
919 		smp_ops->take_timebase();
920 
921 	secondary_cpu_time_init();
922 
923 #ifdef CONFIG_PPC64
924 	if (system_state == SYSTEM_RUNNING)
925 		vdso_data->processorCount++;
926 
927 	vdso_getcpu_init();
928 #endif
929 	/* Update sibling maps */
930 	base = cpu_first_thread_sibling(cpu);
931 	for (i = 0; i < threads_per_core; i++) {
932 		if (cpu_is_offline(base + i) && (cpu != base + i))
933 			continue;
934 		cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
935 		cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
936 
937 		/* cpu_core_map should be a superset of
938 		 * cpu_sibling_map even if we don't have cache
939 		 * information, so update the former here, too.
940 		 */
941 		cpumask_set_cpu(cpu, cpu_core_mask(base + i));
942 		cpumask_set_cpu(base + i, cpu_core_mask(cpu));
943 	}
944 	traverse_core_siblings(cpu, true);
945 
946 	set_numa_node(numa_cpu_lookup_table[cpu]);
947 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
948 
949 	smp_wmb();
950 	notify_cpu_starting(cpu);
951 	set_cpu_online(cpu, true);
952 
953 	local_irq_enable();
954 
955 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
956 
957 	BUG();
958 }
959 
960 int setup_profiling_timer(unsigned int multiplier)
961 {
962 	return 0;
963 }
964 
965 #ifdef CONFIG_SCHED_SMT
966 /* cpumask of CPUs with asymetric SMT dependancy */
967 static int powerpc_smt_flags(void)
968 {
969 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
970 
971 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
972 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
973 		flags |= SD_ASYM_PACKING;
974 	}
975 	return flags;
976 }
977 #endif
978 
979 static struct sched_domain_topology_level powerpc_topology[] = {
980 #ifdef CONFIG_SCHED_SMT
981 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
982 #endif
983 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
984 	{ NULL, },
985 };
986 
987 static __init long smp_setup_cpu_workfn(void *data __always_unused)
988 {
989 	smp_ops->setup_cpu(boot_cpuid);
990 	return 0;
991 }
992 
993 void __init smp_cpus_done(unsigned int max_cpus)
994 {
995 	/*
996 	 * We want the setup_cpu() here to be called on the boot CPU, but
997 	 * init might run on any CPU, so make sure it's invoked on the boot
998 	 * CPU.
999 	 */
1000 	if (smp_ops && smp_ops->setup_cpu)
1001 		work_on_cpu_safe(boot_cpuid, smp_setup_cpu_workfn, NULL);
1002 
1003 	if (smp_ops && smp_ops->bringup_done)
1004 		smp_ops->bringup_done();
1005 
1006 	dump_numa_cpu_topology();
1007 
1008 	set_sched_topology(powerpc_topology);
1009 }
1010 
1011 #ifdef CONFIG_HOTPLUG_CPU
1012 int __cpu_disable(void)
1013 {
1014 	int cpu = smp_processor_id();
1015 	int base, i;
1016 	int err;
1017 
1018 	if (!smp_ops->cpu_disable)
1019 		return -ENOSYS;
1020 
1021 	err = smp_ops->cpu_disable();
1022 	if (err)
1023 		return err;
1024 
1025 	/* Update sibling maps */
1026 	base = cpu_first_thread_sibling(cpu);
1027 	for (i = 0; i < threads_per_core && base + i < nr_cpu_ids; i++) {
1028 		cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
1029 		cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
1030 		cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
1031 		cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
1032 	}
1033 	traverse_core_siblings(cpu, false);
1034 
1035 	return 0;
1036 }
1037 
1038 void __cpu_die(unsigned int cpu)
1039 {
1040 	if (smp_ops->cpu_die)
1041 		smp_ops->cpu_die(cpu);
1042 }
1043 
1044 void cpu_die(void)
1045 {
1046 	if (ppc_md.cpu_die)
1047 		ppc_md.cpu_die();
1048 
1049 	/* If we return, we re-enter start_secondary */
1050 	start_secondary_resume();
1051 }
1052 
1053 #endif
1054