1 /* 2 * SMP support for ppc. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 5 * deal of code from the sparc and intel versions. 6 * 7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 8 * 9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18 #undef DEBUG 19 20 #include <linux/kernel.h> 21 #include <linux/export.h> 22 #include <linux/sched.h> 23 #include <linux/smp.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/init.h> 27 #include <linux/spinlock.h> 28 #include <linux/cache.h> 29 #include <linux/err.h> 30 #include <linux/device.h> 31 #include <linux/cpu.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 35 #include <asm/ptrace.h> 36 #include <linux/atomic.h> 37 #include <asm/irq.h> 38 #include <asm/hw_irq.h> 39 #include <asm/kvm_ppc.h> 40 #include <asm/page.h> 41 #include <asm/pgtable.h> 42 #include <asm/prom.h> 43 #include <asm/smp.h> 44 #include <asm/time.h> 45 #include <asm/machdep.h> 46 #include <asm/cputhreads.h> 47 #include <asm/cputable.h> 48 #include <asm/mpic.h> 49 #include <asm/vdso_datapage.h> 50 #ifdef CONFIG_PPC64 51 #include <asm/paca.h> 52 #endif 53 #include <asm/vdso.h> 54 #include <asm/debug.h> 55 #include <asm/kexec.h> 56 57 #ifdef DEBUG 58 #include <asm/udbg.h> 59 #define DBG(fmt...) udbg_printf(fmt) 60 #else 61 #define DBG(fmt...) 62 #endif 63 64 #ifdef CONFIG_HOTPLUG_CPU 65 /* State of each CPU during hotplug phases */ 66 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 67 #endif 68 69 struct thread_info *secondary_ti; 70 71 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 72 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 73 74 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 75 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 76 77 /* SMP operations for this machine */ 78 struct smp_ops_t *smp_ops; 79 80 /* Can't be static due to PowerMac hackery */ 81 volatile unsigned int cpu_callin_map[NR_CPUS]; 82 83 int smt_enabled_at_boot = 1; 84 85 static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL; 86 87 /* 88 * Returns 1 if the specified cpu should be brought up during boot. 89 * Used to inhibit booting threads if they've been disabled or 90 * limited on the command line 91 */ 92 int smp_generic_cpu_bootable(unsigned int nr) 93 { 94 /* Special case - we inhibit secondary thread startup 95 * during boot if the user requests it. 96 */ 97 if (system_state == SYSTEM_BOOTING && cpu_has_feature(CPU_FTR_SMT)) { 98 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 99 return 0; 100 if (smt_enabled_at_boot 101 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 102 return 0; 103 } 104 105 return 1; 106 } 107 108 109 #ifdef CONFIG_PPC64 110 int smp_generic_kick_cpu(int nr) 111 { 112 BUG_ON(nr < 0 || nr >= NR_CPUS); 113 114 /* 115 * The processor is currently spinning, waiting for the 116 * cpu_start field to become non-zero After we set cpu_start, 117 * the processor will continue on to secondary_start 118 */ 119 if (!paca[nr].cpu_start) { 120 paca[nr].cpu_start = 1; 121 smp_mb(); 122 return 0; 123 } 124 125 #ifdef CONFIG_HOTPLUG_CPU 126 /* 127 * Ok it's not there, so it might be soft-unplugged, let's 128 * try to bring it back 129 */ 130 generic_set_cpu_up(nr); 131 smp_wmb(); 132 smp_send_reschedule(nr); 133 #endif /* CONFIG_HOTPLUG_CPU */ 134 135 return 0; 136 } 137 #endif /* CONFIG_PPC64 */ 138 139 static irqreturn_t call_function_action(int irq, void *data) 140 { 141 generic_smp_call_function_interrupt(); 142 return IRQ_HANDLED; 143 } 144 145 static irqreturn_t reschedule_action(int irq, void *data) 146 { 147 scheduler_ipi(); 148 return IRQ_HANDLED; 149 } 150 151 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 152 { 153 tick_broadcast_ipi_handler(); 154 return IRQ_HANDLED; 155 } 156 157 static irqreturn_t debug_ipi_action(int irq, void *data) 158 { 159 if (crash_ipi_function_ptr) { 160 crash_ipi_function_ptr(get_irq_regs()); 161 return IRQ_HANDLED; 162 } 163 164 #ifdef CONFIG_DEBUGGER 165 debugger_ipi(get_irq_regs()); 166 #endif /* CONFIG_DEBUGGER */ 167 168 return IRQ_HANDLED; 169 } 170 171 static irq_handler_t smp_ipi_action[] = { 172 [PPC_MSG_CALL_FUNCTION] = call_function_action, 173 [PPC_MSG_RESCHEDULE] = reschedule_action, 174 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 175 [PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action, 176 }; 177 178 const char *smp_ipi_name[] = { 179 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 180 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 181 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 182 [PPC_MSG_DEBUGGER_BREAK] = "ipi debugger", 183 }; 184 185 /* optional function to request ipi, for controllers with >= 4 ipis */ 186 int smp_request_message_ipi(int virq, int msg) 187 { 188 int err; 189 190 if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) { 191 return -EINVAL; 192 } 193 #if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC) 194 if (msg == PPC_MSG_DEBUGGER_BREAK) { 195 return 1; 196 } 197 #endif 198 err = request_irq(virq, smp_ipi_action[msg], 199 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 200 smp_ipi_name[msg], NULL); 201 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 202 virq, smp_ipi_name[msg], err); 203 204 return err; 205 } 206 207 #ifdef CONFIG_PPC_SMP_MUXED_IPI 208 struct cpu_messages { 209 long messages; /* current messages */ 210 unsigned long data; /* data for cause ipi */ 211 }; 212 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 213 214 void smp_muxed_ipi_set_data(int cpu, unsigned long data) 215 { 216 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 217 218 info->data = data; 219 } 220 221 void smp_muxed_ipi_set_message(int cpu, int msg) 222 { 223 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 224 char *message = (char *)&info->messages; 225 226 /* 227 * Order previous accesses before accesses in the IPI handler. 228 */ 229 smp_mb(); 230 message[msg] = 1; 231 } 232 233 void smp_muxed_ipi_message_pass(int cpu, int msg) 234 { 235 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 236 237 smp_muxed_ipi_set_message(cpu, msg); 238 /* 239 * cause_ipi functions are required to include a full barrier 240 * before doing whatever causes the IPI. 241 */ 242 smp_ops->cause_ipi(cpu, info->data); 243 } 244 245 #ifdef __BIG_ENDIAN__ 246 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 247 #else 248 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 249 #endif 250 251 irqreturn_t smp_ipi_demux(void) 252 { 253 struct cpu_messages *info = this_cpu_ptr(&ipi_message); 254 unsigned long all; 255 256 mb(); /* order any irq clear */ 257 258 do { 259 all = xchg(&info->messages, 0); 260 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 261 /* 262 * Must check for PPC_MSG_RM_HOST_ACTION messages 263 * before PPC_MSG_CALL_FUNCTION messages because when 264 * a VM is destroyed, we call kick_all_cpus_sync() 265 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 266 * messages have completed before we free any VCPUs. 267 */ 268 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 269 kvmppc_xics_ipi_action(); 270 #endif 271 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 272 generic_smp_call_function_interrupt(); 273 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 274 scheduler_ipi(); 275 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 276 tick_broadcast_ipi_handler(); 277 if (all & IPI_MESSAGE(PPC_MSG_DEBUGGER_BREAK)) 278 debug_ipi_action(0, NULL); 279 } while (info->messages); 280 281 return IRQ_HANDLED; 282 } 283 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 284 285 static inline void do_message_pass(int cpu, int msg) 286 { 287 if (smp_ops->message_pass) 288 smp_ops->message_pass(cpu, msg); 289 #ifdef CONFIG_PPC_SMP_MUXED_IPI 290 else 291 smp_muxed_ipi_message_pass(cpu, msg); 292 #endif 293 } 294 295 void smp_send_reschedule(int cpu) 296 { 297 if (likely(smp_ops)) 298 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 299 } 300 EXPORT_SYMBOL_GPL(smp_send_reschedule); 301 302 void arch_send_call_function_single_ipi(int cpu) 303 { 304 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 305 } 306 307 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 308 { 309 unsigned int cpu; 310 311 for_each_cpu(cpu, mask) 312 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 313 } 314 315 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 316 void tick_broadcast(const struct cpumask *mask) 317 { 318 unsigned int cpu; 319 320 for_each_cpu(cpu, mask) 321 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 322 } 323 #endif 324 325 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC) 326 void smp_send_debugger_break(void) 327 { 328 int cpu; 329 int me = raw_smp_processor_id(); 330 331 if (unlikely(!smp_ops)) 332 return; 333 334 for_each_online_cpu(cpu) 335 if (cpu != me) 336 do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK); 337 } 338 #endif 339 340 #ifdef CONFIG_KEXEC 341 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 342 { 343 crash_ipi_function_ptr = crash_ipi_callback; 344 if (crash_ipi_callback) { 345 mb(); 346 smp_send_debugger_break(); 347 } 348 } 349 #endif 350 351 static void stop_this_cpu(void *dummy) 352 { 353 /* Remove this CPU */ 354 set_cpu_online(smp_processor_id(), false); 355 356 local_irq_disable(); 357 while (1) 358 ; 359 } 360 361 void smp_send_stop(void) 362 { 363 smp_call_function(stop_this_cpu, NULL, 0); 364 } 365 366 struct thread_info *current_set[NR_CPUS]; 367 368 static void smp_store_cpu_info(int id) 369 { 370 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 371 #ifdef CONFIG_PPC_FSL_BOOK3E 372 per_cpu(next_tlbcam_idx, id) 373 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 374 #endif 375 } 376 377 void __init smp_prepare_cpus(unsigned int max_cpus) 378 { 379 unsigned int cpu; 380 381 DBG("smp_prepare_cpus\n"); 382 383 /* 384 * setup_cpu may need to be called on the boot cpu. We havent 385 * spun any cpus up but lets be paranoid. 386 */ 387 BUG_ON(boot_cpuid != smp_processor_id()); 388 389 /* Fixup boot cpu */ 390 smp_store_cpu_info(boot_cpuid); 391 cpu_callin_map[boot_cpuid] = 1; 392 393 for_each_possible_cpu(cpu) { 394 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 395 GFP_KERNEL, cpu_to_node(cpu)); 396 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 397 GFP_KERNEL, cpu_to_node(cpu)); 398 /* 399 * numa_node_id() works after this. 400 */ 401 if (cpu_present(cpu)) { 402 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 403 set_cpu_numa_mem(cpu, 404 local_memory_node(numa_cpu_lookup_table[cpu])); 405 } 406 } 407 408 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 409 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 410 411 if (smp_ops && smp_ops->probe) 412 smp_ops->probe(); 413 } 414 415 void smp_prepare_boot_cpu(void) 416 { 417 BUG_ON(smp_processor_id() != boot_cpuid); 418 #ifdef CONFIG_PPC64 419 paca[boot_cpuid].__current = current; 420 #endif 421 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 422 current_set[boot_cpuid] = task_thread_info(current); 423 } 424 425 #ifdef CONFIG_HOTPLUG_CPU 426 427 int generic_cpu_disable(void) 428 { 429 unsigned int cpu = smp_processor_id(); 430 431 if (cpu == boot_cpuid) 432 return -EBUSY; 433 434 set_cpu_online(cpu, false); 435 #ifdef CONFIG_PPC64 436 vdso_data->processorCount--; 437 #endif 438 migrate_irqs(); 439 return 0; 440 } 441 442 void generic_cpu_die(unsigned int cpu) 443 { 444 int i; 445 446 for (i = 0; i < 100; i++) { 447 smp_rmb(); 448 if (is_cpu_dead(cpu)) 449 return; 450 msleep(100); 451 } 452 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 453 } 454 455 void generic_set_cpu_dead(unsigned int cpu) 456 { 457 per_cpu(cpu_state, cpu) = CPU_DEAD; 458 } 459 460 /* 461 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 462 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 463 * which makes the delay in generic_cpu_die() not happen. 464 */ 465 void generic_set_cpu_up(unsigned int cpu) 466 { 467 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 468 } 469 470 int generic_check_cpu_restart(unsigned int cpu) 471 { 472 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 473 } 474 475 int is_cpu_dead(unsigned int cpu) 476 { 477 return per_cpu(cpu_state, cpu) == CPU_DEAD; 478 } 479 480 static bool secondaries_inhibited(void) 481 { 482 return kvm_hv_mode_active(); 483 } 484 485 #else /* HOTPLUG_CPU */ 486 487 #define secondaries_inhibited() 0 488 489 #endif 490 491 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 492 { 493 struct thread_info *ti = task_thread_info(idle); 494 495 #ifdef CONFIG_PPC64 496 paca[cpu].__current = idle; 497 paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD; 498 #endif 499 ti->cpu = cpu; 500 secondary_ti = current_set[cpu] = ti; 501 } 502 503 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 504 { 505 int rc, c; 506 507 /* 508 * Don't allow secondary threads to come online if inhibited 509 */ 510 if (threads_per_core > 1 && secondaries_inhibited() && 511 cpu_thread_in_subcore(cpu)) 512 return -EBUSY; 513 514 if (smp_ops == NULL || 515 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 516 return -EINVAL; 517 518 cpu_idle_thread_init(cpu, tidle); 519 520 /* Make sure callin-map entry is 0 (can be leftover a CPU 521 * hotplug 522 */ 523 cpu_callin_map[cpu] = 0; 524 525 /* The information for processor bringup must 526 * be written out to main store before we release 527 * the processor. 528 */ 529 smp_mb(); 530 531 /* wake up cpus */ 532 DBG("smp: kicking cpu %d\n", cpu); 533 rc = smp_ops->kick_cpu(cpu); 534 if (rc) { 535 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 536 return rc; 537 } 538 539 /* 540 * wait to see if the cpu made a callin (is actually up). 541 * use this value that I found through experimentation. 542 * -- Cort 543 */ 544 if (system_state < SYSTEM_RUNNING) 545 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 546 udelay(100); 547 #ifdef CONFIG_HOTPLUG_CPU 548 else 549 /* 550 * CPUs can take much longer to come up in the 551 * hotplug case. Wait five seconds. 552 */ 553 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 554 msleep(1); 555 #endif 556 557 if (!cpu_callin_map[cpu]) { 558 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 559 return -ENOENT; 560 } 561 562 DBG("Processor %u found.\n", cpu); 563 564 if (smp_ops->give_timebase) 565 smp_ops->give_timebase(); 566 567 /* Wait until cpu puts itself in the online & active maps */ 568 while (!cpu_online(cpu)) 569 cpu_relax(); 570 571 return 0; 572 } 573 574 /* Return the value of the reg property corresponding to the given 575 * logical cpu. 576 */ 577 int cpu_to_core_id(int cpu) 578 { 579 struct device_node *np; 580 const __be32 *reg; 581 int id = -1; 582 583 np = of_get_cpu_node(cpu, NULL); 584 if (!np) 585 goto out; 586 587 reg = of_get_property(np, "reg", NULL); 588 if (!reg) 589 goto out; 590 591 id = be32_to_cpup(reg); 592 out: 593 of_node_put(np); 594 return id; 595 } 596 597 /* Helper routines for cpu to core mapping */ 598 int cpu_core_index_of_thread(int cpu) 599 { 600 return cpu >> threads_shift; 601 } 602 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 603 604 int cpu_first_thread_of_core(int core) 605 { 606 return core << threads_shift; 607 } 608 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 609 610 static void traverse_siblings_chip_id(int cpu, bool add, int chipid) 611 { 612 const struct cpumask *mask; 613 struct device_node *np; 614 int i, plen; 615 const __be32 *prop; 616 617 mask = add ? cpu_online_mask : cpu_present_mask; 618 for_each_cpu(i, mask) { 619 np = of_get_cpu_node(i, NULL); 620 if (!np) 621 continue; 622 prop = of_get_property(np, "ibm,chip-id", &plen); 623 if (prop && plen == sizeof(int) && 624 of_read_number(prop, 1) == chipid) { 625 if (add) { 626 cpumask_set_cpu(cpu, cpu_core_mask(i)); 627 cpumask_set_cpu(i, cpu_core_mask(cpu)); 628 } else { 629 cpumask_clear_cpu(cpu, cpu_core_mask(i)); 630 cpumask_clear_cpu(i, cpu_core_mask(cpu)); 631 } 632 } 633 of_node_put(np); 634 } 635 } 636 637 /* Must be called when no change can occur to cpu_present_mask, 638 * i.e. during cpu online or offline. 639 */ 640 static struct device_node *cpu_to_l2cache(int cpu) 641 { 642 struct device_node *np; 643 struct device_node *cache; 644 645 if (!cpu_present(cpu)) 646 return NULL; 647 648 np = of_get_cpu_node(cpu, NULL); 649 if (np == NULL) 650 return NULL; 651 652 cache = of_find_next_cache_node(np); 653 654 of_node_put(np); 655 656 return cache; 657 } 658 659 static void traverse_core_siblings(int cpu, bool add) 660 { 661 struct device_node *l2_cache, *np; 662 const struct cpumask *mask; 663 int i, chip, plen; 664 const __be32 *prop; 665 666 /* First see if we have ibm,chip-id properties in cpu nodes */ 667 np = of_get_cpu_node(cpu, NULL); 668 if (np) { 669 chip = -1; 670 prop = of_get_property(np, "ibm,chip-id", &plen); 671 if (prop && plen == sizeof(int)) 672 chip = of_read_number(prop, 1); 673 of_node_put(np); 674 if (chip >= 0) { 675 traverse_siblings_chip_id(cpu, add, chip); 676 return; 677 } 678 } 679 680 l2_cache = cpu_to_l2cache(cpu); 681 mask = add ? cpu_online_mask : cpu_present_mask; 682 for_each_cpu(i, mask) { 683 np = cpu_to_l2cache(i); 684 if (!np) 685 continue; 686 if (np == l2_cache) { 687 if (add) { 688 cpumask_set_cpu(cpu, cpu_core_mask(i)); 689 cpumask_set_cpu(i, cpu_core_mask(cpu)); 690 } else { 691 cpumask_clear_cpu(cpu, cpu_core_mask(i)); 692 cpumask_clear_cpu(i, cpu_core_mask(cpu)); 693 } 694 } 695 of_node_put(np); 696 } 697 of_node_put(l2_cache); 698 } 699 700 /* Activate a secondary processor. */ 701 void start_secondary(void *unused) 702 { 703 unsigned int cpu = smp_processor_id(); 704 int i, base; 705 706 atomic_inc(&init_mm.mm_count); 707 current->active_mm = &init_mm; 708 709 smp_store_cpu_info(cpu); 710 set_dec(tb_ticks_per_jiffy); 711 preempt_disable(); 712 cpu_callin_map[cpu] = 1; 713 714 if (smp_ops->setup_cpu) 715 smp_ops->setup_cpu(cpu); 716 if (smp_ops->take_timebase) 717 smp_ops->take_timebase(); 718 719 secondary_cpu_time_init(); 720 721 #ifdef CONFIG_PPC64 722 if (system_state == SYSTEM_RUNNING) 723 vdso_data->processorCount++; 724 725 vdso_getcpu_init(); 726 #endif 727 /* Update sibling maps */ 728 base = cpu_first_thread_sibling(cpu); 729 for (i = 0; i < threads_per_core; i++) { 730 if (cpu_is_offline(base + i) && (cpu != base + i)) 731 continue; 732 cpumask_set_cpu(cpu, cpu_sibling_mask(base + i)); 733 cpumask_set_cpu(base + i, cpu_sibling_mask(cpu)); 734 735 /* cpu_core_map should be a superset of 736 * cpu_sibling_map even if we don't have cache 737 * information, so update the former here, too. 738 */ 739 cpumask_set_cpu(cpu, cpu_core_mask(base + i)); 740 cpumask_set_cpu(base + i, cpu_core_mask(cpu)); 741 } 742 traverse_core_siblings(cpu, true); 743 744 set_numa_node(numa_cpu_lookup_table[cpu]); 745 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 746 747 smp_wmb(); 748 notify_cpu_starting(cpu); 749 set_cpu_online(cpu, true); 750 751 local_irq_enable(); 752 753 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 754 755 BUG(); 756 } 757 758 int setup_profiling_timer(unsigned int multiplier) 759 { 760 return 0; 761 } 762 763 #ifdef CONFIG_SCHED_SMT 764 /* cpumask of CPUs with asymetric SMT dependancy */ 765 static int powerpc_smt_flags(void) 766 { 767 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 768 769 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 770 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 771 flags |= SD_ASYM_PACKING; 772 } 773 return flags; 774 } 775 #endif 776 777 static struct sched_domain_topology_level powerpc_topology[] = { 778 #ifdef CONFIG_SCHED_SMT 779 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 780 #endif 781 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 782 { NULL, }, 783 }; 784 785 void __init smp_cpus_done(unsigned int max_cpus) 786 { 787 cpumask_var_t old_mask; 788 789 /* We want the setup_cpu() here to be called from CPU 0, but our 790 * init thread may have been "borrowed" by another CPU in the meantime 791 * se we pin us down to CPU 0 for a short while 792 */ 793 alloc_cpumask_var(&old_mask, GFP_NOWAIT); 794 cpumask_copy(old_mask, tsk_cpus_allowed(current)); 795 set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid)); 796 797 if (smp_ops && smp_ops->setup_cpu) 798 smp_ops->setup_cpu(boot_cpuid); 799 800 set_cpus_allowed_ptr(current, old_mask); 801 802 free_cpumask_var(old_mask); 803 804 if (smp_ops && smp_ops->bringup_done) 805 smp_ops->bringup_done(); 806 807 dump_numa_cpu_topology(); 808 809 set_sched_topology(powerpc_topology); 810 811 } 812 813 #ifdef CONFIG_HOTPLUG_CPU 814 int __cpu_disable(void) 815 { 816 int cpu = smp_processor_id(); 817 int base, i; 818 int err; 819 820 if (!smp_ops->cpu_disable) 821 return -ENOSYS; 822 823 err = smp_ops->cpu_disable(); 824 if (err) 825 return err; 826 827 /* Update sibling maps */ 828 base = cpu_first_thread_sibling(cpu); 829 for (i = 0; i < threads_per_core; i++) { 830 cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i)); 831 cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu)); 832 cpumask_clear_cpu(cpu, cpu_core_mask(base + i)); 833 cpumask_clear_cpu(base + i, cpu_core_mask(cpu)); 834 } 835 traverse_core_siblings(cpu, false); 836 837 return 0; 838 } 839 840 void __cpu_die(unsigned int cpu) 841 { 842 if (smp_ops->cpu_die) 843 smp_ops->cpu_die(cpu); 844 } 845 846 void cpu_die(void) 847 { 848 if (ppc_md.cpu_die) 849 ppc_md.cpu_die(); 850 851 /* If we return, we re-enter start_secondary */ 852 start_secondary_resume(); 853 } 854 855 #endif 856