1 /* 2 * SMP support for ppc. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 5 * deal of code from the sparc and intel versions. 6 * 7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 8 * 9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18 #undef DEBUG 19 20 #include <linux/kernel.h> 21 #include <linux/export.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/topology.h> 24 #include <linux/smp.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <linux/init.h> 28 #include <linux/spinlock.h> 29 #include <linux/cache.h> 30 #include <linux/err.h> 31 #include <linux/device.h> 32 #include <linux/cpu.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/profile.h> 36 #include <linux/processor.h> 37 38 #include <asm/ptrace.h> 39 #include <linux/atomic.h> 40 #include <asm/irq.h> 41 #include <asm/hw_irq.h> 42 #include <asm/kvm_ppc.h> 43 #include <asm/dbell.h> 44 #include <asm/page.h> 45 #include <asm/pgtable.h> 46 #include <asm/prom.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/cputhreads.h> 51 #include <asm/cputable.h> 52 #include <asm/mpic.h> 53 #include <asm/vdso_datapage.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/paca.h> 56 #endif 57 #include <asm/vdso.h> 58 #include <asm/debug.h> 59 #include <asm/kexec.h> 60 #include <asm/asm-prototypes.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/ftrace.h> 63 64 #ifdef DEBUG 65 #include <asm/udbg.h> 66 #define DBG(fmt...) udbg_printf(fmt) 67 #else 68 #define DBG(fmt...) 69 #endif 70 71 #ifdef CONFIG_HOTPLUG_CPU 72 /* State of each CPU during hotplug phases */ 73 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 74 #endif 75 76 struct thread_info *secondary_ti; 77 78 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 79 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 80 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 81 82 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 83 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 84 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 85 86 /* SMP operations for this machine */ 87 struct smp_ops_t *smp_ops; 88 89 /* Can't be static due to PowerMac hackery */ 90 volatile unsigned int cpu_callin_map[NR_CPUS]; 91 92 int smt_enabled_at_boot = 1; 93 94 /* 95 * Returns 1 if the specified cpu should be brought up during boot. 96 * Used to inhibit booting threads if they've been disabled or 97 * limited on the command line 98 */ 99 int smp_generic_cpu_bootable(unsigned int nr) 100 { 101 /* Special case - we inhibit secondary thread startup 102 * during boot if the user requests it. 103 */ 104 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 105 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 106 return 0; 107 if (smt_enabled_at_boot 108 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 109 return 0; 110 } 111 112 return 1; 113 } 114 115 116 #ifdef CONFIG_PPC64 117 int smp_generic_kick_cpu(int nr) 118 { 119 if (nr < 0 || nr >= nr_cpu_ids) 120 return -EINVAL; 121 122 /* 123 * The processor is currently spinning, waiting for the 124 * cpu_start field to become non-zero After we set cpu_start, 125 * the processor will continue on to secondary_start 126 */ 127 if (!paca_ptrs[nr]->cpu_start) { 128 paca_ptrs[nr]->cpu_start = 1; 129 smp_mb(); 130 return 0; 131 } 132 133 #ifdef CONFIG_HOTPLUG_CPU 134 /* 135 * Ok it's not there, so it might be soft-unplugged, let's 136 * try to bring it back 137 */ 138 generic_set_cpu_up(nr); 139 smp_wmb(); 140 smp_send_reschedule(nr); 141 #endif /* CONFIG_HOTPLUG_CPU */ 142 143 return 0; 144 } 145 #endif /* CONFIG_PPC64 */ 146 147 static irqreturn_t call_function_action(int irq, void *data) 148 { 149 generic_smp_call_function_interrupt(); 150 return IRQ_HANDLED; 151 } 152 153 static irqreturn_t reschedule_action(int irq, void *data) 154 { 155 scheduler_ipi(); 156 return IRQ_HANDLED; 157 } 158 159 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 160 { 161 tick_broadcast_ipi_handler(); 162 return IRQ_HANDLED; 163 } 164 165 #ifdef CONFIG_NMI_IPI 166 static irqreturn_t nmi_ipi_action(int irq, void *data) 167 { 168 smp_handle_nmi_ipi(get_irq_regs()); 169 return IRQ_HANDLED; 170 } 171 #endif 172 173 static irq_handler_t smp_ipi_action[] = { 174 [PPC_MSG_CALL_FUNCTION] = call_function_action, 175 [PPC_MSG_RESCHEDULE] = reschedule_action, 176 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 177 #ifdef CONFIG_NMI_IPI 178 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 179 #endif 180 }; 181 182 /* 183 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 184 * than going through the call function infrastructure, and strongly 185 * serialized, so it is more appropriate for debugging. 186 */ 187 const char *smp_ipi_name[] = { 188 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 189 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 190 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 191 [PPC_MSG_NMI_IPI] = "nmi ipi", 192 }; 193 194 /* optional function to request ipi, for controllers with >= 4 ipis */ 195 int smp_request_message_ipi(int virq, int msg) 196 { 197 int err; 198 199 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 200 return -EINVAL; 201 #ifndef CONFIG_NMI_IPI 202 if (msg == PPC_MSG_NMI_IPI) 203 return 1; 204 #endif 205 206 err = request_irq(virq, smp_ipi_action[msg], 207 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 208 smp_ipi_name[msg], NULL); 209 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 210 virq, smp_ipi_name[msg], err); 211 212 return err; 213 } 214 215 #ifdef CONFIG_PPC_SMP_MUXED_IPI 216 struct cpu_messages { 217 long messages; /* current messages */ 218 }; 219 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 220 221 void smp_muxed_ipi_set_message(int cpu, int msg) 222 { 223 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 224 char *message = (char *)&info->messages; 225 226 /* 227 * Order previous accesses before accesses in the IPI handler. 228 */ 229 smp_mb(); 230 message[msg] = 1; 231 } 232 233 void smp_muxed_ipi_message_pass(int cpu, int msg) 234 { 235 smp_muxed_ipi_set_message(cpu, msg); 236 237 /* 238 * cause_ipi functions are required to include a full barrier 239 * before doing whatever causes the IPI. 240 */ 241 smp_ops->cause_ipi(cpu); 242 } 243 244 #ifdef __BIG_ENDIAN__ 245 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 246 #else 247 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 248 #endif 249 250 irqreturn_t smp_ipi_demux(void) 251 { 252 mb(); /* order any irq clear */ 253 254 return smp_ipi_demux_relaxed(); 255 } 256 257 /* sync-free variant. Callers should ensure synchronization */ 258 irqreturn_t smp_ipi_demux_relaxed(void) 259 { 260 struct cpu_messages *info; 261 unsigned long all; 262 263 info = this_cpu_ptr(&ipi_message); 264 do { 265 all = xchg(&info->messages, 0); 266 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 267 /* 268 * Must check for PPC_MSG_RM_HOST_ACTION messages 269 * before PPC_MSG_CALL_FUNCTION messages because when 270 * a VM is destroyed, we call kick_all_cpus_sync() 271 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 272 * messages have completed before we free any VCPUs. 273 */ 274 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 275 kvmppc_xics_ipi_action(); 276 #endif 277 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 278 generic_smp_call_function_interrupt(); 279 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 280 scheduler_ipi(); 281 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 282 tick_broadcast_ipi_handler(); 283 #ifdef CONFIG_NMI_IPI 284 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 285 nmi_ipi_action(0, NULL); 286 #endif 287 } while (info->messages); 288 289 return IRQ_HANDLED; 290 } 291 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 292 293 static inline void do_message_pass(int cpu, int msg) 294 { 295 if (smp_ops->message_pass) 296 smp_ops->message_pass(cpu, msg); 297 #ifdef CONFIG_PPC_SMP_MUXED_IPI 298 else 299 smp_muxed_ipi_message_pass(cpu, msg); 300 #endif 301 } 302 303 void smp_send_reschedule(int cpu) 304 { 305 if (likely(smp_ops)) 306 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 307 } 308 EXPORT_SYMBOL_GPL(smp_send_reschedule); 309 310 void arch_send_call_function_single_ipi(int cpu) 311 { 312 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 313 } 314 315 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 316 { 317 unsigned int cpu; 318 319 for_each_cpu(cpu, mask) 320 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 321 } 322 323 #ifdef CONFIG_NMI_IPI 324 325 /* 326 * "NMI IPI" system. 327 * 328 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 329 * a running system. They can be used for crash, debug, halt/reboot, etc. 330 * 331 * NMI IPIs are globally single threaded. No more than one in progress at 332 * any time. 333 * 334 * The IPI call waits with interrupts disabled until all targets enter the 335 * NMI handler, then the call returns. 336 * 337 * No new NMI can be initiated until targets exit the handler. 338 * 339 * The IPI call may time out without all targets entering the NMI handler. 340 * In that case, there is some logic to recover (and ignore subsequent 341 * NMI interrupts that may eventually be raised), but the platform interrupt 342 * handler may not be able to distinguish this from other exception causes, 343 * which may cause a crash. 344 */ 345 346 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 347 static struct cpumask nmi_ipi_pending_mask; 348 static int nmi_ipi_busy_count = 0; 349 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 350 351 static void nmi_ipi_lock_start(unsigned long *flags) 352 { 353 raw_local_irq_save(*flags); 354 hard_irq_disable(); 355 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 356 raw_local_irq_restore(*flags); 357 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 358 raw_local_irq_save(*flags); 359 hard_irq_disable(); 360 } 361 } 362 363 static void nmi_ipi_lock(void) 364 { 365 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 366 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 367 } 368 369 static void nmi_ipi_unlock(void) 370 { 371 smp_mb(); 372 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); 373 atomic_set(&__nmi_ipi_lock, 0); 374 } 375 376 static void nmi_ipi_unlock_end(unsigned long *flags) 377 { 378 nmi_ipi_unlock(); 379 raw_local_irq_restore(*flags); 380 } 381 382 /* 383 * Platform NMI handler calls this to ack 384 */ 385 int smp_handle_nmi_ipi(struct pt_regs *regs) 386 { 387 void (*fn)(struct pt_regs *); 388 unsigned long flags; 389 int me = raw_smp_processor_id(); 390 int ret = 0; 391 392 /* 393 * Unexpected NMIs are possible here because the interrupt may not 394 * be able to distinguish NMI IPIs from other types of NMIs, or 395 * because the caller may have timed out. 396 */ 397 nmi_ipi_lock_start(&flags); 398 if (!nmi_ipi_busy_count) 399 goto out; 400 if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask)) 401 goto out; 402 403 fn = nmi_ipi_function; 404 if (!fn) 405 goto out; 406 407 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 408 nmi_ipi_busy_count++; 409 nmi_ipi_unlock(); 410 411 ret = 1; 412 413 fn(regs); 414 415 nmi_ipi_lock(); 416 nmi_ipi_busy_count--; 417 out: 418 nmi_ipi_unlock_end(&flags); 419 420 return ret; 421 } 422 423 static void do_smp_send_nmi_ipi(int cpu) 424 { 425 if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 426 return; 427 428 if (cpu >= 0) { 429 do_message_pass(cpu, PPC_MSG_NMI_IPI); 430 } else { 431 int c; 432 433 for_each_online_cpu(c) { 434 if (c == raw_smp_processor_id()) 435 continue; 436 do_message_pass(c, PPC_MSG_NMI_IPI); 437 } 438 } 439 } 440 441 void smp_flush_nmi_ipi(u64 delay_us) 442 { 443 unsigned long flags; 444 445 nmi_ipi_lock_start(&flags); 446 while (nmi_ipi_busy_count) { 447 nmi_ipi_unlock_end(&flags); 448 udelay(1); 449 if (delay_us) { 450 delay_us--; 451 if (!delay_us) 452 return; 453 } 454 nmi_ipi_lock_start(&flags); 455 } 456 nmi_ipi_unlock_end(&flags); 457 } 458 459 /* 460 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 461 * - fn is the target callback function. 462 * - delay_us > 0 is the delay before giving up waiting for targets to 463 * enter the handler, == 0 specifies indefinite delay. 464 */ 465 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 466 { 467 unsigned long flags; 468 int me = raw_smp_processor_id(); 469 int ret = 1; 470 471 BUG_ON(cpu == me); 472 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 473 474 if (unlikely(!smp_ops)) 475 return 0; 476 477 /* Take the nmi_ipi_busy count/lock with interrupts hard disabled */ 478 nmi_ipi_lock_start(&flags); 479 while (nmi_ipi_busy_count) { 480 nmi_ipi_unlock_end(&flags); 481 spin_until_cond(nmi_ipi_busy_count == 0); 482 nmi_ipi_lock_start(&flags); 483 } 484 485 nmi_ipi_function = fn; 486 487 if (cpu < 0) { 488 /* ALL_OTHERS */ 489 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 490 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 491 } else { 492 /* cpumask starts clear */ 493 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 494 } 495 nmi_ipi_busy_count++; 496 nmi_ipi_unlock(); 497 498 do_smp_send_nmi_ipi(cpu); 499 500 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 501 udelay(1); 502 if (delay_us) { 503 delay_us--; 504 if (!delay_us) 505 break; 506 } 507 } 508 509 nmi_ipi_lock(); 510 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 511 /* Could not gather all CPUs */ 512 ret = 0; 513 cpumask_clear(&nmi_ipi_pending_mask); 514 } 515 nmi_ipi_busy_count--; 516 nmi_ipi_unlock_end(&flags); 517 518 return ret; 519 } 520 #endif /* CONFIG_NMI_IPI */ 521 522 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 523 void tick_broadcast(const struct cpumask *mask) 524 { 525 unsigned int cpu; 526 527 for_each_cpu(cpu, mask) 528 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 529 } 530 #endif 531 532 #ifdef CONFIG_DEBUGGER 533 void debugger_ipi_callback(struct pt_regs *regs) 534 { 535 debugger_ipi(regs); 536 } 537 538 void smp_send_debugger_break(void) 539 { 540 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 541 } 542 #endif 543 544 #ifdef CONFIG_KEXEC_CORE 545 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 546 { 547 int cpu; 548 549 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 550 if (kdump_in_progress() && crash_wake_offline) { 551 for_each_present_cpu(cpu) { 552 if (cpu_online(cpu)) 553 continue; 554 /* 555 * crash_ipi_callback will wait for 556 * all cpus, including offline CPUs. 557 * We don't care about nmi_ipi_function. 558 * Offline cpus will jump straight into 559 * crash_ipi_callback, we can skip the 560 * entire NMI dance and waiting for 561 * cpus to clear pending mask, etc. 562 */ 563 do_smp_send_nmi_ipi(cpu); 564 } 565 } 566 } 567 #endif 568 569 #ifdef CONFIG_NMI_IPI 570 static void nmi_stop_this_cpu(struct pt_regs *regs) 571 { 572 /* 573 * This is a special case because it never returns, so the NMI IPI 574 * handling would never mark it as done, which makes any later 575 * smp_send_nmi_ipi() call spin forever. Mark it done now. 576 * 577 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 578 */ 579 nmi_ipi_lock(); 580 nmi_ipi_busy_count--; 581 nmi_ipi_unlock(); 582 583 /* Remove this CPU */ 584 set_cpu_online(smp_processor_id(), false); 585 586 spin_begin(); 587 while (1) 588 spin_cpu_relax(); 589 } 590 591 void smp_send_stop(void) 592 { 593 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 594 } 595 596 #else /* CONFIG_NMI_IPI */ 597 598 static void stop_this_cpu(void *dummy) 599 { 600 /* Remove this CPU */ 601 set_cpu_online(smp_processor_id(), false); 602 603 hard_irq_disable(); 604 spin_begin(); 605 while (1) 606 spin_cpu_relax(); 607 } 608 609 void smp_send_stop(void) 610 { 611 static bool stopped = false; 612 613 /* 614 * Prevent waiting on csd lock from a previous smp_send_stop. 615 * This is racy, but in general callers try to do the right 616 * thing and only fire off one smp_send_stop (e.g., see 617 * kernel/panic.c) 618 */ 619 if (stopped) 620 return; 621 622 stopped = true; 623 624 smp_call_function(stop_this_cpu, NULL, 0); 625 } 626 #endif /* CONFIG_NMI_IPI */ 627 628 struct thread_info *current_set[NR_CPUS]; 629 630 static void smp_store_cpu_info(int id) 631 { 632 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 633 #ifdef CONFIG_PPC_FSL_BOOK3E 634 per_cpu(next_tlbcam_idx, id) 635 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 636 #endif 637 } 638 639 /* 640 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 641 * rather than just passing around the cpumask we pass around a function that 642 * returns the that cpumask for the given CPU. 643 */ 644 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 645 { 646 cpumask_set_cpu(i, get_cpumask(j)); 647 cpumask_set_cpu(j, get_cpumask(i)); 648 } 649 650 #ifdef CONFIG_HOTPLUG_CPU 651 static void set_cpus_unrelated(int i, int j, 652 struct cpumask *(*get_cpumask)(int)) 653 { 654 cpumask_clear_cpu(i, get_cpumask(j)); 655 cpumask_clear_cpu(j, get_cpumask(i)); 656 } 657 #endif 658 659 void __init smp_prepare_cpus(unsigned int max_cpus) 660 { 661 unsigned int cpu; 662 663 DBG("smp_prepare_cpus\n"); 664 665 /* 666 * setup_cpu may need to be called on the boot cpu. We havent 667 * spun any cpus up but lets be paranoid. 668 */ 669 BUG_ON(boot_cpuid != smp_processor_id()); 670 671 /* Fixup boot cpu */ 672 smp_store_cpu_info(boot_cpuid); 673 cpu_callin_map[boot_cpuid] = 1; 674 675 for_each_possible_cpu(cpu) { 676 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 677 GFP_KERNEL, cpu_to_node(cpu)); 678 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 679 GFP_KERNEL, cpu_to_node(cpu)); 680 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 681 GFP_KERNEL, cpu_to_node(cpu)); 682 /* 683 * numa_node_id() works after this. 684 */ 685 if (cpu_present(cpu)) { 686 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 687 set_cpu_numa_mem(cpu, 688 local_memory_node(numa_cpu_lookup_table[cpu])); 689 } 690 } 691 692 /* Init the cpumasks so the boot CPU is related to itself */ 693 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 694 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 695 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 696 697 if (smp_ops && smp_ops->probe) 698 smp_ops->probe(); 699 } 700 701 void smp_prepare_boot_cpu(void) 702 { 703 BUG_ON(smp_processor_id() != boot_cpuid); 704 #ifdef CONFIG_PPC64 705 paca_ptrs[boot_cpuid]->__current = current; 706 #endif 707 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 708 current_set[boot_cpuid] = task_thread_info(current); 709 } 710 711 #ifdef CONFIG_HOTPLUG_CPU 712 713 int generic_cpu_disable(void) 714 { 715 unsigned int cpu = smp_processor_id(); 716 717 if (cpu == boot_cpuid) 718 return -EBUSY; 719 720 set_cpu_online(cpu, false); 721 #ifdef CONFIG_PPC64 722 vdso_data->processorCount--; 723 #endif 724 /* Update affinity of all IRQs previously aimed at this CPU */ 725 irq_migrate_all_off_this_cpu(); 726 727 /* 728 * Depending on the details of the interrupt controller, it's possible 729 * that one of the interrupts we just migrated away from this CPU is 730 * actually already pending on this CPU. If we leave it in that state 731 * the interrupt will never be EOI'ed, and will never fire again. So 732 * temporarily enable interrupts here, to allow any pending interrupt to 733 * be received (and EOI'ed), before we take this CPU offline. 734 */ 735 local_irq_enable(); 736 mdelay(1); 737 local_irq_disable(); 738 739 return 0; 740 } 741 742 void generic_cpu_die(unsigned int cpu) 743 { 744 int i; 745 746 for (i = 0; i < 100; i++) { 747 smp_rmb(); 748 if (is_cpu_dead(cpu)) 749 return; 750 msleep(100); 751 } 752 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 753 } 754 755 void generic_set_cpu_dead(unsigned int cpu) 756 { 757 per_cpu(cpu_state, cpu) = CPU_DEAD; 758 } 759 760 /* 761 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 762 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 763 * which makes the delay in generic_cpu_die() not happen. 764 */ 765 void generic_set_cpu_up(unsigned int cpu) 766 { 767 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 768 } 769 770 int generic_check_cpu_restart(unsigned int cpu) 771 { 772 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 773 } 774 775 int is_cpu_dead(unsigned int cpu) 776 { 777 return per_cpu(cpu_state, cpu) == CPU_DEAD; 778 } 779 780 static bool secondaries_inhibited(void) 781 { 782 return kvm_hv_mode_active(); 783 } 784 785 #else /* HOTPLUG_CPU */ 786 787 #define secondaries_inhibited() 0 788 789 #endif 790 791 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 792 { 793 struct thread_info *ti = task_thread_info(idle); 794 795 #ifdef CONFIG_PPC64 796 paca_ptrs[cpu]->__current = idle; 797 paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD; 798 #endif 799 ti->cpu = cpu; 800 secondary_ti = current_set[cpu] = ti; 801 } 802 803 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 804 { 805 int rc, c; 806 807 /* 808 * Don't allow secondary threads to come online if inhibited 809 */ 810 if (threads_per_core > 1 && secondaries_inhibited() && 811 cpu_thread_in_subcore(cpu)) 812 return -EBUSY; 813 814 if (smp_ops == NULL || 815 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 816 return -EINVAL; 817 818 cpu_idle_thread_init(cpu, tidle); 819 820 /* 821 * The platform might need to allocate resources prior to bringing 822 * up the CPU 823 */ 824 if (smp_ops->prepare_cpu) { 825 rc = smp_ops->prepare_cpu(cpu); 826 if (rc) 827 return rc; 828 } 829 830 /* Make sure callin-map entry is 0 (can be leftover a CPU 831 * hotplug 832 */ 833 cpu_callin_map[cpu] = 0; 834 835 /* The information for processor bringup must 836 * be written out to main store before we release 837 * the processor. 838 */ 839 smp_mb(); 840 841 /* wake up cpus */ 842 DBG("smp: kicking cpu %d\n", cpu); 843 rc = smp_ops->kick_cpu(cpu); 844 if (rc) { 845 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 846 return rc; 847 } 848 849 /* 850 * wait to see if the cpu made a callin (is actually up). 851 * use this value that I found through experimentation. 852 * -- Cort 853 */ 854 if (system_state < SYSTEM_RUNNING) 855 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 856 udelay(100); 857 #ifdef CONFIG_HOTPLUG_CPU 858 else 859 /* 860 * CPUs can take much longer to come up in the 861 * hotplug case. Wait five seconds. 862 */ 863 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 864 msleep(1); 865 #endif 866 867 if (!cpu_callin_map[cpu]) { 868 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 869 return -ENOENT; 870 } 871 872 DBG("Processor %u found.\n", cpu); 873 874 if (smp_ops->give_timebase) 875 smp_ops->give_timebase(); 876 877 /* Wait until cpu puts itself in the online & active maps */ 878 spin_until_cond(cpu_online(cpu)); 879 880 return 0; 881 } 882 883 /* Return the value of the reg property corresponding to the given 884 * logical cpu. 885 */ 886 int cpu_to_core_id(int cpu) 887 { 888 struct device_node *np; 889 const __be32 *reg; 890 int id = -1; 891 892 np = of_get_cpu_node(cpu, NULL); 893 if (!np) 894 goto out; 895 896 reg = of_get_property(np, "reg", NULL); 897 if (!reg) 898 goto out; 899 900 id = be32_to_cpup(reg); 901 out: 902 of_node_put(np); 903 return id; 904 } 905 EXPORT_SYMBOL_GPL(cpu_to_core_id); 906 907 /* Helper routines for cpu to core mapping */ 908 int cpu_core_index_of_thread(int cpu) 909 { 910 return cpu >> threads_shift; 911 } 912 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 913 914 int cpu_first_thread_of_core(int core) 915 { 916 return core << threads_shift; 917 } 918 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 919 920 /* Must be called when no change can occur to cpu_present_mask, 921 * i.e. during cpu online or offline. 922 */ 923 static struct device_node *cpu_to_l2cache(int cpu) 924 { 925 struct device_node *np; 926 struct device_node *cache; 927 928 if (!cpu_present(cpu)) 929 return NULL; 930 931 np = of_get_cpu_node(cpu, NULL); 932 if (np == NULL) 933 return NULL; 934 935 cache = of_find_next_cache_node(np); 936 937 of_node_put(np); 938 939 return cache; 940 } 941 942 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int)) 943 { 944 struct device_node *l2_cache, *np; 945 int i; 946 947 l2_cache = cpu_to_l2cache(cpu); 948 if (!l2_cache) 949 return false; 950 951 for_each_cpu(i, cpu_online_mask) { 952 /* 953 * when updating the marks the current CPU has not been marked 954 * online, but we need to update the cache masks 955 */ 956 np = cpu_to_l2cache(i); 957 if (!np) 958 continue; 959 960 if (np == l2_cache) 961 set_cpus_related(cpu, i, mask_fn); 962 963 of_node_put(np); 964 } 965 of_node_put(l2_cache); 966 967 return true; 968 } 969 970 #ifdef CONFIG_HOTPLUG_CPU 971 static void remove_cpu_from_masks(int cpu) 972 { 973 int i; 974 975 /* NB: cpu_core_mask is a superset of the others */ 976 for_each_cpu(i, cpu_core_mask(cpu)) { 977 set_cpus_unrelated(cpu, i, cpu_core_mask); 978 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 979 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 980 } 981 } 982 #endif 983 984 static void add_cpu_to_masks(int cpu) 985 { 986 int first_thread = cpu_first_thread_sibling(cpu); 987 int chipid = cpu_to_chip_id(cpu); 988 int i; 989 990 /* 991 * This CPU will not be in the online mask yet so we need to manually 992 * add it to it's own thread sibling mask. 993 */ 994 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 995 996 for (i = first_thread; i < first_thread + threads_per_core; i++) 997 if (cpu_online(i)) 998 set_cpus_related(i, cpu, cpu_sibling_mask); 999 1000 /* 1001 * Copy the thread sibling mask into the cache sibling mask 1002 * and mark any CPUs that share an L2 with this CPU. 1003 */ 1004 for_each_cpu(i, cpu_sibling_mask(cpu)) 1005 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1006 update_mask_by_l2(cpu, cpu_l2_cache_mask); 1007 1008 /* 1009 * Copy the cache sibling mask into core sibling mask and mark 1010 * any CPUs on the same chip as this CPU. 1011 */ 1012 for_each_cpu(i, cpu_l2_cache_mask(cpu)) 1013 set_cpus_related(cpu, i, cpu_core_mask); 1014 1015 if (chipid == -1) 1016 return; 1017 1018 for_each_cpu(i, cpu_online_mask) 1019 if (cpu_to_chip_id(i) == chipid) 1020 set_cpus_related(cpu, i, cpu_core_mask); 1021 } 1022 1023 static bool shared_caches; 1024 1025 /* Activate a secondary processor. */ 1026 void start_secondary(void *unused) 1027 { 1028 unsigned int cpu = smp_processor_id(); 1029 1030 mmgrab(&init_mm); 1031 current->active_mm = &init_mm; 1032 1033 smp_store_cpu_info(cpu); 1034 set_dec(tb_ticks_per_jiffy); 1035 preempt_disable(); 1036 cpu_callin_map[cpu] = 1; 1037 1038 if (smp_ops->setup_cpu) 1039 smp_ops->setup_cpu(cpu); 1040 if (smp_ops->take_timebase) 1041 smp_ops->take_timebase(); 1042 1043 secondary_cpu_time_init(); 1044 1045 #ifdef CONFIG_PPC64 1046 if (system_state == SYSTEM_RUNNING) 1047 vdso_data->processorCount++; 1048 1049 vdso_getcpu_init(); 1050 #endif 1051 /* Update topology CPU masks */ 1052 add_cpu_to_masks(cpu); 1053 1054 /* 1055 * Check for any shared caches. Note that this must be done on a 1056 * per-core basis because one core in the pair might be disabled. 1057 */ 1058 if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu))) 1059 shared_caches = true; 1060 1061 set_numa_node(numa_cpu_lookup_table[cpu]); 1062 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1063 1064 smp_wmb(); 1065 notify_cpu_starting(cpu); 1066 set_cpu_online(cpu, true); 1067 1068 local_irq_enable(); 1069 1070 /* We can enable ftrace for secondary cpus now */ 1071 this_cpu_enable_ftrace(); 1072 1073 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1074 1075 BUG(); 1076 } 1077 1078 int setup_profiling_timer(unsigned int multiplier) 1079 { 1080 return 0; 1081 } 1082 1083 #ifdef CONFIG_SCHED_SMT 1084 /* cpumask of CPUs with asymetric SMT dependancy */ 1085 static int powerpc_smt_flags(void) 1086 { 1087 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1088 1089 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 1090 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 1091 flags |= SD_ASYM_PACKING; 1092 } 1093 return flags; 1094 } 1095 #endif 1096 1097 static struct sched_domain_topology_level powerpc_topology[] = { 1098 #ifdef CONFIG_SCHED_SMT 1099 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1100 #endif 1101 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1102 { NULL, }, 1103 }; 1104 1105 /* 1106 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1107 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1108 * since the migrated task remains cache hot. We want to take advantage of this 1109 * at the scheduler level so an extra topology level is required. 1110 */ 1111 static int powerpc_shared_cache_flags(void) 1112 { 1113 return SD_SHARE_PKG_RESOURCES; 1114 } 1115 1116 /* 1117 * We can't just pass cpu_l2_cache_mask() directly because 1118 * returns a non-const pointer and the compiler barfs on that. 1119 */ 1120 static const struct cpumask *shared_cache_mask(int cpu) 1121 { 1122 return cpu_l2_cache_mask(cpu); 1123 } 1124 1125 static struct sched_domain_topology_level power9_topology[] = { 1126 #ifdef CONFIG_SCHED_SMT 1127 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1128 #endif 1129 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1130 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1131 { NULL, }, 1132 }; 1133 1134 void __init smp_cpus_done(unsigned int max_cpus) 1135 { 1136 /* 1137 * We are running pinned to the boot CPU, see rest_init(). 1138 */ 1139 if (smp_ops && smp_ops->setup_cpu) 1140 smp_ops->setup_cpu(boot_cpuid); 1141 1142 if (smp_ops && smp_ops->bringup_done) 1143 smp_ops->bringup_done(); 1144 1145 dump_numa_cpu_topology(); 1146 1147 /* 1148 * If any CPU detects that it's sharing a cache with another CPU then 1149 * use the deeper topology that is aware of this sharing. 1150 */ 1151 if (shared_caches) { 1152 pr_info("Using shared cache scheduler topology\n"); 1153 set_sched_topology(power9_topology); 1154 } else { 1155 pr_info("Using standard scheduler topology\n"); 1156 set_sched_topology(powerpc_topology); 1157 } 1158 } 1159 1160 #ifdef CONFIG_HOTPLUG_CPU 1161 int __cpu_disable(void) 1162 { 1163 int cpu = smp_processor_id(); 1164 int err; 1165 1166 if (!smp_ops->cpu_disable) 1167 return -ENOSYS; 1168 1169 this_cpu_disable_ftrace(); 1170 1171 err = smp_ops->cpu_disable(); 1172 if (err) 1173 return err; 1174 1175 /* Update sibling maps */ 1176 remove_cpu_from_masks(cpu); 1177 1178 return 0; 1179 } 1180 1181 void __cpu_die(unsigned int cpu) 1182 { 1183 if (smp_ops->cpu_die) 1184 smp_ops->cpu_die(cpu); 1185 } 1186 1187 void cpu_die(void) 1188 { 1189 /* 1190 * Disable on the down path. This will be re-enabled by 1191 * start_secondary() via start_secondary_resume() below 1192 */ 1193 this_cpu_disable_ftrace(); 1194 1195 if (ppc_md.cpu_die) 1196 ppc_md.cpu_die(); 1197 1198 /* If we return, we re-enter start_secondary */ 1199 start_secondary_resume(); 1200 } 1201 1202 #endif 1203