xref: /linux/arch/powerpc/kernel/smp.c (revision c906d2c74e0bb9059fbf43e21f8a962986eb21e2)
1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17 
18 #undef DEBUG
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/topology.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/spinlock.h>
29 #include <linux/cache.h>
30 #include <linux/err.h>
31 #include <linux/device.h>
32 #include <linux/cpu.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/profile.h>
36 #include <linux/processor.h>
37 
38 #include <asm/ptrace.h>
39 #include <linux/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/hw_irq.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/dbell.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/ftrace.h>
63 
64 #ifdef DEBUG
65 #include <asm/udbg.h>
66 #define DBG(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG(fmt...)
69 #endif
70 
71 #ifdef CONFIG_HOTPLUG_CPU
72 /* State of each CPU during hotplug phases */
73 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
74 #endif
75 
76 struct thread_info *secondary_ti;
77 
78 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
79 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
80 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
81 
82 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
83 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
84 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
85 
86 /* SMP operations for this machine */
87 struct smp_ops_t *smp_ops;
88 
89 /* Can't be static due to PowerMac hackery */
90 volatile unsigned int cpu_callin_map[NR_CPUS];
91 
92 int smt_enabled_at_boot = 1;
93 
94 /*
95  * Returns 1 if the specified cpu should be brought up during boot.
96  * Used to inhibit booting threads if they've been disabled or
97  * limited on the command line
98  */
99 int smp_generic_cpu_bootable(unsigned int nr)
100 {
101 	/* Special case - we inhibit secondary thread startup
102 	 * during boot if the user requests it.
103 	 */
104 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
105 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
106 			return 0;
107 		if (smt_enabled_at_boot
108 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
109 			return 0;
110 	}
111 
112 	return 1;
113 }
114 
115 
116 #ifdef CONFIG_PPC64
117 int smp_generic_kick_cpu(int nr)
118 {
119 	if (nr < 0 || nr >= nr_cpu_ids)
120 		return -EINVAL;
121 
122 	/*
123 	 * The processor is currently spinning, waiting for the
124 	 * cpu_start field to become non-zero After we set cpu_start,
125 	 * the processor will continue on to secondary_start
126 	 */
127 	if (!paca_ptrs[nr]->cpu_start) {
128 		paca_ptrs[nr]->cpu_start = 1;
129 		smp_mb();
130 		return 0;
131 	}
132 
133 #ifdef CONFIG_HOTPLUG_CPU
134 	/*
135 	 * Ok it's not there, so it might be soft-unplugged, let's
136 	 * try to bring it back
137 	 */
138 	generic_set_cpu_up(nr);
139 	smp_wmb();
140 	smp_send_reschedule(nr);
141 #endif /* CONFIG_HOTPLUG_CPU */
142 
143 	return 0;
144 }
145 #endif /* CONFIG_PPC64 */
146 
147 static irqreturn_t call_function_action(int irq, void *data)
148 {
149 	generic_smp_call_function_interrupt();
150 	return IRQ_HANDLED;
151 }
152 
153 static irqreturn_t reschedule_action(int irq, void *data)
154 {
155 	scheduler_ipi();
156 	return IRQ_HANDLED;
157 }
158 
159 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
160 {
161 	tick_broadcast_ipi_handler();
162 	return IRQ_HANDLED;
163 }
164 
165 #ifdef CONFIG_NMI_IPI
166 static irqreturn_t nmi_ipi_action(int irq, void *data)
167 {
168 	smp_handle_nmi_ipi(get_irq_regs());
169 	return IRQ_HANDLED;
170 }
171 #endif
172 
173 static irq_handler_t smp_ipi_action[] = {
174 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
175 	[PPC_MSG_RESCHEDULE] = reschedule_action,
176 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
177 #ifdef CONFIG_NMI_IPI
178 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
179 #endif
180 };
181 
182 /*
183  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
184  * than going through the call function infrastructure, and strongly
185  * serialized, so it is more appropriate for debugging.
186  */
187 const char *smp_ipi_name[] = {
188 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
189 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
190 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
191 	[PPC_MSG_NMI_IPI] = "nmi ipi",
192 };
193 
194 /* optional function to request ipi, for controllers with >= 4 ipis */
195 int smp_request_message_ipi(int virq, int msg)
196 {
197 	int err;
198 
199 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
200 		return -EINVAL;
201 #ifndef CONFIG_NMI_IPI
202 	if (msg == PPC_MSG_NMI_IPI)
203 		return 1;
204 #endif
205 
206 	err = request_irq(virq, smp_ipi_action[msg],
207 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
208 			  smp_ipi_name[msg], NULL);
209 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
210 		virq, smp_ipi_name[msg], err);
211 
212 	return err;
213 }
214 
215 #ifdef CONFIG_PPC_SMP_MUXED_IPI
216 struct cpu_messages {
217 	long messages;			/* current messages */
218 };
219 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
220 
221 void smp_muxed_ipi_set_message(int cpu, int msg)
222 {
223 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
224 	char *message = (char *)&info->messages;
225 
226 	/*
227 	 * Order previous accesses before accesses in the IPI handler.
228 	 */
229 	smp_mb();
230 	message[msg] = 1;
231 }
232 
233 void smp_muxed_ipi_message_pass(int cpu, int msg)
234 {
235 	smp_muxed_ipi_set_message(cpu, msg);
236 
237 	/*
238 	 * cause_ipi functions are required to include a full barrier
239 	 * before doing whatever causes the IPI.
240 	 */
241 	smp_ops->cause_ipi(cpu);
242 }
243 
244 #ifdef __BIG_ENDIAN__
245 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
246 #else
247 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
248 #endif
249 
250 irqreturn_t smp_ipi_demux(void)
251 {
252 	mb();	/* order any irq clear */
253 
254 	return smp_ipi_demux_relaxed();
255 }
256 
257 /* sync-free variant. Callers should ensure synchronization */
258 irqreturn_t smp_ipi_demux_relaxed(void)
259 {
260 	struct cpu_messages *info;
261 	unsigned long all;
262 
263 	info = this_cpu_ptr(&ipi_message);
264 	do {
265 		all = xchg(&info->messages, 0);
266 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
267 		/*
268 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
269 		 * before PPC_MSG_CALL_FUNCTION messages because when
270 		 * a VM is destroyed, we call kick_all_cpus_sync()
271 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
272 		 * messages have completed before we free any VCPUs.
273 		 */
274 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
275 			kvmppc_xics_ipi_action();
276 #endif
277 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
278 			generic_smp_call_function_interrupt();
279 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
280 			scheduler_ipi();
281 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
282 			tick_broadcast_ipi_handler();
283 #ifdef CONFIG_NMI_IPI
284 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
285 			nmi_ipi_action(0, NULL);
286 #endif
287 	} while (info->messages);
288 
289 	return IRQ_HANDLED;
290 }
291 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
292 
293 static inline void do_message_pass(int cpu, int msg)
294 {
295 	if (smp_ops->message_pass)
296 		smp_ops->message_pass(cpu, msg);
297 #ifdef CONFIG_PPC_SMP_MUXED_IPI
298 	else
299 		smp_muxed_ipi_message_pass(cpu, msg);
300 #endif
301 }
302 
303 void smp_send_reschedule(int cpu)
304 {
305 	if (likely(smp_ops))
306 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
307 }
308 EXPORT_SYMBOL_GPL(smp_send_reschedule);
309 
310 void arch_send_call_function_single_ipi(int cpu)
311 {
312 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
313 }
314 
315 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
316 {
317 	unsigned int cpu;
318 
319 	for_each_cpu(cpu, mask)
320 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
321 }
322 
323 #ifdef CONFIG_NMI_IPI
324 
325 /*
326  * "NMI IPI" system.
327  *
328  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
329  * a running system. They can be used for crash, debug, halt/reboot, etc.
330  *
331  * NMI IPIs are globally single threaded. No more than one in progress at
332  * any time.
333  *
334  * The IPI call waits with interrupts disabled until all targets enter the
335  * NMI handler, then the call returns.
336  *
337  * No new NMI can be initiated until targets exit the handler.
338  *
339  * The IPI call may time out without all targets entering the NMI handler.
340  * In that case, there is some logic to recover (and ignore subsequent
341  * NMI interrupts that may eventually be raised), but the platform interrupt
342  * handler may not be able to distinguish this from other exception causes,
343  * which may cause a crash.
344  */
345 
346 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
347 static struct cpumask nmi_ipi_pending_mask;
348 static int nmi_ipi_busy_count = 0;
349 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
350 
351 static void nmi_ipi_lock_start(unsigned long *flags)
352 {
353 	raw_local_irq_save(*flags);
354 	hard_irq_disable();
355 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
356 		raw_local_irq_restore(*flags);
357 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
358 		raw_local_irq_save(*flags);
359 		hard_irq_disable();
360 	}
361 }
362 
363 static void nmi_ipi_lock(void)
364 {
365 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
366 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
367 }
368 
369 static void nmi_ipi_unlock(void)
370 {
371 	smp_mb();
372 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
373 	atomic_set(&__nmi_ipi_lock, 0);
374 }
375 
376 static void nmi_ipi_unlock_end(unsigned long *flags)
377 {
378 	nmi_ipi_unlock();
379 	raw_local_irq_restore(*flags);
380 }
381 
382 /*
383  * Platform NMI handler calls this to ack
384  */
385 int smp_handle_nmi_ipi(struct pt_regs *regs)
386 {
387 	void (*fn)(struct pt_regs *);
388 	unsigned long flags;
389 	int me = raw_smp_processor_id();
390 	int ret = 0;
391 
392 	/*
393 	 * Unexpected NMIs are possible here because the interrupt may not
394 	 * be able to distinguish NMI IPIs from other types of NMIs, or
395 	 * because the caller may have timed out.
396 	 */
397 	nmi_ipi_lock_start(&flags);
398 	if (!nmi_ipi_busy_count)
399 		goto out;
400 	if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
401 		goto out;
402 
403 	fn = nmi_ipi_function;
404 	if (!fn)
405 		goto out;
406 
407 	cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
408 	nmi_ipi_busy_count++;
409 	nmi_ipi_unlock();
410 
411 	ret = 1;
412 
413 	fn(regs);
414 
415 	nmi_ipi_lock();
416 	nmi_ipi_busy_count--;
417 out:
418 	nmi_ipi_unlock_end(&flags);
419 
420 	return ret;
421 }
422 
423 static void do_smp_send_nmi_ipi(int cpu)
424 {
425 	if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
426 		return;
427 
428 	if (cpu >= 0) {
429 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
430 	} else {
431 		int c;
432 
433 		for_each_online_cpu(c) {
434 			if (c == raw_smp_processor_id())
435 				continue;
436 			do_message_pass(c, PPC_MSG_NMI_IPI);
437 		}
438 	}
439 }
440 
441 void smp_flush_nmi_ipi(u64 delay_us)
442 {
443 	unsigned long flags;
444 
445 	nmi_ipi_lock_start(&flags);
446 	while (nmi_ipi_busy_count) {
447 		nmi_ipi_unlock_end(&flags);
448 		udelay(1);
449 		if (delay_us) {
450 			delay_us--;
451 			if (!delay_us)
452 				return;
453 		}
454 		nmi_ipi_lock_start(&flags);
455 	}
456 	nmi_ipi_unlock_end(&flags);
457 }
458 
459 /*
460  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
461  * - fn is the target callback function.
462  * - delay_us > 0 is the delay before giving up waiting for targets to
463  *   enter the handler, == 0 specifies indefinite delay.
464  */
465 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
466 {
467 	unsigned long flags;
468 	int me = raw_smp_processor_id();
469 	int ret = 1;
470 
471 	BUG_ON(cpu == me);
472 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
473 
474 	if (unlikely(!smp_ops))
475 		return 0;
476 
477 	/* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
478 	nmi_ipi_lock_start(&flags);
479 	while (nmi_ipi_busy_count) {
480 		nmi_ipi_unlock_end(&flags);
481 		spin_until_cond(nmi_ipi_busy_count == 0);
482 		nmi_ipi_lock_start(&flags);
483 	}
484 
485 	nmi_ipi_function = fn;
486 
487 	if (cpu < 0) {
488 		/* ALL_OTHERS */
489 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
490 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
491 	} else {
492 		/* cpumask starts clear */
493 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
494 	}
495 	nmi_ipi_busy_count++;
496 	nmi_ipi_unlock();
497 
498 	do_smp_send_nmi_ipi(cpu);
499 
500 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
501 		udelay(1);
502 		if (delay_us) {
503 			delay_us--;
504 			if (!delay_us)
505 				break;
506 		}
507 	}
508 
509 	nmi_ipi_lock();
510 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
511 		/* Could not gather all CPUs */
512 		ret = 0;
513 		cpumask_clear(&nmi_ipi_pending_mask);
514 	}
515 	nmi_ipi_busy_count--;
516 	nmi_ipi_unlock_end(&flags);
517 
518 	return ret;
519 }
520 #endif /* CONFIG_NMI_IPI */
521 
522 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
523 void tick_broadcast(const struct cpumask *mask)
524 {
525 	unsigned int cpu;
526 
527 	for_each_cpu(cpu, mask)
528 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
529 }
530 #endif
531 
532 #ifdef CONFIG_DEBUGGER
533 void debugger_ipi_callback(struct pt_regs *regs)
534 {
535 	debugger_ipi(regs);
536 }
537 
538 void smp_send_debugger_break(void)
539 {
540 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
541 }
542 #endif
543 
544 #ifdef CONFIG_KEXEC_CORE
545 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
546 {
547 	int cpu;
548 
549 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
550 	if (kdump_in_progress() && crash_wake_offline) {
551 		for_each_present_cpu(cpu) {
552 			if (cpu_online(cpu))
553 				continue;
554 			/*
555 			 * crash_ipi_callback will wait for
556 			 * all cpus, including offline CPUs.
557 			 * We don't care about nmi_ipi_function.
558 			 * Offline cpus will jump straight into
559 			 * crash_ipi_callback, we can skip the
560 			 * entire NMI dance and waiting for
561 			 * cpus to clear pending mask, etc.
562 			 */
563 			do_smp_send_nmi_ipi(cpu);
564 		}
565 	}
566 }
567 #endif
568 
569 #ifdef CONFIG_NMI_IPI
570 static void nmi_stop_this_cpu(struct pt_regs *regs)
571 {
572 	/*
573 	 * This is a special case because it never returns, so the NMI IPI
574 	 * handling would never mark it as done, which makes any later
575 	 * smp_send_nmi_ipi() call spin forever. Mark it done now.
576 	 *
577 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
578 	 */
579 	nmi_ipi_lock();
580 	nmi_ipi_busy_count--;
581 	nmi_ipi_unlock();
582 
583 	/* Remove this CPU */
584 	set_cpu_online(smp_processor_id(), false);
585 
586 	spin_begin();
587 	while (1)
588 		spin_cpu_relax();
589 }
590 
591 void smp_send_stop(void)
592 {
593 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
594 }
595 
596 #else /* CONFIG_NMI_IPI */
597 
598 static void stop_this_cpu(void *dummy)
599 {
600 	/* Remove this CPU */
601 	set_cpu_online(smp_processor_id(), false);
602 
603 	hard_irq_disable();
604 	spin_begin();
605 	while (1)
606 		spin_cpu_relax();
607 }
608 
609 void smp_send_stop(void)
610 {
611 	static bool stopped = false;
612 
613 	/*
614 	 * Prevent waiting on csd lock from a previous smp_send_stop.
615 	 * This is racy, but in general callers try to do the right
616 	 * thing and only fire off one smp_send_stop (e.g., see
617 	 * kernel/panic.c)
618 	 */
619 	if (stopped)
620 		return;
621 
622 	stopped = true;
623 
624 	smp_call_function(stop_this_cpu, NULL, 0);
625 }
626 #endif /* CONFIG_NMI_IPI */
627 
628 struct thread_info *current_set[NR_CPUS];
629 
630 static void smp_store_cpu_info(int id)
631 {
632 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
633 #ifdef CONFIG_PPC_FSL_BOOK3E
634 	per_cpu(next_tlbcam_idx, id)
635 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
636 #endif
637 }
638 
639 /*
640  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
641  * rather than just passing around the cpumask we pass around a function that
642  * returns the that cpumask for the given CPU.
643  */
644 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
645 {
646 	cpumask_set_cpu(i, get_cpumask(j));
647 	cpumask_set_cpu(j, get_cpumask(i));
648 }
649 
650 #ifdef CONFIG_HOTPLUG_CPU
651 static void set_cpus_unrelated(int i, int j,
652 		struct cpumask *(*get_cpumask)(int))
653 {
654 	cpumask_clear_cpu(i, get_cpumask(j));
655 	cpumask_clear_cpu(j, get_cpumask(i));
656 }
657 #endif
658 
659 void __init smp_prepare_cpus(unsigned int max_cpus)
660 {
661 	unsigned int cpu;
662 
663 	DBG("smp_prepare_cpus\n");
664 
665 	/*
666 	 * setup_cpu may need to be called on the boot cpu. We havent
667 	 * spun any cpus up but lets be paranoid.
668 	 */
669 	BUG_ON(boot_cpuid != smp_processor_id());
670 
671 	/* Fixup boot cpu */
672 	smp_store_cpu_info(boot_cpuid);
673 	cpu_callin_map[boot_cpuid] = 1;
674 
675 	for_each_possible_cpu(cpu) {
676 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
677 					GFP_KERNEL, cpu_to_node(cpu));
678 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
679 					GFP_KERNEL, cpu_to_node(cpu));
680 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
681 					GFP_KERNEL, cpu_to_node(cpu));
682 		/*
683 		 * numa_node_id() works after this.
684 		 */
685 		if (cpu_present(cpu)) {
686 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
687 			set_cpu_numa_mem(cpu,
688 				local_memory_node(numa_cpu_lookup_table[cpu]));
689 		}
690 	}
691 
692 	/* Init the cpumasks so the boot CPU is related to itself */
693 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
694 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
695 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
696 
697 	if (smp_ops && smp_ops->probe)
698 		smp_ops->probe();
699 }
700 
701 void smp_prepare_boot_cpu(void)
702 {
703 	BUG_ON(smp_processor_id() != boot_cpuid);
704 #ifdef CONFIG_PPC64
705 	paca_ptrs[boot_cpuid]->__current = current;
706 #endif
707 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
708 	current_set[boot_cpuid] = task_thread_info(current);
709 }
710 
711 #ifdef CONFIG_HOTPLUG_CPU
712 
713 int generic_cpu_disable(void)
714 {
715 	unsigned int cpu = smp_processor_id();
716 
717 	if (cpu == boot_cpuid)
718 		return -EBUSY;
719 
720 	set_cpu_online(cpu, false);
721 #ifdef CONFIG_PPC64
722 	vdso_data->processorCount--;
723 #endif
724 	/* Update affinity of all IRQs previously aimed at this CPU */
725 	irq_migrate_all_off_this_cpu();
726 
727 	/*
728 	 * Depending on the details of the interrupt controller, it's possible
729 	 * that one of the interrupts we just migrated away from this CPU is
730 	 * actually already pending on this CPU. If we leave it in that state
731 	 * the interrupt will never be EOI'ed, and will never fire again. So
732 	 * temporarily enable interrupts here, to allow any pending interrupt to
733 	 * be received (and EOI'ed), before we take this CPU offline.
734 	 */
735 	local_irq_enable();
736 	mdelay(1);
737 	local_irq_disable();
738 
739 	return 0;
740 }
741 
742 void generic_cpu_die(unsigned int cpu)
743 {
744 	int i;
745 
746 	for (i = 0; i < 100; i++) {
747 		smp_rmb();
748 		if (is_cpu_dead(cpu))
749 			return;
750 		msleep(100);
751 	}
752 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
753 }
754 
755 void generic_set_cpu_dead(unsigned int cpu)
756 {
757 	per_cpu(cpu_state, cpu) = CPU_DEAD;
758 }
759 
760 /*
761  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
762  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
763  * which makes the delay in generic_cpu_die() not happen.
764  */
765 void generic_set_cpu_up(unsigned int cpu)
766 {
767 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
768 }
769 
770 int generic_check_cpu_restart(unsigned int cpu)
771 {
772 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
773 }
774 
775 int is_cpu_dead(unsigned int cpu)
776 {
777 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
778 }
779 
780 static bool secondaries_inhibited(void)
781 {
782 	return kvm_hv_mode_active();
783 }
784 
785 #else /* HOTPLUG_CPU */
786 
787 #define secondaries_inhibited()		0
788 
789 #endif
790 
791 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
792 {
793 	struct thread_info *ti = task_thread_info(idle);
794 
795 #ifdef CONFIG_PPC64
796 	paca_ptrs[cpu]->__current = idle;
797 	paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
798 #endif
799 	ti->cpu = cpu;
800 	secondary_ti = current_set[cpu] = ti;
801 }
802 
803 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
804 {
805 	int rc, c;
806 
807 	/*
808 	 * Don't allow secondary threads to come online if inhibited
809 	 */
810 	if (threads_per_core > 1 && secondaries_inhibited() &&
811 	    cpu_thread_in_subcore(cpu))
812 		return -EBUSY;
813 
814 	if (smp_ops == NULL ||
815 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
816 		return -EINVAL;
817 
818 	cpu_idle_thread_init(cpu, tidle);
819 
820 	/*
821 	 * The platform might need to allocate resources prior to bringing
822 	 * up the CPU
823 	 */
824 	if (smp_ops->prepare_cpu) {
825 		rc = smp_ops->prepare_cpu(cpu);
826 		if (rc)
827 			return rc;
828 	}
829 
830 	/* Make sure callin-map entry is 0 (can be leftover a CPU
831 	 * hotplug
832 	 */
833 	cpu_callin_map[cpu] = 0;
834 
835 	/* The information for processor bringup must
836 	 * be written out to main store before we release
837 	 * the processor.
838 	 */
839 	smp_mb();
840 
841 	/* wake up cpus */
842 	DBG("smp: kicking cpu %d\n", cpu);
843 	rc = smp_ops->kick_cpu(cpu);
844 	if (rc) {
845 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
846 		return rc;
847 	}
848 
849 	/*
850 	 * wait to see if the cpu made a callin (is actually up).
851 	 * use this value that I found through experimentation.
852 	 * -- Cort
853 	 */
854 	if (system_state < SYSTEM_RUNNING)
855 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
856 			udelay(100);
857 #ifdef CONFIG_HOTPLUG_CPU
858 	else
859 		/*
860 		 * CPUs can take much longer to come up in the
861 		 * hotplug case.  Wait five seconds.
862 		 */
863 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
864 			msleep(1);
865 #endif
866 
867 	if (!cpu_callin_map[cpu]) {
868 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
869 		return -ENOENT;
870 	}
871 
872 	DBG("Processor %u found.\n", cpu);
873 
874 	if (smp_ops->give_timebase)
875 		smp_ops->give_timebase();
876 
877 	/* Wait until cpu puts itself in the online & active maps */
878 	spin_until_cond(cpu_online(cpu));
879 
880 	return 0;
881 }
882 
883 /* Return the value of the reg property corresponding to the given
884  * logical cpu.
885  */
886 int cpu_to_core_id(int cpu)
887 {
888 	struct device_node *np;
889 	const __be32 *reg;
890 	int id = -1;
891 
892 	np = of_get_cpu_node(cpu, NULL);
893 	if (!np)
894 		goto out;
895 
896 	reg = of_get_property(np, "reg", NULL);
897 	if (!reg)
898 		goto out;
899 
900 	id = be32_to_cpup(reg);
901 out:
902 	of_node_put(np);
903 	return id;
904 }
905 EXPORT_SYMBOL_GPL(cpu_to_core_id);
906 
907 /* Helper routines for cpu to core mapping */
908 int cpu_core_index_of_thread(int cpu)
909 {
910 	return cpu >> threads_shift;
911 }
912 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
913 
914 int cpu_first_thread_of_core(int core)
915 {
916 	return core << threads_shift;
917 }
918 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
919 
920 /* Must be called when no change can occur to cpu_present_mask,
921  * i.e. during cpu online or offline.
922  */
923 static struct device_node *cpu_to_l2cache(int cpu)
924 {
925 	struct device_node *np;
926 	struct device_node *cache;
927 
928 	if (!cpu_present(cpu))
929 		return NULL;
930 
931 	np = of_get_cpu_node(cpu, NULL);
932 	if (np == NULL)
933 		return NULL;
934 
935 	cache = of_find_next_cache_node(np);
936 
937 	of_node_put(np);
938 
939 	return cache;
940 }
941 
942 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
943 {
944 	struct device_node *l2_cache, *np;
945 	int i;
946 
947 	l2_cache = cpu_to_l2cache(cpu);
948 	if (!l2_cache)
949 		return false;
950 
951 	for_each_cpu(i, cpu_online_mask) {
952 		/*
953 		 * when updating the marks the current CPU has not been marked
954 		 * online, but we need to update the cache masks
955 		 */
956 		np = cpu_to_l2cache(i);
957 		if (!np)
958 			continue;
959 
960 		if (np == l2_cache)
961 			set_cpus_related(cpu, i, mask_fn);
962 
963 		of_node_put(np);
964 	}
965 	of_node_put(l2_cache);
966 
967 	return true;
968 }
969 
970 #ifdef CONFIG_HOTPLUG_CPU
971 static void remove_cpu_from_masks(int cpu)
972 {
973 	int i;
974 
975 	/* NB: cpu_core_mask is a superset of the others */
976 	for_each_cpu(i, cpu_core_mask(cpu)) {
977 		set_cpus_unrelated(cpu, i, cpu_core_mask);
978 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
979 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
980 	}
981 }
982 #endif
983 
984 static void add_cpu_to_masks(int cpu)
985 {
986 	int first_thread = cpu_first_thread_sibling(cpu);
987 	int chipid = cpu_to_chip_id(cpu);
988 	int i;
989 
990 	/*
991 	 * This CPU will not be in the online mask yet so we need to manually
992 	 * add it to it's own thread sibling mask.
993 	 */
994 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
995 
996 	for (i = first_thread; i < first_thread + threads_per_core; i++)
997 		if (cpu_online(i))
998 			set_cpus_related(i, cpu, cpu_sibling_mask);
999 
1000 	/*
1001 	 * Copy the thread sibling mask into the cache sibling mask
1002 	 * and mark any CPUs that share an L2 with this CPU.
1003 	 */
1004 	for_each_cpu(i, cpu_sibling_mask(cpu))
1005 		set_cpus_related(cpu, i, cpu_l2_cache_mask);
1006 	update_mask_by_l2(cpu, cpu_l2_cache_mask);
1007 
1008 	/*
1009 	 * Copy the cache sibling mask into core sibling mask and mark
1010 	 * any CPUs on the same chip as this CPU.
1011 	 */
1012 	for_each_cpu(i, cpu_l2_cache_mask(cpu))
1013 		set_cpus_related(cpu, i, cpu_core_mask);
1014 
1015 	if (chipid == -1)
1016 		return;
1017 
1018 	for_each_cpu(i, cpu_online_mask)
1019 		if (cpu_to_chip_id(i) == chipid)
1020 			set_cpus_related(cpu, i, cpu_core_mask);
1021 }
1022 
1023 static bool shared_caches;
1024 
1025 /* Activate a secondary processor. */
1026 void start_secondary(void *unused)
1027 {
1028 	unsigned int cpu = smp_processor_id();
1029 
1030 	mmgrab(&init_mm);
1031 	current->active_mm = &init_mm;
1032 
1033 	smp_store_cpu_info(cpu);
1034 	set_dec(tb_ticks_per_jiffy);
1035 	preempt_disable();
1036 	cpu_callin_map[cpu] = 1;
1037 
1038 	if (smp_ops->setup_cpu)
1039 		smp_ops->setup_cpu(cpu);
1040 	if (smp_ops->take_timebase)
1041 		smp_ops->take_timebase();
1042 
1043 	secondary_cpu_time_init();
1044 
1045 #ifdef CONFIG_PPC64
1046 	if (system_state == SYSTEM_RUNNING)
1047 		vdso_data->processorCount++;
1048 
1049 	vdso_getcpu_init();
1050 #endif
1051 	/* Update topology CPU masks */
1052 	add_cpu_to_masks(cpu);
1053 
1054 	/*
1055 	 * Check for any shared caches. Note that this must be done on a
1056 	 * per-core basis because one core in the pair might be disabled.
1057 	 */
1058 	if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1059 		shared_caches = true;
1060 
1061 	set_numa_node(numa_cpu_lookup_table[cpu]);
1062 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1063 
1064 	smp_wmb();
1065 	notify_cpu_starting(cpu);
1066 	set_cpu_online(cpu, true);
1067 
1068 	local_irq_enable();
1069 
1070 	/* We can enable ftrace for secondary cpus now */
1071 	this_cpu_enable_ftrace();
1072 
1073 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1074 
1075 	BUG();
1076 }
1077 
1078 int setup_profiling_timer(unsigned int multiplier)
1079 {
1080 	return 0;
1081 }
1082 
1083 #ifdef CONFIG_SCHED_SMT
1084 /* cpumask of CPUs with asymetric SMT dependancy */
1085 static int powerpc_smt_flags(void)
1086 {
1087 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1088 
1089 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1090 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1091 		flags |= SD_ASYM_PACKING;
1092 	}
1093 	return flags;
1094 }
1095 #endif
1096 
1097 static struct sched_domain_topology_level powerpc_topology[] = {
1098 #ifdef CONFIG_SCHED_SMT
1099 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1100 #endif
1101 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1102 	{ NULL, },
1103 };
1104 
1105 /*
1106  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1107  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1108  * since the migrated task remains cache hot. We want to take advantage of this
1109  * at the scheduler level so an extra topology level is required.
1110  */
1111 static int powerpc_shared_cache_flags(void)
1112 {
1113 	return SD_SHARE_PKG_RESOURCES;
1114 }
1115 
1116 /*
1117  * We can't just pass cpu_l2_cache_mask() directly because
1118  * returns a non-const pointer and the compiler barfs on that.
1119  */
1120 static const struct cpumask *shared_cache_mask(int cpu)
1121 {
1122 	return cpu_l2_cache_mask(cpu);
1123 }
1124 
1125 static struct sched_domain_topology_level power9_topology[] = {
1126 #ifdef CONFIG_SCHED_SMT
1127 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1128 #endif
1129 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1130 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1131 	{ NULL, },
1132 };
1133 
1134 void __init smp_cpus_done(unsigned int max_cpus)
1135 {
1136 	/*
1137 	 * We are running pinned to the boot CPU, see rest_init().
1138 	 */
1139 	if (smp_ops && smp_ops->setup_cpu)
1140 		smp_ops->setup_cpu(boot_cpuid);
1141 
1142 	if (smp_ops && smp_ops->bringup_done)
1143 		smp_ops->bringup_done();
1144 
1145 	dump_numa_cpu_topology();
1146 
1147 	/*
1148 	 * If any CPU detects that it's sharing a cache with another CPU then
1149 	 * use the deeper topology that is aware of this sharing.
1150 	 */
1151 	if (shared_caches) {
1152 		pr_info("Using shared cache scheduler topology\n");
1153 		set_sched_topology(power9_topology);
1154 	} else {
1155 		pr_info("Using standard scheduler topology\n");
1156 		set_sched_topology(powerpc_topology);
1157 	}
1158 }
1159 
1160 #ifdef CONFIG_HOTPLUG_CPU
1161 int __cpu_disable(void)
1162 {
1163 	int cpu = smp_processor_id();
1164 	int err;
1165 
1166 	if (!smp_ops->cpu_disable)
1167 		return -ENOSYS;
1168 
1169 	this_cpu_disable_ftrace();
1170 
1171 	err = smp_ops->cpu_disable();
1172 	if (err)
1173 		return err;
1174 
1175 	/* Update sibling maps */
1176 	remove_cpu_from_masks(cpu);
1177 
1178 	return 0;
1179 }
1180 
1181 void __cpu_die(unsigned int cpu)
1182 {
1183 	if (smp_ops->cpu_die)
1184 		smp_ops->cpu_die(cpu);
1185 }
1186 
1187 void cpu_die(void)
1188 {
1189 	/*
1190 	 * Disable on the down path. This will be re-enabled by
1191 	 * start_secondary() via start_secondary_resume() below
1192 	 */
1193 	this_cpu_disable_ftrace();
1194 
1195 	if (ppc_md.cpu_die)
1196 		ppc_md.cpu_die();
1197 
1198 	/* If we return, we re-enter start_secondary */
1199 	start_secondary_resume();
1200 }
1201 
1202 #endif
1203