1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 #include <linux/pgtable.h> 37 #include <linux/clockchips.h> 38 #include <linux/kexec.h> 39 40 #include <asm/ptrace.h> 41 #include <linux/atomic.h> 42 #include <asm/irq.h> 43 #include <asm/hw_irq.h> 44 #include <asm/kvm_ppc.h> 45 #include <asm/dbell.h> 46 #include <asm/page.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/mmu_context.h> 51 #include <asm/cputhreads.h> 52 #include <asm/cputable.h> 53 #include <asm/mpic.h> 54 #include <asm/vdso_datapage.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/paca.h> 57 #endif 58 #include <asm/vdso.h> 59 #include <asm/debug.h> 60 #include <asm/cpu_has_feature.h> 61 #include <asm/ftrace.h> 62 #include <asm/kup.h> 63 #include <asm/fadump.h> 64 65 #include <trace/events/ipi.h> 66 67 #ifdef DEBUG 68 #include <asm/udbg.h> 69 #define DBG(fmt...) udbg_printf(fmt) 70 #else 71 #define DBG(fmt...) 72 #endif 73 74 #ifdef CONFIG_HOTPLUG_CPU 75 /* State of each CPU during hotplug phases */ 76 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 77 #endif 78 79 struct task_struct *secondary_current; 80 bool has_big_cores __ro_after_init; 81 bool coregroup_enabled __ro_after_init; 82 bool thread_group_shares_l2 __ro_after_init; 83 bool thread_group_shares_l3 __ro_after_init; 84 85 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 86 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 87 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 88 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 89 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); 90 91 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 92 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 93 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 94 EXPORT_SYMBOL_GPL(has_big_cores); 95 96 #define MAX_THREAD_LIST_SIZE 8 97 #define THREAD_GROUP_SHARE_L1 1 98 #define THREAD_GROUP_SHARE_L2_L3 2 99 struct thread_groups { 100 unsigned int property; 101 unsigned int nr_groups; 102 unsigned int threads_per_group; 103 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 104 }; 105 106 /* Maximum number of properties that groups of threads within a core can share */ 107 #define MAX_THREAD_GROUP_PROPERTIES 2 108 109 struct thread_groups_list { 110 unsigned int nr_properties; 111 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; 112 }; 113 114 static struct thread_groups_list tgl[NR_CPUS] __initdata; 115 /* 116 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to 117 * the set its siblings that share the L1-cache. 118 */ 119 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); 120 121 /* 122 * On some big-cores system, thread_group_l2_cache_map for each CPU 123 * corresponds to the set its siblings within the core that share the 124 * L2-cache. 125 */ 126 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); 127 128 /* 129 * On P10, thread_group_l3_cache_map for each CPU is equal to the 130 * thread_group_l2_cache_map 131 */ 132 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map); 133 134 /* SMP operations for this machine */ 135 struct smp_ops_t *smp_ops; 136 137 /* Can't be static due to PowerMac hackery */ 138 volatile unsigned int cpu_callin_map[NR_CPUS]; 139 140 int smt_enabled_at_boot = 1; 141 142 /* 143 * Returns 1 if the specified cpu should be brought up during boot. 144 * Used to inhibit booting threads if they've been disabled or 145 * limited on the command line 146 */ 147 int smp_generic_cpu_bootable(unsigned int nr) 148 { 149 /* Special case - we inhibit secondary thread startup 150 * during boot if the user requests it. 151 */ 152 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 153 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 154 return 0; 155 if (smt_enabled_at_boot 156 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 157 return 0; 158 } 159 160 return 1; 161 } 162 163 164 #ifdef CONFIG_PPC64 165 int smp_generic_kick_cpu(int nr) 166 { 167 if (nr < 0 || nr >= nr_cpu_ids) 168 return -EINVAL; 169 170 /* 171 * The processor is currently spinning, waiting for the 172 * cpu_start field to become non-zero After we set cpu_start, 173 * the processor will continue on to secondary_start 174 */ 175 if (!paca_ptrs[nr]->cpu_start) { 176 paca_ptrs[nr]->cpu_start = 1; 177 smp_mb(); 178 return 0; 179 } 180 181 #ifdef CONFIG_HOTPLUG_CPU 182 /* 183 * Ok it's not there, so it might be soft-unplugged, let's 184 * try to bring it back 185 */ 186 generic_set_cpu_up(nr); 187 smp_wmb(); 188 smp_send_reschedule(nr); 189 #endif /* CONFIG_HOTPLUG_CPU */ 190 191 return 0; 192 } 193 #endif /* CONFIG_PPC64 */ 194 195 static irqreturn_t call_function_action(int irq, void *data) 196 { 197 generic_smp_call_function_interrupt(); 198 return IRQ_HANDLED; 199 } 200 201 static irqreturn_t reschedule_action(int irq, void *data) 202 { 203 scheduler_ipi(); 204 return IRQ_HANDLED; 205 } 206 207 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 208 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 209 { 210 timer_broadcast_interrupt(); 211 return IRQ_HANDLED; 212 } 213 #endif 214 215 #ifdef CONFIG_NMI_IPI 216 static irqreturn_t nmi_ipi_action(int irq, void *data) 217 { 218 smp_handle_nmi_ipi(get_irq_regs()); 219 return IRQ_HANDLED; 220 } 221 #endif 222 223 static irq_handler_t smp_ipi_action[] = { 224 [PPC_MSG_CALL_FUNCTION] = call_function_action, 225 [PPC_MSG_RESCHEDULE] = reschedule_action, 226 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 227 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 228 #endif 229 #ifdef CONFIG_NMI_IPI 230 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 231 #endif 232 }; 233 234 /* 235 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 236 * than going through the call function infrastructure, and strongly 237 * serialized, so it is more appropriate for debugging. 238 */ 239 const char *smp_ipi_name[] = { 240 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 241 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 243 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 244 #endif 245 #ifdef CONFIG_NMI_IPI 246 [PPC_MSG_NMI_IPI] = "nmi ipi", 247 #endif 248 }; 249 250 /* optional function to request ipi, for controllers with >= 4 ipis */ 251 int smp_request_message_ipi(int virq, int msg) 252 { 253 int err; 254 255 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 256 return -EINVAL; 257 #ifndef CONFIG_NMI_IPI 258 if (msg == PPC_MSG_NMI_IPI) 259 return 1; 260 #endif 261 262 err = request_irq(virq, smp_ipi_action[msg], 263 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 264 smp_ipi_name[msg], NULL); 265 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 266 virq, smp_ipi_name[msg], err); 267 268 return err; 269 } 270 271 #ifdef CONFIG_PPC_SMP_MUXED_IPI 272 struct cpu_messages { 273 long messages; /* current messages */ 274 }; 275 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 276 277 void smp_muxed_ipi_set_message(int cpu, int msg) 278 { 279 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 280 char *message = (char *)&info->messages; 281 282 /* 283 * Order previous accesses before accesses in the IPI handler. 284 */ 285 smp_mb(); 286 WRITE_ONCE(message[msg], 1); 287 } 288 289 void smp_muxed_ipi_message_pass(int cpu, int msg) 290 { 291 smp_muxed_ipi_set_message(cpu, msg); 292 293 /* 294 * cause_ipi functions are required to include a full barrier 295 * before doing whatever causes the IPI. 296 */ 297 smp_ops->cause_ipi(cpu); 298 } 299 300 #ifdef __BIG_ENDIAN__ 301 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 302 #else 303 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 304 #endif 305 306 irqreturn_t smp_ipi_demux(void) 307 { 308 mb(); /* order any irq clear */ 309 310 return smp_ipi_demux_relaxed(); 311 } 312 313 /* sync-free variant. Callers should ensure synchronization */ 314 irqreturn_t smp_ipi_demux_relaxed(void) 315 { 316 struct cpu_messages *info; 317 unsigned long all; 318 319 info = this_cpu_ptr(&ipi_message); 320 do { 321 all = xchg(&info->messages, 0); 322 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 323 /* 324 * Must check for PPC_MSG_RM_HOST_ACTION messages 325 * before PPC_MSG_CALL_FUNCTION messages because when 326 * a VM is destroyed, we call kick_all_cpus_sync() 327 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 328 * messages have completed before we free any VCPUs. 329 */ 330 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 331 kvmppc_xics_ipi_action(); 332 #endif 333 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 334 generic_smp_call_function_interrupt(); 335 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 336 scheduler_ipi(); 337 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 338 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 339 timer_broadcast_interrupt(); 340 #endif 341 #ifdef CONFIG_NMI_IPI 342 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 343 nmi_ipi_action(0, NULL); 344 #endif 345 } while (READ_ONCE(info->messages)); 346 347 return IRQ_HANDLED; 348 } 349 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 350 351 static inline void do_message_pass(int cpu, int msg) 352 { 353 if (smp_ops->message_pass) 354 smp_ops->message_pass(cpu, msg); 355 #ifdef CONFIG_PPC_SMP_MUXED_IPI 356 else 357 smp_muxed_ipi_message_pass(cpu, msg); 358 #endif 359 } 360 361 void arch_smp_send_reschedule(int cpu) 362 { 363 if (likely(smp_ops)) 364 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 365 } 366 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); 367 368 void arch_send_call_function_single_ipi(int cpu) 369 { 370 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 371 } 372 373 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 374 { 375 unsigned int cpu; 376 377 for_each_cpu(cpu, mask) 378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 379 } 380 381 #ifdef CONFIG_NMI_IPI 382 383 /* 384 * "NMI IPI" system. 385 * 386 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 387 * a running system. They can be used for crash, debug, halt/reboot, etc. 388 * 389 * The IPI call waits with interrupts disabled until all targets enter the 390 * NMI handler, then returns. Subsequent IPIs can be issued before targets 391 * have returned from their handlers, so there is no guarantee about 392 * concurrency or re-entrancy. 393 * 394 * A new NMI can be issued before all targets exit the handler. 395 * 396 * The IPI call may time out without all targets entering the NMI handler. 397 * In that case, there is some logic to recover (and ignore subsequent 398 * NMI interrupts that may eventually be raised), but the platform interrupt 399 * handler may not be able to distinguish this from other exception causes, 400 * which may cause a crash. 401 */ 402 403 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 404 static struct cpumask nmi_ipi_pending_mask; 405 static bool nmi_ipi_busy = false; 406 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 407 408 noinstr static void nmi_ipi_lock_start(unsigned long *flags) 409 { 410 raw_local_irq_save(*flags); 411 hard_irq_disable(); 412 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 413 raw_local_irq_restore(*flags); 414 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0); 415 raw_local_irq_save(*flags); 416 hard_irq_disable(); 417 } 418 } 419 420 noinstr static void nmi_ipi_lock(void) 421 { 422 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 423 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0); 424 } 425 426 noinstr static void nmi_ipi_unlock(void) 427 { 428 smp_mb(); 429 WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1); 430 raw_atomic_set(&__nmi_ipi_lock, 0); 431 } 432 433 noinstr static void nmi_ipi_unlock_end(unsigned long *flags) 434 { 435 nmi_ipi_unlock(); 436 raw_local_irq_restore(*flags); 437 } 438 439 /* 440 * Platform NMI handler calls this to ack 441 */ 442 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs) 443 { 444 void (*fn)(struct pt_regs *) = NULL; 445 unsigned long flags; 446 int me = raw_smp_processor_id(); 447 int ret = 0; 448 449 /* 450 * Unexpected NMIs are possible here because the interrupt may not 451 * be able to distinguish NMI IPIs from other types of NMIs, or 452 * because the caller may have timed out. 453 */ 454 nmi_ipi_lock_start(&flags); 455 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 456 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 457 fn = READ_ONCE(nmi_ipi_function); 458 WARN_ON_ONCE(!fn); 459 ret = 1; 460 } 461 nmi_ipi_unlock_end(&flags); 462 463 if (fn) 464 fn(regs); 465 466 return ret; 467 } 468 469 static void do_smp_send_nmi_ipi(int cpu, bool safe) 470 { 471 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 472 return; 473 474 if (cpu >= 0) { 475 do_message_pass(cpu, PPC_MSG_NMI_IPI); 476 } else { 477 int c; 478 479 for_each_online_cpu(c) { 480 if (c == raw_smp_processor_id()) 481 continue; 482 do_message_pass(c, PPC_MSG_NMI_IPI); 483 } 484 } 485 } 486 487 /* 488 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 489 * - fn is the target callback function. 490 * - delay_us > 0 is the delay before giving up waiting for targets to 491 * begin executing the handler, == 0 specifies indefinite delay. 492 */ 493 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 494 u64 delay_us, bool safe) 495 { 496 unsigned long flags; 497 int me = raw_smp_processor_id(); 498 int ret = 1; 499 500 BUG_ON(cpu == me); 501 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 502 503 if (unlikely(!smp_ops)) 504 return 0; 505 506 nmi_ipi_lock_start(&flags); 507 while (nmi_ipi_busy) { 508 nmi_ipi_unlock_end(&flags); 509 spin_until_cond(!nmi_ipi_busy); 510 nmi_ipi_lock_start(&flags); 511 } 512 nmi_ipi_busy = true; 513 nmi_ipi_function = fn; 514 515 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 516 517 if (cpu < 0) { 518 /* ALL_OTHERS */ 519 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 520 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 521 } else { 522 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 523 } 524 525 nmi_ipi_unlock(); 526 527 /* Interrupts remain hard disabled */ 528 529 do_smp_send_nmi_ipi(cpu, safe); 530 531 nmi_ipi_lock(); 532 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 533 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 534 nmi_ipi_unlock(); 535 udelay(1); 536 nmi_ipi_lock(); 537 if (delay_us) { 538 delay_us--; 539 if (!delay_us) 540 break; 541 } 542 } 543 544 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 545 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 546 ret = 0; 547 cpumask_clear(&nmi_ipi_pending_mask); 548 } 549 550 nmi_ipi_function = NULL; 551 nmi_ipi_busy = false; 552 553 nmi_ipi_unlock_end(&flags); 554 555 return ret; 556 } 557 558 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 559 { 560 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 561 } 562 563 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 564 { 565 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 566 } 567 #endif /* CONFIG_NMI_IPI */ 568 569 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 570 void tick_broadcast(const struct cpumask *mask) 571 { 572 unsigned int cpu; 573 574 for_each_cpu(cpu, mask) 575 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 576 } 577 #endif 578 579 #ifdef CONFIG_DEBUGGER 580 static void debugger_ipi_callback(struct pt_regs *regs) 581 { 582 debugger_ipi(regs); 583 } 584 585 void smp_send_debugger_break(void) 586 { 587 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 588 } 589 #endif 590 591 #ifdef CONFIG_CRASH_DUMP 592 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 593 { 594 int cpu; 595 596 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 597 if (kdump_in_progress() && crash_wake_offline) { 598 for_each_present_cpu(cpu) { 599 if (cpu_online(cpu)) 600 continue; 601 /* 602 * crash_ipi_callback will wait for 603 * all cpus, including offline CPUs. 604 * We don't care about nmi_ipi_function. 605 * Offline cpus will jump straight into 606 * crash_ipi_callback, we can skip the 607 * entire NMI dance and waiting for 608 * cpus to clear pending mask, etc. 609 */ 610 do_smp_send_nmi_ipi(cpu, false); 611 } 612 } 613 } 614 #endif 615 616 void crash_smp_send_stop(void) 617 { 618 static bool stopped = false; 619 620 /* 621 * In case of fadump, register data for all CPUs is captured by f/w 622 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before 623 * this rtas call to avoid tricky post processing of those CPUs' 624 * backtraces. 625 */ 626 if (should_fadump_crash()) 627 return; 628 629 if (stopped) 630 return; 631 632 stopped = true; 633 634 #ifdef CONFIG_CRASH_DUMP 635 if (kexec_crash_image) { 636 crash_kexec_prepare(); 637 return; 638 } 639 #endif 640 641 smp_send_stop(); 642 } 643 644 #ifdef CONFIG_NMI_IPI 645 static void nmi_stop_this_cpu(struct pt_regs *regs) 646 { 647 /* 648 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 649 */ 650 set_cpu_online(smp_processor_id(), false); 651 652 spin_begin(); 653 while (1) 654 spin_cpu_relax(); 655 } 656 657 void smp_send_stop(void) 658 { 659 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 660 } 661 662 #else /* CONFIG_NMI_IPI */ 663 664 static void stop_this_cpu(void *dummy) 665 { 666 hard_irq_disable(); 667 668 /* 669 * Offlining CPUs in stop_this_cpu can result in scheduler warnings, 670 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants 671 * to know other CPUs are offline before it breaks locks to flush 672 * printk buffers, in case we panic()ed while holding the lock. 673 */ 674 set_cpu_online(smp_processor_id(), false); 675 676 spin_begin(); 677 while (1) 678 spin_cpu_relax(); 679 } 680 681 void smp_send_stop(void) 682 { 683 static bool stopped = false; 684 685 /* 686 * Prevent waiting on csd lock from a previous smp_send_stop. 687 * This is racy, but in general callers try to do the right 688 * thing and only fire off one smp_send_stop (e.g., see 689 * kernel/panic.c) 690 */ 691 if (stopped) 692 return; 693 694 stopped = true; 695 696 smp_call_function(stop_this_cpu, NULL, 0); 697 } 698 #endif /* CONFIG_NMI_IPI */ 699 700 static struct task_struct *current_set[NR_CPUS]; 701 702 static void smp_store_cpu_info(int id) 703 { 704 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 705 #ifdef CONFIG_PPC_E500 706 per_cpu(next_tlbcam_idx, id) 707 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 708 #endif 709 } 710 711 /* 712 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 713 * rather than just passing around the cpumask we pass around a function that 714 * returns the that cpumask for the given CPU. 715 */ 716 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 717 { 718 cpumask_set_cpu(i, get_cpumask(j)); 719 cpumask_set_cpu(j, get_cpumask(i)); 720 } 721 722 #ifdef CONFIG_HOTPLUG_CPU 723 static void set_cpus_unrelated(int i, int j, 724 struct cpumask *(*get_cpumask)(int)) 725 { 726 cpumask_clear_cpu(i, get_cpumask(j)); 727 cpumask_clear_cpu(j, get_cpumask(i)); 728 } 729 #endif 730 731 /* 732 * Extends set_cpus_related. Instead of setting one CPU at a time in 733 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. 734 */ 735 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), 736 struct cpumask *(*dstmask)(int)) 737 { 738 struct cpumask *mask; 739 int k; 740 741 mask = srcmask(j); 742 for_each_cpu(k, srcmask(i)) 743 cpumask_or(dstmask(k), dstmask(k), mask); 744 745 if (i == j) 746 return; 747 748 mask = srcmask(i); 749 for_each_cpu(k, srcmask(j)) 750 cpumask_or(dstmask(k), dstmask(k), mask); 751 } 752 753 /* 754 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 755 * property for the CPU device node @dn and stores 756 * the parsed output in the thread_groups_list 757 * structure @tglp. 758 * 759 * @dn: The device node of the CPU device. 760 * @tglp: Pointer to a thread group list structure into which the parsed 761 * output of "ibm,thread-groups" is stored. 762 * 763 * ibm,thread-groups[0..N-1] array defines which group of threads in 764 * the CPU-device node can be grouped together based on the property. 765 * 766 * This array can represent thread groupings for multiple properties. 767 * 768 * ibm,thread-groups[i + 0] tells us the property based on which the 769 * threads are being grouped together. If this value is 1, it implies 770 * that the threads in the same group share L1, translation cache. If 771 * the value is 2, it implies that the threads in the same group share 772 * the same L2 cache. 773 * 774 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the 775 * property ibm,thread-groups[i] 776 * 777 * ibm,thread-groups[i+2] tells us the number of threads in each such 778 * group. 779 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, 780 * 781 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by 782 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 783 * the grouping. 784 * 785 * Example: 786 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] 787 * This can be decomposed up into two consecutive arrays: 788 * a) [1,2,4,8,10,12,14,9,11,13,15] 789 * b) [2,2,4,8,10,12,14,9,11,13,15] 790 * 791 * where in, 792 * 793 * a) provides information of Property "1" being shared by "2" groups, 794 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of 795 * the first group is {8,10,12,14} and the 796 * "ibm,ppc-interrupt-server#s" of the second group is 797 * {9,11,13,15}. Property "1" is indicative of the thread in the 798 * group sharing L1 cache, translation cache and Instruction Data 799 * flow. 800 * 801 * b) provides information of Property "2" being shared by "2" groups, 802 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of 803 * the first group is {8,10,12,14} and the 804 * "ibm,ppc-interrupt-server#s" of the second group is 805 * {9,11,13,15}. Property "2" indicates that the threads in each 806 * group share the L2-cache. 807 * 808 * Returns 0 on success, -EINVAL if the property does not exist, 809 * -ENODATA if property does not have a value, and -EOVERFLOW if the 810 * property data isn't large enough. 811 */ 812 static int parse_thread_groups(struct device_node *dn, 813 struct thread_groups_list *tglp) 814 { 815 unsigned int property_idx = 0; 816 u32 *thread_group_array; 817 size_t total_threads; 818 int ret = 0, count; 819 u32 *thread_list; 820 int i = 0; 821 822 count = of_property_count_u32_elems(dn, "ibm,thread-groups"); 823 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); 824 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 825 thread_group_array, count); 826 if (ret) 827 goto out_free; 828 829 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { 830 int j; 831 struct thread_groups *tg = &tglp->property_tgs[property_idx++]; 832 833 tg->property = thread_group_array[i]; 834 tg->nr_groups = thread_group_array[i + 1]; 835 tg->threads_per_group = thread_group_array[i + 2]; 836 total_threads = tg->nr_groups * tg->threads_per_group; 837 838 thread_list = &thread_group_array[i + 3]; 839 840 for (j = 0; j < total_threads; j++) 841 tg->thread_list[j] = thread_list[j]; 842 i = i + 3 + total_threads; 843 } 844 845 tglp->nr_properties = property_idx; 846 847 out_free: 848 kfree(thread_group_array); 849 return ret; 850 } 851 852 /* 853 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 854 * that @cpu belongs to. 855 * 856 * @cpu : The logical CPU whose thread group is being searched. 857 * @tg : The thread-group structure of the CPU node which @cpu belongs 858 * to. 859 * 860 * Returns the index to tg->thread_list that points to the start 861 * of the thread_group that @cpu belongs to. 862 * 863 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 864 * tg->thread_list. 865 */ 866 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 867 { 868 int hw_cpu_id = get_hard_smp_processor_id(cpu); 869 int i, j; 870 871 for (i = 0; i < tg->nr_groups; i++) { 872 int group_start = i * tg->threads_per_group; 873 874 for (j = 0; j < tg->threads_per_group; j++) { 875 int idx = group_start + j; 876 877 if (tg->thread_list[idx] == hw_cpu_id) 878 return group_start; 879 } 880 } 881 882 return -1; 883 } 884 885 static struct thread_groups *__init get_thread_groups(int cpu, 886 int group_property, 887 int *err) 888 { 889 struct device_node *dn = of_get_cpu_node(cpu, NULL); 890 struct thread_groups_list *cpu_tgl = &tgl[cpu]; 891 struct thread_groups *tg = NULL; 892 int i; 893 *err = 0; 894 895 if (!dn) { 896 *err = -ENODATA; 897 return NULL; 898 } 899 900 if (!cpu_tgl->nr_properties) { 901 *err = parse_thread_groups(dn, cpu_tgl); 902 if (*err) 903 goto out; 904 } 905 906 for (i = 0; i < cpu_tgl->nr_properties; i++) { 907 if (cpu_tgl->property_tgs[i].property == group_property) { 908 tg = &cpu_tgl->property_tgs[i]; 909 break; 910 } 911 } 912 913 if (!tg) 914 *err = -EINVAL; 915 out: 916 of_node_put(dn); 917 return tg; 918 } 919 920 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, 921 int cpu, int cpu_group_start) 922 { 923 int first_thread = cpu_first_thread_sibling(cpu); 924 int i; 925 926 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); 927 928 for (i = first_thread; i < first_thread + threads_per_core; i++) { 929 int i_group_start = get_cpu_thread_group_start(i, tg); 930 931 if (unlikely(i_group_start == -1)) { 932 WARN_ON_ONCE(1); 933 return -ENODATA; 934 } 935 936 if (i_group_start == cpu_group_start) 937 cpumask_set_cpu(i, *mask); 938 } 939 940 return 0; 941 } 942 943 static int __init init_thread_group_cache_map(int cpu, int cache_property) 944 945 { 946 int cpu_group_start = -1, err = 0; 947 struct thread_groups *tg = NULL; 948 cpumask_var_t *mask = NULL; 949 950 if (cache_property != THREAD_GROUP_SHARE_L1 && 951 cache_property != THREAD_GROUP_SHARE_L2_L3) 952 return -EINVAL; 953 954 tg = get_thread_groups(cpu, cache_property, &err); 955 956 if (!tg) 957 return err; 958 959 cpu_group_start = get_cpu_thread_group_start(cpu, tg); 960 961 if (unlikely(cpu_group_start == -1)) { 962 WARN_ON_ONCE(1); 963 return -ENODATA; 964 } 965 966 if (cache_property == THREAD_GROUP_SHARE_L1) { 967 mask = &per_cpu(thread_group_l1_cache_map, cpu); 968 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 969 } 970 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) { 971 mask = &per_cpu(thread_group_l2_cache_map, cpu); 972 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 973 mask = &per_cpu(thread_group_l3_cache_map, cpu); 974 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 975 } 976 977 978 return 0; 979 } 980 981 static bool shared_caches __ro_after_init; 982 983 #ifdef CONFIG_SCHED_SMT 984 /* cpumask of CPUs with asymmetric SMT dependency */ 985 static int powerpc_smt_flags(void) 986 { 987 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_LLC; 988 989 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 990 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 991 flags |= SD_ASYM_PACKING; 992 } 993 return flags; 994 } 995 #endif 996 997 /* 998 * On shared processor LPARs scheduled on a big core (which has two or more 999 * independent thread groups per core), prefer lower numbered CPUs, so 1000 * that workload consolidates to lesser number of cores. 1001 */ 1002 static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack); 1003 1004 /* 1005 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1006 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1007 * since the migrated task remains cache hot. We want to take advantage of this 1008 * at the scheduler level so an extra topology level is required. 1009 */ 1010 static int powerpc_shared_cache_flags(void) 1011 { 1012 if (static_branch_unlikely(&splpar_asym_pack)) 1013 return SD_SHARE_LLC | SD_ASYM_PACKING; 1014 1015 return SD_SHARE_LLC; 1016 } 1017 1018 static int powerpc_shared_proc_flags(void) 1019 { 1020 if (static_branch_unlikely(&splpar_asym_pack)) 1021 return SD_ASYM_PACKING; 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * We can't just pass cpu_l2_cache_mask() directly because 1028 * returns a non-const pointer and the compiler barfs on that. 1029 */ 1030 static const struct cpumask *shared_cache_mask(int cpu) 1031 { 1032 return per_cpu(cpu_l2_cache_map, cpu); 1033 } 1034 1035 #ifdef CONFIG_SCHED_SMT 1036 static const struct cpumask *smallcore_smt_mask(int cpu) 1037 { 1038 return cpu_smallcore_mask(cpu); 1039 } 1040 #endif 1041 1042 static struct cpumask *cpu_coregroup_mask(int cpu) 1043 { 1044 return per_cpu(cpu_coregroup_map, cpu); 1045 } 1046 1047 static bool has_coregroup_support(void) 1048 { 1049 /* Coregroup identification not available on shared systems */ 1050 if (is_shared_processor()) 1051 return 0; 1052 1053 return coregroup_enabled; 1054 } 1055 1056 static const struct cpumask *cpu_mc_mask(int cpu) 1057 { 1058 return cpu_coregroup_mask(cpu); 1059 } 1060 1061 static int __init init_big_cores(void) 1062 { 1063 int cpu; 1064 1065 for_each_possible_cpu(cpu) { 1066 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); 1067 1068 if (err) 1069 return err; 1070 1071 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 1072 GFP_KERNEL, 1073 cpu_to_node(cpu)); 1074 } 1075 1076 has_big_cores = true; 1077 1078 for_each_possible_cpu(cpu) { 1079 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3); 1080 1081 if (err) 1082 return err; 1083 } 1084 1085 thread_group_shares_l2 = true; 1086 thread_group_shares_l3 = true; 1087 pr_debug("L2/L3 cache only shared by the threads in the small core\n"); 1088 1089 return 0; 1090 } 1091 1092 void __init smp_prepare_cpus(unsigned int max_cpus) 1093 { 1094 unsigned int cpu, num_threads; 1095 1096 DBG("smp_prepare_cpus\n"); 1097 1098 /* 1099 * setup_cpu may need to be called on the boot cpu. We haven't 1100 * spun any cpus up but lets be paranoid. 1101 */ 1102 BUG_ON(boot_cpuid != smp_processor_id()); 1103 1104 /* Fixup boot cpu */ 1105 smp_store_cpu_info(boot_cpuid); 1106 cpu_callin_map[boot_cpuid] = 1; 1107 1108 for_each_possible_cpu(cpu) { 1109 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 1110 GFP_KERNEL, cpu_to_node(cpu)); 1111 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 1112 GFP_KERNEL, cpu_to_node(cpu)); 1113 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 1114 GFP_KERNEL, cpu_to_node(cpu)); 1115 if (has_coregroup_support()) 1116 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), 1117 GFP_KERNEL, cpu_to_node(cpu)); 1118 1119 #ifdef CONFIG_NUMA 1120 /* 1121 * numa_node_id() works after this. 1122 */ 1123 if (cpu_present(cpu)) { 1124 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 1125 set_cpu_numa_mem(cpu, 1126 local_memory_node(numa_cpu_lookup_table[cpu])); 1127 } 1128 #endif 1129 } 1130 1131 /* Init the cpumasks so the boot CPU is related to itself */ 1132 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 1133 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 1134 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 1135 1136 if (has_coregroup_support()) 1137 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); 1138 1139 init_big_cores(); 1140 if (has_big_cores) { 1141 cpumask_set_cpu(boot_cpuid, 1142 cpu_smallcore_mask(boot_cpuid)); 1143 } 1144 1145 if (cpu_to_chip_id(boot_cpuid) != -1) { 1146 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1147 1148 /* 1149 * All threads of a core will all belong to the same core, 1150 * chip_id_lookup_table will have one entry per core. 1151 * Assumption: if boot_cpuid doesn't have a chip-id, then no 1152 * other CPUs, will also not have chip-id. 1153 */ 1154 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); 1155 if (chip_id_lookup_table) 1156 memset(chip_id_lookup_table, -1, sizeof(int) * idx); 1157 } 1158 1159 if (smp_ops && smp_ops->probe) 1160 smp_ops->probe(); 1161 1162 // Initalise the generic SMT topology support 1163 num_threads = 1; 1164 if (smt_enabled_at_boot) 1165 num_threads = smt_enabled_at_boot; 1166 cpu_smt_set_num_threads(num_threads, threads_per_core); 1167 } 1168 1169 void __init smp_prepare_boot_cpu(void) 1170 { 1171 BUG_ON(smp_processor_id() != boot_cpuid); 1172 #ifdef CONFIG_PPC64 1173 paca_ptrs[boot_cpuid]->__current = current; 1174 #endif 1175 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 1176 current_set[boot_cpuid] = current; 1177 } 1178 1179 #ifdef CONFIG_HOTPLUG_CPU 1180 1181 int generic_cpu_disable(void) 1182 { 1183 unsigned int cpu = smp_processor_id(); 1184 1185 if (cpu == boot_cpuid) 1186 return -EBUSY; 1187 1188 set_cpu_online(cpu, false); 1189 #ifdef CONFIG_PPC64 1190 vdso_data->processorCount--; 1191 #endif 1192 /* Update affinity of all IRQs previously aimed at this CPU */ 1193 irq_migrate_all_off_this_cpu(); 1194 1195 /* 1196 * Depending on the details of the interrupt controller, it's possible 1197 * that one of the interrupts we just migrated away from this CPU is 1198 * actually already pending on this CPU. If we leave it in that state 1199 * the interrupt will never be EOI'ed, and will never fire again. So 1200 * temporarily enable interrupts here, to allow any pending interrupt to 1201 * be received (and EOI'ed), before we take this CPU offline. 1202 */ 1203 local_irq_enable(); 1204 mdelay(1); 1205 local_irq_disable(); 1206 1207 return 0; 1208 } 1209 1210 void generic_cpu_die(unsigned int cpu) 1211 { 1212 int i; 1213 1214 for (i = 0; i < 100; i++) { 1215 smp_rmb(); 1216 if (is_cpu_dead(cpu)) 1217 return; 1218 msleep(100); 1219 } 1220 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 1221 } 1222 1223 void generic_set_cpu_dead(unsigned int cpu) 1224 { 1225 per_cpu(cpu_state, cpu) = CPU_DEAD; 1226 } 1227 1228 /* 1229 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 1230 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 1231 * which makes the delay in generic_cpu_die() not happen. 1232 */ 1233 void generic_set_cpu_up(unsigned int cpu) 1234 { 1235 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 1236 } 1237 1238 int generic_check_cpu_restart(unsigned int cpu) 1239 { 1240 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 1241 } 1242 1243 int is_cpu_dead(unsigned int cpu) 1244 { 1245 return per_cpu(cpu_state, cpu) == CPU_DEAD; 1246 } 1247 1248 static bool secondaries_inhibited(void) 1249 { 1250 return kvm_hv_mode_active(); 1251 } 1252 1253 #else /* HOTPLUG_CPU */ 1254 1255 #define secondaries_inhibited() 0 1256 1257 #endif 1258 1259 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 1260 { 1261 #ifdef CONFIG_PPC64 1262 paca_ptrs[cpu]->__current = idle; 1263 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 1264 THREAD_SIZE - STACK_FRAME_MIN_SIZE; 1265 #endif 1266 task_thread_info(idle)->cpu = cpu; 1267 secondary_current = current_set[cpu] = idle; 1268 } 1269 1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1271 { 1272 const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC; 1273 const bool booting = system_state < SYSTEM_RUNNING; 1274 const unsigned long hp_spin_ms = 1; 1275 unsigned long deadline; 1276 int rc; 1277 const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms; 1278 1279 /* 1280 * Don't allow secondary threads to come online if inhibited 1281 */ 1282 if (threads_per_core > 1 && secondaries_inhibited() && 1283 cpu_thread_in_subcore(cpu)) 1284 return -EBUSY; 1285 1286 if (smp_ops == NULL || 1287 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1288 return -EINVAL; 1289 1290 cpu_idle_thread_init(cpu, tidle); 1291 1292 /* 1293 * The platform might need to allocate resources prior to bringing 1294 * up the CPU 1295 */ 1296 if (smp_ops->prepare_cpu) { 1297 rc = smp_ops->prepare_cpu(cpu); 1298 if (rc) 1299 return rc; 1300 } 1301 1302 /* Make sure callin-map entry is 0 (can be leftover a CPU 1303 * hotplug 1304 */ 1305 cpu_callin_map[cpu] = 0; 1306 1307 /* The information for processor bringup must 1308 * be written out to main store before we release 1309 * the processor. 1310 */ 1311 smp_mb(); 1312 1313 /* wake up cpus */ 1314 DBG("smp: kicking cpu %d\n", cpu); 1315 rc = smp_ops->kick_cpu(cpu); 1316 if (rc) { 1317 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1318 return rc; 1319 } 1320 1321 /* 1322 * At boot time, simply spin on the callin word until the 1323 * deadline passes. 1324 * 1325 * At run time, spin for an optimistic amount of time to avoid 1326 * sleeping in the common case. 1327 */ 1328 deadline = jiffies + msecs_to_jiffies(spin_wait_ms); 1329 spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline)); 1330 1331 if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) { 1332 const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC; 1333 const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC; 1334 1335 deadline = jiffies + msecs_to_jiffies(sleep_wait_ms); 1336 while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline)) 1337 fsleep(sleep_interval_us); 1338 } 1339 1340 if (!cpu_callin_map[cpu]) { 1341 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1342 return -ENOENT; 1343 } 1344 1345 DBG("Processor %u found.\n", cpu); 1346 1347 if (smp_ops->give_timebase) 1348 smp_ops->give_timebase(); 1349 1350 /* Wait until cpu puts itself in the online & active maps */ 1351 spin_until_cond(cpu_online(cpu)); 1352 1353 return 0; 1354 } 1355 1356 /* Return the value of the reg property corresponding to the given 1357 * logical cpu. 1358 */ 1359 int cpu_to_core_id(int cpu) 1360 { 1361 struct device_node *np; 1362 int id = -1; 1363 1364 np = of_get_cpu_node(cpu, NULL); 1365 if (!np) 1366 goto out; 1367 1368 id = of_get_cpu_hwid(np, 0); 1369 out: 1370 of_node_put(np); 1371 return id; 1372 } 1373 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1374 1375 /* Helper routines for cpu to core mapping */ 1376 int cpu_core_index_of_thread(int cpu) 1377 { 1378 return cpu >> threads_shift; 1379 } 1380 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1381 1382 int cpu_first_thread_of_core(int core) 1383 { 1384 return core << threads_shift; 1385 } 1386 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1387 1388 /* Must be called when no change can occur to cpu_present_mask, 1389 * i.e. during cpu online or offline. 1390 */ 1391 static struct device_node *cpu_to_l2cache(int cpu) 1392 { 1393 struct device_node *np; 1394 struct device_node *cache; 1395 1396 if (!cpu_present(cpu)) 1397 return NULL; 1398 1399 np = of_get_cpu_node(cpu, NULL); 1400 if (np == NULL) 1401 return NULL; 1402 1403 cache = of_find_next_cache_node(np); 1404 1405 of_node_put(np); 1406 1407 return cache; 1408 } 1409 1410 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) 1411 { 1412 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1413 struct device_node *l2_cache, *np; 1414 int i; 1415 1416 if (has_big_cores) 1417 submask_fn = cpu_smallcore_mask; 1418 1419 /* 1420 * If the threads in a thread-group share L2 cache, then the 1421 * L2-mask can be obtained from thread_group_l2_cache_map. 1422 */ 1423 if (thread_group_shares_l2) { 1424 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); 1425 1426 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { 1427 if (cpu_online(i)) 1428 set_cpus_related(i, cpu, cpu_l2_cache_mask); 1429 } 1430 1431 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ 1432 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && 1433 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { 1434 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", 1435 cpu); 1436 } 1437 1438 return true; 1439 } 1440 1441 l2_cache = cpu_to_l2cache(cpu); 1442 if (!l2_cache || !*mask) { 1443 /* Assume only core siblings share cache with this CPU */ 1444 for_each_cpu(i, cpu_sibling_mask(cpu)) 1445 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1446 1447 return false; 1448 } 1449 1450 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1451 1452 /* Update l2-cache mask with all the CPUs that are part of submask */ 1453 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); 1454 1455 /* Skip all CPUs already part of current CPU l2-cache mask */ 1456 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); 1457 1458 for_each_cpu(i, *mask) { 1459 /* 1460 * when updating the marks the current CPU has not been marked 1461 * online, but we need to update the cache masks 1462 */ 1463 np = cpu_to_l2cache(i); 1464 1465 /* Skip all CPUs already part of current CPU l2-cache */ 1466 if (np == l2_cache) { 1467 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); 1468 cpumask_andnot(*mask, *mask, submask_fn(i)); 1469 } else { 1470 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); 1471 } 1472 1473 of_node_put(np); 1474 } 1475 of_node_put(l2_cache); 1476 1477 return true; 1478 } 1479 1480 #ifdef CONFIG_HOTPLUG_CPU 1481 static void remove_cpu_from_masks(int cpu) 1482 { 1483 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; 1484 int i; 1485 1486 unmap_cpu_from_node(cpu); 1487 1488 if (shared_caches) 1489 mask_fn = cpu_l2_cache_mask; 1490 1491 for_each_cpu(i, mask_fn(cpu)) { 1492 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1493 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1494 if (has_big_cores) 1495 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1496 } 1497 1498 for_each_cpu(i, cpu_core_mask(cpu)) 1499 set_cpus_unrelated(cpu, i, cpu_core_mask); 1500 1501 if (has_coregroup_support()) { 1502 for_each_cpu(i, cpu_coregroup_mask(cpu)) 1503 set_cpus_unrelated(cpu, i, cpu_coregroup_mask); 1504 } 1505 } 1506 #endif 1507 1508 static inline void add_cpu_to_smallcore_masks(int cpu) 1509 { 1510 int i; 1511 1512 if (!has_big_cores) 1513 return; 1514 1515 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1516 1517 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { 1518 if (cpu_online(i)) 1519 set_cpus_related(i, cpu, cpu_smallcore_mask); 1520 } 1521 } 1522 1523 static void update_coregroup_mask(int cpu, cpumask_var_t *mask) 1524 { 1525 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1526 int coregroup_id = cpu_to_coregroup_id(cpu); 1527 int i; 1528 1529 if (shared_caches) 1530 submask_fn = cpu_l2_cache_mask; 1531 1532 if (!*mask) { 1533 /* Assume only siblings are part of this CPU's coregroup */ 1534 for_each_cpu(i, submask_fn(cpu)) 1535 set_cpus_related(cpu, i, cpu_coregroup_mask); 1536 1537 return; 1538 } 1539 1540 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1541 1542 /* Update coregroup mask with all the CPUs that are part of submask */ 1543 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); 1544 1545 /* Skip all CPUs already part of coregroup mask */ 1546 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); 1547 1548 for_each_cpu(i, *mask) { 1549 /* Skip all CPUs not part of this coregroup */ 1550 if (coregroup_id == cpu_to_coregroup_id(i)) { 1551 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); 1552 cpumask_andnot(*mask, *mask, submask_fn(i)); 1553 } else { 1554 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); 1555 } 1556 } 1557 } 1558 1559 static void add_cpu_to_masks(int cpu) 1560 { 1561 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1562 int first_thread = cpu_first_thread_sibling(cpu); 1563 cpumask_var_t mask; 1564 int chip_id = -1; 1565 bool ret; 1566 int i; 1567 1568 /* 1569 * This CPU will not be in the online mask yet so we need to manually 1570 * add it to its own thread sibling mask. 1571 */ 1572 map_cpu_to_node(cpu, cpu_to_node(cpu)); 1573 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1574 cpumask_set_cpu(cpu, cpu_core_mask(cpu)); 1575 1576 for (i = first_thread; i < first_thread + threads_per_core; i++) 1577 if (cpu_online(i)) 1578 set_cpus_related(i, cpu, cpu_sibling_mask); 1579 1580 add_cpu_to_smallcore_masks(cpu); 1581 1582 /* In CPU-hotplug path, hence use GFP_ATOMIC */ 1583 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); 1584 update_mask_by_l2(cpu, &mask); 1585 1586 if (has_coregroup_support()) 1587 update_coregroup_mask(cpu, &mask); 1588 1589 if (chip_id_lookup_table && ret) 1590 chip_id = cpu_to_chip_id(cpu); 1591 1592 if (shared_caches) 1593 submask_fn = cpu_l2_cache_mask; 1594 1595 /* Update core_mask with all the CPUs that are part of submask */ 1596 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); 1597 1598 /* Skip all CPUs already part of current CPU core mask */ 1599 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); 1600 1601 /* If chip_id is -1; limit the cpu_core_mask to within PKG */ 1602 if (chip_id == -1) 1603 cpumask_and(mask, mask, cpu_cpu_mask(cpu)); 1604 1605 for_each_cpu(i, mask) { 1606 if (chip_id == cpu_to_chip_id(i)) { 1607 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); 1608 cpumask_andnot(mask, mask, submask_fn(i)); 1609 } else { 1610 cpumask_andnot(mask, mask, cpu_core_mask(i)); 1611 } 1612 } 1613 1614 free_cpumask_var(mask); 1615 } 1616 1617 /* Activate a secondary processor. */ 1618 __no_stack_protector 1619 void start_secondary(void *unused) 1620 { 1621 unsigned int cpu = raw_smp_processor_id(); 1622 1623 /* PPC64 calls setup_kup() in early_setup_secondary() */ 1624 if (IS_ENABLED(CONFIG_PPC32)) 1625 setup_kup(); 1626 1627 mmgrab_lazy_tlb(&init_mm); 1628 current->active_mm = &init_mm; 1629 VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm))); 1630 cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); 1631 inc_mm_active_cpus(&init_mm); 1632 1633 smp_store_cpu_info(cpu); 1634 set_dec(tb_ticks_per_jiffy); 1635 rcutree_report_cpu_starting(cpu); 1636 cpu_callin_map[cpu] = 1; 1637 1638 if (smp_ops->setup_cpu) 1639 smp_ops->setup_cpu(cpu); 1640 if (smp_ops->take_timebase) 1641 smp_ops->take_timebase(); 1642 1643 secondary_cpu_time_init(); 1644 1645 #ifdef CONFIG_PPC64 1646 if (system_state == SYSTEM_RUNNING) 1647 vdso_data->processorCount++; 1648 1649 vdso_getcpu_init(); 1650 #endif 1651 set_numa_node(numa_cpu_lookup_table[cpu]); 1652 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1653 1654 /* Update topology CPU masks */ 1655 add_cpu_to_masks(cpu); 1656 1657 /* 1658 * Check for any shared caches. Note that this must be done on a 1659 * per-core basis because one core in the pair might be disabled. 1660 */ 1661 if (!shared_caches) { 1662 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1663 struct cpumask *mask = cpu_l2_cache_mask(cpu); 1664 1665 if (has_big_cores) 1666 sibling_mask = cpu_smallcore_mask; 1667 1668 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) 1669 shared_caches = true; 1670 } 1671 1672 smp_wmb(); 1673 notify_cpu_starting(cpu); 1674 set_cpu_online(cpu, true); 1675 1676 boot_init_stack_canary(); 1677 1678 local_irq_enable(); 1679 1680 /* We can enable ftrace for secondary cpus now */ 1681 this_cpu_enable_ftrace(); 1682 1683 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1684 1685 BUG(); 1686 } 1687 1688 static struct sched_domain_topology_level powerpc_topology[6]; 1689 1690 static void __init build_sched_topology(void) 1691 { 1692 int i = 0; 1693 1694 if (is_shared_processor() && has_big_cores) 1695 static_branch_enable(&splpar_asym_pack); 1696 1697 #ifdef CONFIG_SCHED_SMT 1698 if (has_big_cores) { 1699 pr_info("Big cores detected but using small core scheduling\n"); 1700 powerpc_topology[i++] = (struct sched_domain_topology_level){ 1701 smallcore_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) 1702 }; 1703 } else { 1704 powerpc_topology[i++] = (struct sched_domain_topology_level){ 1705 cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) 1706 }; 1707 } 1708 #endif 1709 if (shared_caches) { 1710 powerpc_topology[i++] = (struct sched_domain_topology_level){ 1711 shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) 1712 }; 1713 } 1714 if (has_coregroup_support()) { 1715 powerpc_topology[i++] = (struct sched_domain_topology_level){ 1716 cpu_mc_mask, powerpc_shared_proc_flags, SD_INIT_NAME(MC) 1717 }; 1718 } 1719 powerpc_topology[i++] = (struct sched_domain_topology_level){ 1720 cpu_cpu_mask, powerpc_shared_proc_flags, SD_INIT_NAME(PKG) 1721 }; 1722 1723 /* There must be one trailing NULL entry left. */ 1724 BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1); 1725 1726 set_sched_topology(powerpc_topology); 1727 } 1728 1729 void __init smp_cpus_done(unsigned int max_cpus) 1730 { 1731 /* 1732 * We are running pinned to the boot CPU, see rest_init(). 1733 */ 1734 if (smp_ops && smp_ops->setup_cpu) 1735 smp_ops->setup_cpu(boot_cpuid); 1736 1737 if (smp_ops && smp_ops->bringup_done) 1738 smp_ops->bringup_done(); 1739 1740 dump_numa_cpu_topology(); 1741 build_sched_topology(); 1742 } 1743 1744 /* 1745 * For asym packing, by default lower numbered CPU has higher priority. 1746 * On shared processors, pack to lower numbered core. However avoid moving 1747 * between thread_groups within the same core. 1748 */ 1749 int arch_asym_cpu_priority(int cpu) 1750 { 1751 if (static_branch_unlikely(&splpar_asym_pack)) 1752 return -cpu / threads_per_core; 1753 1754 return -cpu; 1755 } 1756 1757 #ifdef CONFIG_HOTPLUG_CPU 1758 int __cpu_disable(void) 1759 { 1760 int cpu = smp_processor_id(); 1761 int err; 1762 1763 if (!smp_ops->cpu_disable) 1764 return -ENOSYS; 1765 1766 this_cpu_disable_ftrace(); 1767 1768 err = smp_ops->cpu_disable(); 1769 if (err) 1770 return err; 1771 1772 /* Update sibling maps */ 1773 remove_cpu_from_masks(cpu); 1774 1775 return 0; 1776 } 1777 1778 void __cpu_die(unsigned int cpu) 1779 { 1780 /* 1781 * This could perhaps be a generic call in idlea_task_dead(), but 1782 * that requires testing from all archs, so first put it here to 1783 */ 1784 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm))); 1785 dec_mm_active_cpus(&init_mm); 1786 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); 1787 1788 if (smp_ops->cpu_die) 1789 smp_ops->cpu_die(cpu); 1790 } 1791 1792 void __noreturn arch_cpu_idle_dead(void) 1793 { 1794 /* 1795 * Disable on the down path. This will be re-enabled by 1796 * start_secondary() via start_secondary_resume() below 1797 */ 1798 this_cpu_disable_ftrace(); 1799 1800 if (smp_ops->cpu_offline_self) 1801 smp_ops->cpu_offline_self(); 1802 1803 /* If we return, we re-enter start_secondary */ 1804 start_secondary_resume(); 1805 } 1806 1807 #endif 1808