1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 #include <linux/pgtable.h> 37 #include <linux/clockchips.h> 38 39 #include <asm/ptrace.h> 40 #include <linux/atomic.h> 41 #include <asm/irq.h> 42 #include <asm/hw_irq.h> 43 #include <asm/kvm_ppc.h> 44 #include <asm/dbell.h> 45 #include <asm/page.h> 46 #include <asm/prom.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/cputhreads.h> 51 #include <asm/cputable.h> 52 #include <asm/mpic.h> 53 #include <asm/vdso_datapage.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/paca.h> 56 #endif 57 #include <asm/vdso.h> 58 #include <asm/debug.h> 59 #include <asm/kexec.h> 60 #include <asm/asm-prototypes.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/ftrace.h> 63 #include <asm/kup.h> 64 65 #ifdef DEBUG 66 #include <asm/udbg.h> 67 #define DBG(fmt...) udbg_printf(fmt) 68 #else 69 #define DBG(fmt...) 70 #endif 71 72 #ifdef CONFIG_HOTPLUG_CPU 73 /* State of each CPU during hotplug phases */ 74 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 75 #endif 76 77 struct task_struct *secondary_current; 78 bool has_big_cores; 79 bool coregroup_enabled; 80 bool thread_group_shares_l2; 81 82 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 83 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 84 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 85 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 86 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); 87 88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 89 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 90 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 91 EXPORT_SYMBOL_GPL(has_big_cores); 92 93 enum { 94 #ifdef CONFIG_SCHED_SMT 95 smt_idx, 96 #endif 97 cache_idx, 98 mc_idx, 99 die_idx, 100 }; 101 102 #define MAX_THREAD_LIST_SIZE 8 103 #define THREAD_GROUP_SHARE_L1 1 104 #define THREAD_GROUP_SHARE_L2 2 105 struct thread_groups { 106 unsigned int property; 107 unsigned int nr_groups; 108 unsigned int threads_per_group; 109 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 110 }; 111 112 /* Maximum number of properties that groups of threads within a core can share */ 113 #define MAX_THREAD_GROUP_PROPERTIES 2 114 115 struct thread_groups_list { 116 unsigned int nr_properties; 117 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; 118 }; 119 120 static struct thread_groups_list tgl[NR_CPUS] __initdata; 121 /* 122 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to 123 * the set its siblings that share the L1-cache. 124 */ 125 static DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); 126 127 /* 128 * On some big-cores system, thread_group_l2_cache_map for each CPU 129 * corresponds to the set its siblings within the core that share the 130 * L2-cache. 131 */ 132 static DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); 133 134 /* SMP operations for this machine */ 135 struct smp_ops_t *smp_ops; 136 137 /* Can't be static due to PowerMac hackery */ 138 volatile unsigned int cpu_callin_map[NR_CPUS]; 139 140 int smt_enabled_at_boot = 1; 141 142 /* 143 * Returns 1 if the specified cpu should be brought up during boot. 144 * Used to inhibit booting threads if they've been disabled or 145 * limited on the command line 146 */ 147 int smp_generic_cpu_bootable(unsigned int nr) 148 { 149 /* Special case - we inhibit secondary thread startup 150 * during boot if the user requests it. 151 */ 152 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 153 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 154 return 0; 155 if (smt_enabled_at_boot 156 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 157 return 0; 158 } 159 160 return 1; 161 } 162 163 164 #ifdef CONFIG_PPC64 165 int smp_generic_kick_cpu(int nr) 166 { 167 if (nr < 0 || nr >= nr_cpu_ids) 168 return -EINVAL; 169 170 /* 171 * The processor is currently spinning, waiting for the 172 * cpu_start field to become non-zero After we set cpu_start, 173 * the processor will continue on to secondary_start 174 */ 175 if (!paca_ptrs[nr]->cpu_start) { 176 paca_ptrs[nr]->cpu_start = 1; 177 smp_mb(); 178 return 0; 179 } 180 181 #ifdef CONFIG_HOTPLUG_CPU 182 /* 183 * Ok it's not there, so it might be soft-unplugged, let's 184 * try to bring it back 185 */ 186 generic_set_cpu_up(nr); 187 smp_wmb(); 188 smp_send_reschedule(nr); 189 #endif /* CONFIG_HOTPLUG_CPU */ 190 191 return 0; 192 } 193 #endif /* CONFIG_PPC64 */ 194 195 static irqreturn_t call_function_action(int irq, void *data) 196 { 197 generic_smp_call_function_interrupt(); 198 return IRQ_HANDLED; 199 } 200 201 static irqreturn_t reschedule_action(int irq, void *data) 202 { 203 scheduler_ipi(); 204 return IRQ_HANDLED; 205 } 206 207 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 208 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 209 { 210 timer_broadcast_interrupt(); 211 return IRQ_HANDLED; 212 } 213 #endif 214 215 #ifdef CONFIG_NMI_IPI 216 static irqreturn_t nmi_ipi_action(int irq, void *data) 217 { 218 smp_handle_nmi_ipi(get_irq_regs()); 219 return IRQ_HANDLED; 220 } 221 #endif 222 223 static irq_handler_t smp_ipi_action[] = { 224 [PPC_MSG_CALL_FUNCTION] = call_function_action, 225 [PPC_MSG_RESCHEDULE] = reschedule_action, 226 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 227 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 228 #endif 229 #ifdef CONFIG_NMI_IPI 230 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 231 #endif 232 }; 233 234 /* 235 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 236 * than going through the call function infrastructure, and strongly 237 * serialized, so it is more appropriate for debugging. 238 */ 239 const char *smp_ipi_name[] = { 240 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 241 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 243 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 244 #endif 245 #ifdef CONFIG_NMI_IPI 246 [PPC_MSG_NMI_IPI] = "nmi ipi", 247 #endif 248 }; 249 250 /* optional function to request ipi, for controllers with >= 4 ipis */ 251 int smp_request_message_ipi(int virq, int msg) 252 { 253 int err; 254 255 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 256 return -EINVAL; 257 #ifndef CONFIG_NMI_IPI 258 if (msg == PPC_MSG_NMI_IPI) 259 return 1; 260 #endif 261 262 err = request_irq(virq, smp_ipi_action[msg], 263 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 264 smp_ipi_name[msg], NULL); 265 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 266 virq, smp_ipi_name[msg], err); 267 268 return err; 269 } 270 271 #ifdef CONFIG_PPC_SMP_MUXED_IPI 272 struct cpu_messages { 273 long messages; /* current messages */ 274 }; 275 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 276 277 void smp_muxed_ipi_set_message(int cpu, int msg) 278 { 279 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 280 char *message = (char *)&info->messages; 281 282 /* 283 * Order previous accesses before accesses in the IPI handler. 284 */ 285 smp_mb(); 286 message[msg] = 1; 287 } 288 289 void smp_muxed_ipi_message_pass(int cpu, int msg) 290 { 291 smp_muxed_ipi_set_message(cpu, msg); 292 293 /* 294 * cause_ipi functions are required to include a full barrier 295 * before doing whatever causes the IPI. 296 */ 297 smp_ops->cause_ipi(cpu); 298 } 299 300 #ifdef __BIG_ENDIAN__ 301 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 302 #else 303 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 304 #endif 305 306 irqreturn_t smp_ipi_demux(void) 307 { 308 mb(); /* order any irq clear */ 309 310 return smp_ipi_demux_relaxed(); 311 } 312 313 /* sync-free variant. Callers should ensure synchronization */ 314 irqreturn_t smp_ipi_demux_relaxed(void) 315 { 316 struct cpu_messages *info; 317 unsigned long all; 318 319 info = this_cpu_ptr(&ipi_message); 320 do { 321 all = xchg(&info->messages, 0); 322 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 323 /* 324 * Must check for PPC_MSG_RM_HOST_ACTION messages 325 * before PPC_MSG_CALL_FUNCTION messages because when 326 * a VM is destroyed, we call kick_all_cpus_sync() 327 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 328 * messages have completed before we free any VCPUs. 329 */ 330 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 331 kvmppc_xics_ipi_action(); 332 #endif 333 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 334 generic_smp_call_function_interrupt(); 335 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 336 scheduler_ipi(); 337 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 338 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 339 timer_broadcast_interrupt(); 340 #endif 341 #ifdef CONFIG_NMI_IPI 342 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 343 nmi_ipi_action(0, NULL); 344 #endif 345 } while (info->messages); 346 347 return IRQ_HANDLED; 348 } 349 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 350 351 static inline void do_message_pass(int cpu, int msg) 352 { 353 if (smp_ops->message_pass) 354 smp_ops->message_pass(cpu, msg); 355 #ifdef CONFIG_PPC_SMP_MUXED_IPI 356 else 357 smp_muxed_ipi_message_pass(cpu, msg); 358 #endif 359 } 360 361 void smp_send_reschedule(int cpu) 362 { 363 if (likely(smp_ops)) 364 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 365 } 366 EXPORT_SYMBOL_GPL(smp_send_reschedule); 367 368 void arch_send_call_function_single_ipi(int cpu) 369 { 370 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 371 } 372 373 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 374 { 375 unsigned int cpu; 376 377 for_each_cpu(cpu, mask) 378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 379 } 380 381 #ifdef CONFIG_NMI_IPI 382 383 /* 384 * "NMI IPI" system. 385 * 386 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 387 * a running system. They can be used for crash, debug, halt/reboot, etc. 388 * 389 * The IPI call waits with interrupts disabled until all targets enter the 390 * NMI handler, then returns. Subsequent IPIs can be issued before targets 391 * have returned from their handlers, so there is no guarantee about 392 * concurrency or re-entrancy. 393 * 394 * A new NMI can be issued before all targets exit the handler. 395 * 396 * The IPI call may time out without all targets entering the NMI handler. 397 * In that case, there is some logic to recover (and ignore subsequent 398 * NMI interrupts that may eventually be raised), but the platform interrupt 399 * handler may not be able to distinguish this from other exception causes, 400 * which may cause a crash. 401 */ 402 403 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 404 static struct cpumask nmi_ipi_pending_mask; 405 static bool nmi_ipi_busy = false; 406 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 407 408 static void nmi_ipi_lock_start(unsigned long *flags) 409 { 410 raw_local_irq_save(*flags); 411 hard_irq_disable(); 412 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 413 raw_local_irq_restore(*flags); 414 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 415 raw_local_irq_save(*flags); 416 hard_irq_disable(); 417 } 418 } 419 420 static void nmi_ipi_lock(void) 421 { 422 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 423 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 424 } 425 426 static void nmi_ipi_unlock(void) 427 { 428 smp_mb(); 429 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); 430 atomic_set(&__nmi_ipi_lock, 0); 431 } 432 433 static void nmi_ipi_unlock_end(unsigned long *flags) 434 { 435 nmi_ipi_unlock(); 436 raw_local_irq_restore(*flags); 437 } 438 439 /* 440 * Platform NMI handler calls this to ack 441 */ 442 int smp_handle_nmi_ipi(struct pt_regs *regs) 443 { 444 void (*fn)(struct pt_regs *) = NULL; 445 unsigned long flags; 446 int me = raw_smp_processor_id(); 447 int ret = 0; 448 449 /* 450 * Unexpected NMIs are possible here because the interrupt may not 451 * be able to distinguish NMI IPIs from other types of NMIs, or 452 * because the caller may have timed out. 453 */ 454 nmi_ipi_lock_start(&flags); 455 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 456 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 457 fn = READ_ONCE(nmi_ipi_function); 458 WARN_ON_ONCE(!fn); 459 ret = 1; 460 } 461 nmi_ipi_unlock_end(&flags); 462 463 if (fn) 464 fn(regs); 465 466 return ret; 467 } 468 469 static void do_smp_send_nmi_ipi(int cpu, bool safe) 470 { 471 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 472 return; 473 474 if (cpu >= 0) { 475 do_message_pass(cpu, PPC_MSG_NMI_IPI); 476 } else { 477 int c; 478 479 for_each_online_cpu(c) { 480 if (c == raw_smp_processor_id()) 481 continue; 482 do_message_pass(c, PPC_MSG_NMI_IPI); 483 } 484 } 485 } 486 487 /* 488 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 489 * - fn is the target callback function. 490 * - delay_us > 0 is the delay before giving up waiting for targets to 491 * begin executing the handler, == 0 specifies indefinite delay. 492 */ 493 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 494 u64 delay_us, bool safe) 495 { 496 unsigned long flags; 497 int me = raw_smp_processor_id(); 498 int ret = 1; 499 500 BUG_ON(cpu == me); 501 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 502 503 if (unlikely(!smp_ops)) 504 return 0; 505 506 nmi_ipi_lock_start(&flags); 507 while (nmi_ipi_busy) { 508 nmi_ipi_unlock_end(&flags); 509 spin_until_cond(!nmi_ipi_busy); 510 nmi_ipi_lock_start(&flags); 511 } 512 nmi_ipi_busy = true; 513 nmi_ipi_function = fn; 514 515 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 516 517 if (cpu < 0) { 518 /* ALL_OTHERS */ 519 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 520 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 521 } else { 522 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 523 } 524 525 nmi_ipi_unlock(); 526 527 /* Interrupts remain hard disabled */ 528 529 do_smp_send_nmi_ipi(cpu, safe); 530 531 nmi_ipi_lock(); 532 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 533 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 534 nmi_ipi_unlock(); 535 udelay(1); 536 nmi_ipi_lock(); 537 if (delay_us) { 538 delay_us--; 539 if (!delay_us) 540 break; 541 } 542 } 543 544 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 545 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 546 ret = 0; 547 cpumask_clear(&nmi_ipi_pending_mask); 548 } 549 550 nmi_ipi_function = NULL; 551 nmi_ipi_busy = false; 552 553 nmi_ipi_unlock_end(&flags); 554 555 return ret; 556 } 557 558 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 559 { 560 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 561 } 562 563 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 564 { 565 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 566 } 567 #endif /* CONFIG_NMI_IPI */ 568 569 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 570 void tick_broadcast(const struct cpumask *mask) 571 { 572 unsigned int cpu; 573 574 for_each_cpu(cpu, mask) 575 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 576 } 577 #endif 578 579 #ifdef CONFIG_DEBUGGER 580 static void debugger_ipi_callback(struct pt_regs *regs) 581 { 582 debugger_ipi(regs); 583 } 584 585 void smp_send_debugger_break(void) 586 { 587 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 588 } 589 #endif 590 591 #ifdef CONFIG_KEXEC_CORE 592 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 593 { 594 int cpu; 595 596 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 597 if (kdump_in_progress() && crash_wake_offline) { 598 for_each_present_cpu(cpu) { 599 if (cpu_online(cpu)) 600 continue; 601 /* 602 * crash_ipi_callback will wait for 603 * all cpus, including offline CPUs. 604 * We don't care about nmi_ipi_function. 605 * Offline cpus will jump straight into 606 * crash_ipi_callback, we can skip the 607 * entire NMI dance and waiting for 608 * cpus to clear pending mask, etc. 609 */ 610 do_smp_send_nmi_ipi(cpu, false); 611 } 612 } 613 } 614 #endif 615 616 #ifdef CONFIG_NMI_IPI 617 static void nmi_stop_this_cpu(struct pt_regs *regs) 618 { 619 /* 620 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 621 */ 622 spin_begin(); 623 while (1) 624 spin_cpu_relax(); 625 } 626 627 void smp_send_stop(void) 628 { 629 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 630 } 631 632 #else /* CONFIG_NMI_IPI */ 633 634 static void stop_this_cpu(void *dummy) 635 { 636 hard_irq_disable(); 637 spin_begin(); 638 while (1) 639 spin_cpu_relax(); 640 } 641 642 void smp_send_stop(void) 643 { 644 static bool stopped = false; 645 646 /* 647 * Prevent waiting on csd lock from a previous smp_send_stop. 648 * This is racy, but in general callers try to do the right 649 * thing and only fire off one smp_send_stop (e.g., see 650 * kernel/panic.c) 651 */ 652 if (stopped) 653 return; 654 655 stopped = true; 656 657 smp_call_function(stop_this_cpu, NULL, 0); 658 } 659 #endif /* CONFIG_NMI_IPI */ 660 661 struct task_struct *current_set[NR_CPUS]; 662 663 static void smp_store_cpu_info(int id) 664 { 665 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 666 #ifdef CONFIG_PPC_FSL_BOOK3E 667 per_cpu(next_tlbcam_idx, id) 668 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 669 #endif 670 } 671 672 /* 673 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 674 * rather than just passing around the cpumask we pass around a function that 675 * returns the that cpumask for the given CPU. 676 */ 677 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 678 { 679 cpumask_set_cpu(i, get_cpumask(j)); 680 cpumask_set_cpu(j, get_cpumask(i)); 681 } 682 683 #ifdef CONFIG_HOTPLUG_CPU 684 static void set_cpus_unrelated(int i, int j, 685 struct cpumask *(*get_cpumask)(int)) 686 { 687 cpumask_clear_cpu(i, get_cpumask(j)); 688 cpumask_clear_cpu(j, get_cpumask(i)); 689 } 690 #endif 691 692 /* 693 * Extends set_cpus_related. Instead of setting one CPU at a time in 694 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. 695 */ 696 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), 697 struct cpumask *(*dstmask)(int)) 698 { 699 struct cpumask *mask; 700 int k; 701 702 mask = srcmask(j); 703 for_each_cpu(k, srcmask(i)) 704 cpumask_or(dstmask(k), dstmask(k), mask); 705 706 if (i == j) 707 return; 708 709 mask = srcmask(i); 710 for_each_cpu(k, srcmask(j)) 711 cpumask_or(dstmask(k), dstmask(k), mask); 712 } 713 714 /* 715 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 716 * property for the CPU device node @dn and stores 717 * the parsed output in the thread_groups_list 718 * structure @tglp. 719 * 720 * @dn: The device node of the CPU device. 721 * @tglp: Pointer to a thread group list structure into which the parsed 722 * output of "ibm,thread-groups" is stored. 723 * 724 * ibm,thread-groups[0..N-1] array defines which group of threads in 725 * the CPU-device node can be grouped together based on the property. 726 * 727 * This array can represent thread groupings for multiple properties. 728 * 729 * ibm,thread-groups[i + 0] tells us the property based on which the 730 * threads are being grouped together. If this value is 1, it implies 731 * that the threads in the same group share L1, translation cache. If 732 * the value is 2, it implies that the threads in the same group share 733 * the same L2 cache. 734 * 735 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the 736 * property ibm,thread-groups[i] 737 * 738 * ibm,thread-groups[i+2] tells us the number of threads in each such 739 * group. 740 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, 741 * 742 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by 743 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 744 * the grouping. 745 * 746 * Example: 747 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] 748 * This can be decomposed up into two consecutive arrays: 749 * a) [1,2,4,8,10,12,14,9,11,13,15] 750 * b) [2,2,4,8,10,12,14,9,11,13,15] 751 * 752 * where in, 753 * 754 * a) provides information of Property "1" being shared by "2" groups, 755 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of 756 * the first group is {8,10,12,14} and the 757 * "ibm,ppc-interrupt-server#s" of the second group is 758 * {9,11,13,15}. Property "1" is indicative of the thread in the 759 * group sharing L1 cache, translation cache and Instruction Data 760 * flow. 761 * 762 * b) provides information of Property "2" being shared by "2" groups, 763 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of 764 * the first group is {8,10,12,14} and the 765 * "ibm,ppc-interrupt-server#s" of the second group is 766 * {9,11,13,15}. Property "2" indicates that the threads in each 767 * group share the L2-cache. 768 * 769 * Returns 0 on success, -EINVAL if the property does not exist, 770 * -ENODATA if property does not have a value, and -EOVERFLOW if the 771 * property data isn't large enough. 772 */ 773 static int parse_thread_groups(struct device_node *dn, 774 struct thread_groups_list *tglp) 775 { 776 unsigned int property_idx = 0; 777 u32 *thread_group_array; 778 size_t total_threads; 779 int ret = 0, count; 780 u32 *thread_list; 781 int i = 0; 782 783 count = of_property_count_u32_elems(dn, "ibm,thread-groups"); 784 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); 785 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 786 thread_group_array, count); 787 if (ret) 788 goto out_free; 789 790 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { 791 int j; 792 struct thread_groups *tg = &tglp->property_tgs[property_idx++]; 793 794 tg->property = thread_group_array[i]; 795 tg->nr_groups = thread_group_array[i + 1]; 796 tg->threads_per_group = thread_group_array[i + 2]; 797 total_threads = tg->nr_groups * tg->threads_per_group; 798 799 thread_list = &thread_group_array[i + 3]; 800 801 for (j = 0; j < total_threads; j++) 802 tg->thread_list[j] = thread_list[j]; 803 i = i + 3 + total_threads; 804 } 805 806 tglp->nr_properties = property_idx; 807 808 out_free: 809 kfree(thread_group_array); 810 return ret; 811 } 812 813 /* 814 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 815 * that @cpu belongs to. 816 * 817 * @cpu : The logical CPU whose thread group is being searched. 818 * @tg : The thread-group structure of the CPU node which @cpu belongs 819 * to. 820 * 821 * Returns the index to tg->thread_list that points to the the start 822 * of the thread_group that @cpu belongs to. 823 * 824 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 825 * tg->thread_list. 826 */ 827 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 828 { 829 int hw_cpu_id = get_hard_smp_processor_id(cpu); 830 int i, j; 831 832 for (i = 0; i < tg->nr_groups; i++) { 833 int group_start = i * tg->threads_per_group; 834 835 for (j = 0; j < tg->threads_per_group; j++) { 836 int idx = group_start + j; 837 838 if (tg->thread_list[idx] == hw_cpu_id) 839 return group_start; 840 } 841 } 842 843 return -1; 844 } 845 846 static struct thread_groups *__init get_thread_groups(int cpu, 847 int group_property, 848 int *err) 849 { 850 struct device_node *dn = of_get_cpu_node(cpu, NULL); 851 struct thread_groups_list *cpu_tgl = &tgl[cpu]; 852 struct thread_groups *tg = NULL; 853 int i; 854 *err = 0; 855 856 if (!dn) { 857 *err = -ENODATA; 858 return NULL; 859 } 860 861 if (!cpu_tgl->nr_properties) { 862 *err = parse_thread_groups(dn, cpu_tgl); 863 if (*err) 864 goto out; 865 } 866 867 for (i = 0; i < cpu_tgl->nr_properties; i++) { 868 if (cpu_tgl->property_tgs[i].property == group_property) { 869 tg = &cpu_tgl->property_tgs[i]; 870 break; 871 } 872 } 873 874 if (!tg) 875 *err = -EINVAL; 876 out: 877 of_node_put(dn); 878 return tg; 879 } 880 881 static int __init init_thread_group_cache_map(int cpu, int cache_property) 882 883 { 884 int first_thread = cpu_first_thread_sibling(cpu); 885 int i, cpu_group_start = -1, err = 0; 886 struct thread_groups *tg = NULL; 887 cpumask_var_t *mask = NULL; 888 889 if (cache_property != THREAD_GROUP_SHARE_L1 && 890 cache_property != THREAD_GROUP_SHARE_L2) 891 return -EINVAL; 892 893 tg = get_thread_groups(cpu, cache_property, &err); 894 if (!tg) 895 return err; 896 897 cpu_group_start = get_cpu_thread_group_start(cpu, tg); 898 899 if (unlikely(cpu_group_start == -1)) { 900 WARN_ON_ONCE(1); 901 return -ENODATA; 902 } 903 904 if (cache_property == THREAD_GROUP_SHARE_L1) 905 mask = &per_cpu(thread_group_l1_cache_map, cpu); 906 else if (cache_property == THREAD_GROUP_SHARE_L2) 907 mask = &per_cpu(thread_group_l2_cache_map, cpu); 908 909 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); 910 911 for (i = first_thread; i < first_thread + threads_per_core; i++) { 912 int i_group_start = get_cpu_thread_group_start(i, tg); 913 914 if (unlikely(i_group_start == -1)) { 915 WARN_ON_ONCE(1); 916 return -ENODATA; 917 } 918 919 if (i_group_start == cpu_group_start) 920 cpumask_set_cpu(i, *mask); 921 } 922 923 return 0; 924 } 925 926 static bool shared_caches; 927 928 #ifdef CONFIG_SCHED_SMT 929 /* cpumask of CPUs with asymmetric SMT dependency */ 930 static int powerpc_smt_flags(void) 931 { 932 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 933 934 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 935 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 936 flags |= SD_ASYM_PACKING; 937 } 938 return flags; 939 } 940 #endif 941 942 /* 943 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 944 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 945 * since the migrated task remains cache hot. We want to take advantage of this 946 * at the scheduler level so an extra topology level is required. 947 */ 948 static int powerpc_shared_cache_flags(void) 949 { 950 return SD_SHARE_PKG_RESOURCES; 951 } 952 953 /* 954 * We can't just pass cpu_l2_cache_mask() directly because 955 * returns a non-const pointer and the compiler barfs on that. 956 */ 957 static const struct cpumask *shared_cache_mask(int cpu) 958 { 959 return per_cpu(cpu_l2_cache_map, cpu); 960 } 961 962 #ifdef CONFIG_SCHED_SMT 963 static const struct cpumask *smallcore_smt_mask(int cpu) 964 { 965 return cpu_smallcore_mask(cpu); 966 } 967 #endif 968 969 static struct cpumask *cpu_coregroup_mask(int cpu) 970 { 971 return per_cpu(cpu_coregroup_map, cpu); 972 } 973 974 static bool has_coregroup_support(void) 975 { 976 return coregroup_enabled; 977 } 978 979 static const struct cpumask *cpu_mc_mask(int cpu) 980 { 981 return cpu_coregroup_mask(cpu); 982 } 983 984 static struct sched_domain_topology_level powerpc_topology[] = { 985 #ifdef CONFIG_SCHED_SMT 986 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 987 #endif 988 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 989 { cpu_mc_mask, SD_INIT_NAME(MC) }, 990 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 991 { NULL, }, 992 }; 993 994 static int __init init_big_cores(void) 995 { 996 int cpu; 997 998 for_each_possible_cpu(cpu) { 999 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); 1000 1001 if (err) 1002 return err; 1003 1004 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 1005 GFP_KERNEL, 1006 cpu_to_node(cpu)); 1007 } 1008 1009 has_big_cores = true; 1010 1011 for_each_possible_cpu(cpu) { 1012 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2); 1013 1014 if (err) 1015 return err; 1016 } 1017 1018 thread_group_shares_l2 = true; 1019 pr_debug("L2 cache only shared by the threads in the small core\n"); 1020 return 0; 1021 } 1022 1023 void __init smp_prepare_cpus(unsigned int max_cpus) 1024 { 1025 unsigned int cpu; 1026 1027 DBG("smp_prepare_cpus\n"); 1028 1029 /* 1030 * setup_cpu may need to be called on the boot cpu. We havent 1031 * spun any cpus up but lets be paranoid. 1032 */ 1033 BUG_ON(boot_cpuid != smp_processor_id()); 1034 1035 /* Fixup boot cpu */ 1036 smp_store_cpu_info(boot_cpuid); 1037 cpu_callin_map[boot_cpuid] = 1; 1038 1039 for_each_possible_cpu(cpu) { 1040 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 1041 GFP_KERNEL, cpu_to_node(cpu)); 1042 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 1043 GFP_KERNEL, cpu_to_node(cpu)); 1044 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 1045 GFP_KERNEL, cpu_to_node(cpu)); 1046 if (has_coregroup_support()) 1047 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), 1048 GFP_KERNEL, cpu_to_node(cpu)); 1049 1050 #ifdef CONFIG_NEED_MULTIPLE_NODES 1051 /* 1052 * numa_node_id() works after this. 1053 */ 1054 if (cpu_present(cpu)) { 1055 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 1056 set_cpu_numa_mem(cpu, 1057 local_memory_node(numa_cpu_lookup_table[cpu])); 1058 } 1059 #endif 1060 } 1061 1062 /* Init the cpumasks so the boot CPU is related to itself */ 1063 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 1064 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 1065 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 1066 1067 if (has_coregroup_support()) 1068 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); 1069 1070 init_big_cores(); 1071 if (has_big_cores) { 1072 cpumask_set_cpu(boot_cpuid, 1073 cpu_smallcore_mask(boot_cpuid)); 1074 } 1075 1076 if (cpu_to_chip_id(boot_cpuid) != -1) { 1077 int idx = num_possible_cpus() / threads_per_core; 1078 1079 /* 1080 * All threads of a core will all belong to the same core, 1081 * chip_id_lookup_table will have one entry per core. 1082 * Assumption: if boot_cpuid doesn't have a chip-id, then no 1083 * other CPUs, will also not have chip-id. 1084 */ 1085 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); 1086 if (chip_id_lookup_table) 1087 memset(chip_id_lookup_table, -1, sizeof(int) * idx); 1088 } 1089 1090 if (smp_ops && smp_ops->probe) 1091 smp_ops->probe(); 1092 } 1093 1094 void smp_prepare_boot_cpu(void) 1095 { 1096 BUG_ON(smp_processor_id() != boot_cpuid); 1097 #ifdef CONFIG_PPC64 1098 paca_ptrs[boot_cpuid]->__current = current; 1099 #endif 1100 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 1101 current_set[boot_cpuid] = current; 1102 } 1103 1104 #ifdef CONFIG_HOTPLUG_CPU 1105 1106 int generic_cpu_disable(void) 1107 { 1108 unsigned int cpu = smp_processor_id(); 1109 1110 if (cpu == boot_cpuid) 1111 return -EBUSY; 1112 1113 set_cpu_online(cpu, false); 1114 #ifdef CONFIG_PPC64 1115 vdso_data->processorCount--; 1116 #endif 1117 /* Update affinity of all IRQs previously aimed at this CPU */ 1118 irq_migrate_all_off_this_cpu(); 1119 1120 /* 1121 * Depending on the details of the interrupt controller, it's possible 1122 * that one of the interrupts we just migrated away from this CPU is 1123 * actually already pending on this CPU. If we leave it in that state 1124 * the interrupt will never be EOI'ed, and will never fire again. So 1125 * temporarily enable interrupts here, to allow any pending interrupt to 1126 * be received (and EOI'ed), before we take this CPU offline. 1127 */ 1128 local_irq_enable(); 1129 mdelay(1); 1130 local_irq_disable(); 1131 1132 return 0; 1133 } 1134 1135 void generic_cpu_die(unsigned int cpu) 1136 { 1137 int i; 1138 1139 for (i = 0; i < 100; i++) { 1140 smp_rmb(); 1141 if (is_cpu_dead(cpu)) 1142 return; 1143 msleep(100); 1144 } 1145 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 1146 } 1147 1148 void generic_set_cpu_dead(unsigned int cpu) 1149 { 1150 per_cpu(cpu_state, cpu) = CPU_DEAD; 1151 } 1152 1153 /* 1154 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 1155 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 1156 * which makes the delay in generic_cpu_die() not happen. 1157 */ 1158 void generic_set_cpu_up(unsigned int cpu) 1159 { 1160 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 1161 } 1162 1163 int generic_check_cpu_restart(unsigned int cpu) 1164 { 1165 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 1166 } 1167 1168 int is_cpu_dead(unsigned int cpu) 1169 { 1170 return per_cpu(cpu_state, cpu) == CPU_DEAD; 1171 } 1172 1173 static bool secondaries_inhibited(void) 1174 { 1175 return kvm_hv_mode_active(); 1176 } 1177 1178 #else /* HOTPLUG_CPU */ 1179 1180 #define secondaries_inhibited() 0 1181 1182 #endif 1183 1184 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 1185 { 1186 #ifdef CONFIG_PPC64 1187 paca_ptrs[cpu]->__current = idle; 1188 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 1189 THREAD_SIZE - STACK_FRAME_OVERHEAD; 1190 #endif 1191 idle->cpu = cpu; 1192 secondary_current = current_set[cpu] = idle; 1193 } 1194 1195 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1196 { 1197 int rc, c; 1198 1199 /* 1200 * Don't allow secondary threads to come online if inhibited 1201 */ 1202 if (threads_per_core > 1 && secondaries_inhibited() && 1203 cpu_thread_in_subcore(cpu)) 1204 return -EBUSY; 1205 1206 if (smp_ops == NULL || 1207 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1208 return -EINVAL; 1209 1210 cpu_idle_thread_init(cpu, tidle); 1211 1212 /* 1213 * The platform might need to allocate resources prior to bringing 1214 * up the CPU 1215 */ 1216 if (smp_ops->prepare_cpu) { 1217 rc = smp_ops->prepare_cpu(cpu); 1218 if (rc) 1219 return rc; 1220 } 1221 1222 /* Make sure callin-map entry is 0 (can be leftover a CPU 1223 * hotplug 1224 */ 1225 cpu_callin_map[cpu] = 0; 1226 1227 /* The information for processor bringup must 1228 * be written out to main store before we release 1229 * the processor. 1230 */ 1231 smp_mb(); 1232 1233 /* wake up cpus */ 1234 DBG("smp: kicking cpu %d\n", cpu); 1235 rc = smp_ops->kick_cpu(cpu); 1236 if (rc) { 1237 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1238 return rc; 1239 } 1240 1241 /* 1242 * wait to see if the cpu made a callin (is actually up). 1243 * use this value that I found through experimentation. 1244 * -- Cort 1245 */ 1246 if (system_state < SYSTEM_RUNNING) 1247 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 1248 udelay(100); 1249 #ifdef CONFIG_HOTPLUG_CPU 1250 else 1251 /* 1252 * CPUs can take much longer to come up in the 1253 * hotplug case. Wait five seconds. 1254 */ 1255 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 1256 msleep(1); 1257 #endif 1258 1259 if (!cpu_callin_map[cpu]) { 1260 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1261 return -ENOENT; 1262 } 1263 1264 DBG("Processor %u found.\n", cpu); 1265 1266 if (smp_ops->give_timebase) 1267 smp_ops->give_timebase(); 1268 1269 /* Wait until cpu puts itself in the online & active maps */ 1270 spin_until_cond(cpu_online(cpu)); 1271 1272 return 0; 1273 } 1274 1275 /* Return the value of the reg property corresponding to the given 1276 * logical cpu. 1277 */ 1278 int cpu_to_core_id(int cpu) 1279 { 1280 struct device_node *np; 1281 const __be32 *reg; 1282 int id = -1; 1283 1284 np = of_get_cpu_node(cpu, NULL); 1285 if (!np) 1286 goto out; 1287 1288 reg = of_get_property(np, "reg", NULL); 1289 if (!reg) 1290 goto out; 1291 1292 id = be32_to_cpup(reg); 1293 out: 1294 of_node_put(np); 1295 return id; 1296 } 1297 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1298 1299 /* Helper routines for cpu to core mapping */ 1300 int cpu_core_index_of_thread(int cpu) 1301 { 1302 return cpu >> threads_shift; 1303 } 1304 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1305 1306 int cpu_first_thread_of_core(int core) 1307 { 1308 return core << threads_shift; 1309 } 1310 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1311 1312 /* Must be called when no change can occur to cpu_present_mask, 1313 * i.e. during cpu online or offline. 1314 */ 1315 static struct device_node *cpu_to_l2cache(int cpu) 1316 { 1317 struct device_node *np; 1318 struct device_node *cache; 1319 1320 if (!cpu_present(cpu)) 1321 return NULL; 1322 1323 np = of_get_cpu_node(cpu, NULL); 1324 if (np == NULL) 1325 return NULL; 1326 1327 cache = of_find_next_cache_node(np); 1328 1329 of_node_put(np); 1330 1331 return cache; 1332 } 1333 1334 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) 1335 { 1336 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1337 struct device_node *l2_cache, *np; 1338 int i; 1339 1340 if (has_big_cores) 1341 submask_fn = cpu_smallcore_mask; 1342 1343 /* 1344 * If the threads in a thread-group share L2 cache, then the 1345 * L2-mask can be obtained from thread_group_l2_cache_map. 1346 */ 1347 if (thread_group_shares_l2) { 1348 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); 1349 1350 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { 1351 if (cpu_online(i)) 1352 set_cpus_related(i, cpu, cpu_l2_cache_mask); 1353 } 1354 1355 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ 1356 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && 1357 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { 1358 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", 1359 cpu); 1360 } 1361 1362 return true; 1363 } 1364 1365 l2_cache = cpu_to_l2cache(cpu); 1366 if (!l2_cache || !*mask) { 1367 /* Assume only core siblings share cache with this CPU */ 1368 for_each_cpu(i, submask_fn(cpu)) 1369 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1370 1371 return false; 1372 } 1373 1374 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1375 1376 /* Update l2-cache mask with all the CPUs that are part of submask */ 1377 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); 1378 1379 /* Skip all CPUs already part of current CPU l2-cache mask */ 1380 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); 1381 1382 for_each_cpu(i, *mask) { 1383 /* 1384 * when updating the marks the current CPU has not been marked 1385 * online, but we need to update the cache masks 1386 */ 1387 np = cpu_to_l2cache(i); 1388 1389 /* Skip all CPUs already part of current CPU l2-cache */ 1390 if (np == l2_cache) { 1391 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); 1392 cpumask_andnot(*mask, *mask, submask_fn(i)); 1393 } else { 1394 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); 1395 } 1396 1397 of_node_put(np); 1398 } 1399 of_node_put(l2_cache); 1400 1401 return true; 1402 } 1403 1404 #ifdef CONFIG_HOTPLUG_CPU 1405 static void remove_cpu_from_masks(int cpu) 1406 { 1407 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; 1408 int i; 1409 1410 if (shared_caches) 1411 mask_fn = cpu_l2_cache_mask; 1412 1413 for_each_cpu(i, mask_fn(cpu)) { 1414 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1415 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1416 if (has_big_cores) 1417 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1418 } 1419 1420 for_each_cpu(i, cpu_core_mask(cpu)) 1421 set_cpus_unrelated(cpu, i, cpu_core_mask); 1422 1423 if (has_coregroup_support()) { 1424 for_each_cpu(i, cpu_coregroup_mask(cpu)) 1425 set_cpus_unrelated(cpu, i, cpu_coregroup_mask); 1426 } 1427 } 1428 #endif 1429 1430 static inline void add_cpu_to_smallcore_masks(int cpu) 1431 { 1432 int i; 1433 1434 if (!has_big_cores) 1435 return; 1436 1437 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1438 1439 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { 1440 if (cpu_online(i)) 1441 set_cpus_related(i, cpu, cpu_smallcore_mask); 1442 } 1443 } 1444 1445 static void update_coregroup_mask(int cpu, cpumask_var_t *mask) 1446 { 1447 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1448 int coregroup_id = cpu_to_coregroup_id(cpu); 1449 int i; 1450 1451 if (shared_caches) 1452 submask_fn = cpu_l2_cache_mask; 1453 1454 if (!*mask) { 1455 /* Assume only siblings are part of this CPU's coregroup */ 1456 for_each_cpu(i, submask_fn(cpu)) 1457 set_cpus_related(cpu, i, cpu_coregroup_mask); 1458 1459 return; 1460 } 1461 1462 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1463 1464 /* Update coregroup mask with all the CPUs that are part of submask */ 1465 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); 1466 1467 /* Skip all CPUs already part of coregroup mask */ 1468 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); 1469 1470 for_each_cpu(i, *mask) { 1471 /* Skip all CPUs not part of this coregroup */ 1472 if (coregroup_id == cpu_to_coregroup_id(i)) { 1473 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); 1474 cpumask_andnot(*mask, *mask, submask_fn(i)); 1475 } else { 1476 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); 1477 } 1478 } 1479 } 1480 1481 static void add_cpu_to_masks(int cpu) 1482 { 1483 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1484 int first_thread = cpu_first_thread_sibling(cpu); 1485 cpumask_var_t mask; 1486 int chip_id = -1; 1487 bool ret; 1488 int i; 1489 1490 /* 1491 * This CPU will not be in the online mask yet so we need to manually 1492 * add it to it's own thread sibling mask. 1493 */ 1494 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1495 1496 for (i = first_thread; i < first_thread + threads_per_core; i++) 1497 if (cpu_online(i)) 1498 set_cpus_related(i, cpu, cpu_sibling_mask); 1499 1500 add_cpu_to_smallcore_masks(cpu); 1501 1502 /* In CPU-hotplug path, hence use GFP_ATOMIC */ 1503 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); 1504 update_mask_by_l2(cpu, &mask); 1505 1506 if (has_coregroup_support()) 1507 update_coregroup_mask(cpu, &mask); 1508 1509 if (chip_id_lookup_table && ret) 1510 chip_id = cpu_to_chip_id(cpu); 1511 1512 if (chip_id == -1) { 1513 cpumask_copy(per_cpu(cpu_core_map, cpu), cpu_cpu_mask(cpu)); 1514 goto out; 1515 } 1516 1517 if (shared_caches) 1518 submask_fn = cpu_l2_cache_mask; 1519 1520 /* Update core_mask with all the CPUs that are part of submask */ 1521 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); 1522 1523 /* Skip all CPUs already part of current CPU core mask */ 1524 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); 1525 1526 for_each_cpu(i, mask) { 1527 if (chip_id == cpu_to_chip_id(i)) { 1528 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); 1529 cpumask_andnot(mask, mask, submask_fn(i)); 1530 } else { 1531 cpumask_andnot(mask, mask, cpu_core_mask(i)); 1532 } 1533 } 1534 1535 out: 1536 free_cpumask_var(mask); 1537 } 1538 1539 /* Activate a secondary processor. */ 1540 void start_secondary(void *unused) 1541 { 1542 unsigned int cpu = raw_smp_processor_id(); 1543 1544 mmgrab(&init_mm); 1545 current->active_mm = &init_mm; 1546 1547 smp_store_cpu_info(cpu); 1548 set_dec(tb_ticks_per_jiffy); 1549 rcu_cpu_starting(cpu); 1550 preempt_disable(); 1551 cpu_callin_map[cpu] = 1; 1552 1553 if (smp_ops->setup_cpu) 1554 smp_ops->setup_cpu(cpu); 1555 if (smp_ops->take_timebase) 1556 smp_ops->take_timebase(); 1557 1558 secondary_cpu_time_init(); 1559 1560 #ifdef CONFIG_PPC64 1561 if (system_state == SYSTEM_RUNNING) 1562 vdso_data->processorCount++; 1563 1564 vdso_getcpu_init(); 1565 #endif 1566 set_numa_node(numa_cpu_lookup_table[cpu]); 1567 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1568 1569 /* Update topology CPU masks */ 1570 add_cpu_to_masks(cpu); 1571 1572 /* 1573 * Check for any shared caches. Note that this must be done on a 1574 * per-core basis because one core in the pair might be disabled. 1575 */ 1576 if (!shared_caches) { 1577 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1578 struct cpumask *mask = cpu_l2_cache_mask(cpu); 1579 1580 if (has_big_cores) 1581 sibling_mask = cpu_smallcore_mask; 1582 1583 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) 1584 shared_caches = true; 1585 } 1586 1587 smp_wmb(); 1588 notify_cpu_starting(cpu); 1589 set_cpu_online(cpu, true); 1590 1591 boot_init_stack_canary(); 1592 1593 local_irq_enable(); 1594 1595 /* We can enable ftrace for secondary cpus now */ 1596 this_cpu_enable_ftrace(); 1597 1598 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1599 1600 BUG(); 1601 } 1602 1603 int setup_profiling_timer(unsigned int multiplier) 1604 { 1605 return 0; 1606 } 1607 1608 static void fixup_topology(void) 1609 { 1610 int i; 1611 1612 #ifdef CONFIG_SCHED_SMT 1613 if (has_big_cores) { 1614 pr_info("Big cores detected but using small core scheduling\n"); 1615 powerpc_topology[smt_idx].mask = smallcore_smt_mask; 1616 } 1617 #endif 1618 1619 if (!has_coregroup_support()) 1620 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask; 1621 1622 /* 1623 * Try to consolidate topology levels here instead of 1624 * allowing scheduler to degenerate. 1625 * - Dont consolidate if masks are different. 1626 * - Dont consolidate if sd_flags exists and are different. 1627 */ 1628 for (i = 1; i <= die_idx; i++) { 1629 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask) 1630 continue; 1631 1632 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags && 1633 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags) 1634 continue; 1635 1636 if (!powerpc_topology[i - 1].sd_flags) 1637 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags; 1638 1639 powerpc_topology[i].mask = powerpc_topology[i + 1].mask; 1640 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags; 1641 #ifdef CONFIG_SCHED_DEBUG 1642 powerpc_topology[i].name = powerpc_topology[i + 1].name; 1643 #endif 1644 } 1645 } 1646 1647 void __init smp_cpus_done(unsigned int max_cpus) 1648 { 1649 /* 1650 * We are running pinned to the boot CPU, see rest_init(). 1651 */ 1652 if (smp_ops && smp_ops->setup_cpu) 1653 smp_ops->setup_cpu(boot_cpuid); 1654 1655 if (smp_ops && smp_ops->bringup_done) 1656 smp_ops->bringup_done(); 1657 1658 dump_numa_cpu_topology(); 1659 1660 fixup_topology(); 1661 set_sched_topology(powerpc_topology); 1662 } 1663 1664 #ifdef CONFIG_HOTPLUG_CPU 1665 int __cpu_disable(void) 1666 { 1667 int cpu = smp_processor_id(); 1668 int err; 1669 1670 if (!smp_ops->cpu_disable) 1671 return -ENOSYS; 1672 1673 this_cpu_disable_ftrace(); 1674 1675 err = smp_ops->cpu_disable(); 1676 if (err) 1677 return err; 1678 1679 /* Update sibling maps */ 1680 remove_cpu_from_masks(cpu); 1681 1682 return 0; 1683 } 1684 1685 void __cpu_die(unsigned int cpu) 1686 { 1687 if (smp_ops->cpu_die) 1688 smp_ops->cpu_die(cpu); 1689 } 1690 1691 void arch_cpu_idle_dead(void) 1692 { 1693 sched_preempt_enable_no_resched(); 1694 1695 /* 1696 * Disable on the down path. This will be re-enabled by 1697 * start_secondary() via start_secondary_resume() below 1698 */ 1699 this_cpu_disable_ftrace(); 1700 1701 if (smp_ops->cpu_offline_self) 1702 smp_ops->cpu_offline_self(); 1703 1704 /* If we return, we re-enter start_secondary */ 1705 start_secondary_resume(); 1706 } 1707 1708 #endif 1709