xref: /linux/arch/powerpc/kernel/smp.c (revision 60684c2bd35064043360e6f716d1b7c20e967b7d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 #include <linux/kexec.h>
39 
40 #include <asm/ptrace.h>
41 #include <linux/atomic.h>
42 #include <asm/irq.h>
43 #include <asm/hw_irq.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/dbell.h>
46 #include <asm/page.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/cpu_has_feature.h>
60 #include <asm/ftrace.h>
61 #include <asm/kup.h>
62 #include <asm/fadump.h>
63 
64 #ifdef DEBUG
65 #include <asm/udbg.h>
66 #define DBG(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG(fmt...)
69 #endif
70 
71 #ifdef CONFIG_HOTPLUG_CPU
72 /* State of each CPU during hotplug phases */
73 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
74 #endif
75 
76 struct task_struct *secondary_current;
77 bool has_big_cores;
78 bool coregroup_enabled;
79 bool thread_group_shares_l2;
80 bool thread_group_shares_l3;
81 
82 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
83 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
84 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
86 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
87 
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 EXPORT_SYMBOL_GPL(has_big_cores);
92 
93 enum {
94 #ifdef CONFIG_SCHED_SMT
95 	smt_idx,
96 #endif
97 	cache_idx,
98 	mc_idx,
99 	die_idx,
100 };
101 
102 #define MAX_THREAD_LIST_SIZE	8
103 #define THREAD_GROUP_SHARE_L1   1
104 #define THREAD_GROUP_SHARE_L2_L3 2
105 struct thread_groups {
106 	unsigned int property;
107 	unsigned int nr_groups;
108 	unsigned int threads_per_group;
109 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
110 };
111 
112 /* Maximum number of properties that groups of threads within a core can share */
113 #define MAX_THREAD_GROUP_PROPERTIES 2
114 
115 struct thread_groups_list {
116 	unsigned int nr_properties;
117 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
118 };
119 
120 static struct thread_groups_list tgl[NR_CPUS] __initdata;
121 /*
122  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
123  * the set its siblings that share the L1-cache.
124  */
125 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
126 
127 /*
128  * On some big-cores system, thread_group_l2_cache_map for each CPU
129  * corresponds to the set its siblings within the core that share the
130  * L2-cache.
131  */
132 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
133 
134 /*
135  * On P10, thread_group_l3_cache_map for each CPU is equal to the
136  * thread_group_l2_cache_map
137  */
138 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
139 
140 /* SMP operations for this machine */
141 struct smp_ops_t *smp_ops;
142 
143 /* Can't be static due to PowerMac hackery */
144 volatile unsigned int cpu_callin_map[NR_CPUS];
145 
146 int smt_enabled_at_boot = 1;
147 
148 /*
149  * Returns 1 if the specified cpu should be brought up during boot.
150  * Used to inhibit booting threads if they've been disabled or
151  * limited on the command line
152  */
153 int smp_generic_cpu_bootable(unsigned int nr)
154 {
155 	/* Special case - we inhibit secondary thread startup
156 	 * during boot if the user requests it.
157 	 */
158 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
159 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
160 			return 0;
161 		if (smt_enabled_at_boot
162 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
163 			return 0;
164 	}
165 
166 	return 1;
167 }
168 
169 
170 #ifdef CONFIG_PPC64
171 int smp_generic_kick_cpu(int nr)
172 {
173 	if (nr < 0 || nr >= nr_cpu_ids)
174 		return -EINVAL;
175 
176 	/*
177 	 * The processor is currently spinning, waiting for the
178 	 * cpu_start field to become non-zero After we set cpu_start,
179 	 * the processor will continue on to secondary_start
180 	 */
181 	if (!paca_ptrs[nr]->cpu_start) {
182 		paca_ptrs[nr]->cpu_start = 1;
183 		smp_mb();
184 		return 0;
185 	}
186 
187 #ifdef CONFIG_HOTPLUG_CPU
188 	/*
189 	 * Ok it's not there, so it might be soft-unplugged, let's
190 	 * try to bring it back
191 	 */
192 	generic_set_cpu_up(nr);
193 	smp_wmb();
194 	smp_send_reschedule(nr);
195 #endif /* CONFIG_HOTPLUG_CPU */
196 
197 	return 0;
198 }
199 #endif /* CONFIG_PPC64 */
200 
201 static irqreturn_t call_function_action(int irq, void *data)
202 {
203 	generic_smp_call_function_interrupt();
204 	return IRQ_HANDLED;
205 }
206 
207 static irqreturn_t reschedule_action(int irq, void *data)
208 {
209 	scheduler_ipi();
210 	return IRQ_HANDLED;
211 }
212 
213 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
214 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
215 {
216 	timer_broadcast_interrupt();
217 	return IRQ_HANDLED;
218 }
219 #endif
220 
221 #ifdef CONFIG_NMI_IPI
222 static irqreturn_t nmi_ipi_action(int irq, void *data)
223 {
224 	smp_handle_nmi_ipi(get_irq_regs());
225 	return IRQ_HANDLED;
226 }
227 #endif
228 
229 static irq_handler_t smp_ipi_action[] = {
230 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
231 	[PPC_MSG_RESCHEDULE] = reschedule_action,
232 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
233 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
234 #endif
235 #ifdef CONFIG_NMI_IPI
236 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
237 #endif
238 };
239 
240 /*
241  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
242  * than going through the call function infrastructure, and strongly
243  * serialized, so it is more appropriate for debugging.
244  */
245 const char *smp_ipi_name[] = {
246 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
247 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
248 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
249 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
250 #endif
251 #ifdef CONFIG_NMI_IPI
252 	[PPC_MSG_NMI_IPI] = "nmi ipi",
253 #endif
254 };
255 
256 /* optional function to request ipi, for controllers with >= 4 ipis */
257 int smp_request_message_ipi(int virq, int msg)
258 {
259 	int err;
260 
261 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
262 		return -EINVAL;
263 #ifndef CONFIG_NMI_IPI
264 	if (msg == PPC_MSG_NMI_IPI)
265 		return 1;
266 #endif
267 
268 	err = request_irq(virq, smp_ipi_action[msg],
269 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
270 			  smp_ipi_name[msg], NULL);
271 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
272 		virq, smp_ipi_name[msg], err);
273 
274 	return err;
275 }
276 
277 #ifdef CONFIG_PPC_SMP_MUXED_IPI
278 struct cpu_messages {
279 	long messages;			/* current messages */
280 };
281 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
282 
283 void smp_muxed_ipi_set_message(int cpu, int msg)
284 {
285 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
286 	char *message = (char *)&info->messages;
287 
288 	/*
289 	 * Order previous accesses before accesses in the IPI handler.
290 	 */
291 	smp_mb();
292 	message[msg] = 1;
293 }
294 
295 void smp_muxed_ipi_message_pass(int cpu, int msg)
296 {
297 	smp_muxed_ipi_set_message(cpu, msg);
298 
299 	/*
300 	 * cause_ipi functions are required to include a full barrier
301 	 * before doing whatever causes the IPI.
302 	 */
303 	smp_ops->cause_ipi(cpu);
304 }
305 
306 #ifdef __BIG_ENDIAN__
307 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
308 #else
309 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
310 #endif
311 
312 irqreturn_t smp_ipi_demux(void)
313 {
314 	mb();	/* order any irq clear */
315 
316 	return smp_ipi_demux_relaxed();
317 }
318 
319 /* sync-free variant. Callers should ensure synchronization */
320 irqreturn_t smp_ipi_demux_relaxed(void)
321 {
322 	struct cpu_messages *info;
323 	unsigned long all;
324 
325 	info = this_cpu_ptr(&ipi_message);
326 	do {
327 		all = xchg(&info->messages, 0);
328 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
329 		/*
330 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
331 		 * before PPC_MSG_CALL_FUNCTION messages because when
332 		 * a VM is destroyed, we call kick_all_cpus_sync()
333 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
334 		 * messages have completed before we free any VCPUs.
335 		 */
336 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
337 			kvmppc_xics_ipi_action();
338 #endif
339 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
340 			generic_smp_call_function_interrupt();
341 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
342 			scheduler_ipi();
343 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
344 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
345 			timer_broadcast_interrupt();
346 #endif
347 #ifdef CONFIG_NMI_IPI
348 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
349 			nmi_ipi_action(0, NULL);
350 #endif
351 	} while (info->messages);
352 
353 	return IRQ_HANDLED;
354 }
355 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
356 
357 static inline void do_message_pass(int cpu, int msg)
358 {
359 	if (smp_ops->message_pass)
360 		smp_ops->message_pass(cpu, msg);
361 #ifdef CONFIG_PPC_SMP_MUXED_IPI
362 	else
363 		smp_muxed_ipi_message_pass(cpu, msg);
364 #endif
365 }
366 
367 void smp_send_reschedule(int cpu)
368 {
369 	if (likely(smp_ops))
370 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
371 }
372 EXPORT_SYMBOL_GPL(smp_send_reschedule);
373 
374 void arch_send_call_function_single_ipi(int cpu)
375 {
376 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
377 }
378 
379 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
380 {
381 	unsigned int cpu;
382 
383 	for_each_cpu(cpu, mask)
384 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
385 }
386 
387 #ifdef CONFIG_NMI_IPI
388 
389 /*
390  * "NMI IPI" system.
391  *
392  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
393  * a running system. They can be used for crash, debug, halt/reboot, etc.
394  *
395  * The IPI call waits with interrupts disabled until all targets enter the
396  * NMI handler, then returns. Subsequent IPIs can be issued before targets
397  * have returned from their handlers, so there is no guarantee about
398  * concurrency or re-entrancy.
399  *
400  * A new NMI can be issued before all targets exit the handler.
401  *
402  * The IPI call may time out without all targets entering the NMI handler.
403  * In that case, there is some logic to recover (and ignore subsequent
404  * NMI interrupts that may eventually be raised), but the platform interrupt
405  * handler may not be able to distinguish this from other exception causes,
406  * which may cause a crash.
407  */
408 
409 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
410 static struct cpumask nmi_ipi_pending_mask;
411 static bool nmi_ipi_busy = false;
412 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
413 
414 noinstr static void nmi_ipi_lock_start(unsigned long *flags)
415 {
416 	raw_local_irq_save(*flags);
417 	hard_irq_disable();
418 	while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
419 		raw_local_irq_restore(*flags);
420 		spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
421 		raw_local_irq_save(*flags);
422 		hard_irq_disable();
423 	}
424 }
425 
426 noinstr static void nmi_ipi_lock(void)
427 {
428 	while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
429 		spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
430 }
431 
432 noinstr static void nmi_ipi_unlock(void)
433 {
434 	smp_mb();
435 	WARN_ON(arch_atomic_read(&__nmi_ipi_lock) != 1);
436 	arch_atomic_set(&__nmi_ipi_lock, 0);
437 }
438 
439 noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
440 {
441 	nmi_ipi_unlock();
442 	raw_local_irq_restore(*flags);
443 }
444 
445 /*
446  * Platform NMI handler calls this to ack
447  */
448 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
449 {
450 	void (*fn)(struct pt_regs *) = NULL;
451 	unsigned long flags;
452 	int me = raw_smp_processor_id();
453 	int ret = 0;
454 
455 	/*
456 	 * Unexpected NMIs are possible here because the interrupt may not
457 	 * be able to distinguish NMI IPIs from other types of NMIs, or
458 	 * because the caller may have timed out.
459 	 */
460 	nmi_ipi_lock_start(&flags);
461 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
462 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
463 		fn = READ_ONCE(nmi_ipi_function);
464 		WARN_ON_ONCE(!fn);
465 		ret = 1;
466 	}
467 	nmi_ipi_unlock_end(&flags);
468 
469 	if (fn)
470 		fn(regs);
471 
472 	return ret;
473 }
474 
475 static void do_smp_send_nmi_ipi(int cpu, bool safe)
476 {
477 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
478 		return;
479 
480 	if (cpu >= 0) {
481 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
482 	} else {
483 		int c;
484 
485 		for_each_online_cpu(c) {
486 			if (c == raw_smp_processor_id())
487 				continue;
488 			do_message_pass(c, PPC_MSG_NMI_IPI);
489 		}
490 	}
491 }
492 
493 /*
494  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
495  * - fn is the target callback function.
496  * - delay_us > 0 is the delay before giving up waiting for targets to
497  *   begin executing the handler, == 0 specifies indefinite delay.
498  */
499 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
500 				u64 delay_us, bool safe)
501 {
502 	unsigned long flags;
503 	int me = raw_smp_processor_id();
504 	int ret = 1;
505 
506 	BUG_ON(cpu == me);
507 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
508 
509 	if (unlikely(!smp_ops))
510 		return 0;
511 
512 	nmi_ipi_lock_start(&flags);
513 	while (nmi_ipi_busy) {
514 		nmi_ipi_unlock_end(&flags);
515 		spin_until_cond(!nmi_ipi_busy);
516 		nmi_ipi_lock_start(&flags);
517 	}
518 	nmi_ipi_busy = true;
519 	nmi_ipi_function = fn;
520 
521 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
522 
523 	if (cpu < 0) {
524 		/* ALL_OTHERS */
525 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
526 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
527 	} else {
528 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
529 	}
530 
531 	nmi_ipi_unlock();
532 
533 	/* Interrupts remain hard disabled */
534 
535 	do_smp_send_nmi_ipi(cpu, safe);
536 
537 	nmi_ipi_lock();
538 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
539 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
540 		nmi_ipi_unlock();
541 		udelay(1);
542 		nmi_ipi_lock();
543 		if (delay_us) {
544 			delay_us--;
545 			if (!delay_us)
546 				break;
547 		}
548 	}
549 
550 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
551 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
552 		ret = 0;
553 		cpumask_clear(&nmi_ipi_pending_mask);
554 	}
555 
556 	nmi_ipi_function = NULL;
557 	nmi_ipi_busy = false;
558 
559 	nmi_ipi_unlock_end(&flags);
560 
561 	return ret;
562 }
563 
564 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
565 {
566 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
567 }
568 
569 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
570 {
571 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
572 }
573 #endif /* CONFIG_NMI_IPI */
574 
575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576 void tick_broadcast(const struct cpumask *mask)
577 {
578 	unsigned int cpu;
579 
580 	for_each_cpu(cpu, mask)
581 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
582 }
583 #endif
584 
585 #ifdef CONFIG_DEBUGGER
586 static void debugger_ipi_callback(struct pt_regs *regs)
587 {
588 	debugger_ipi(regs);
589 }
590 
591 void smp_send_debugger_break(void)
592 {
593 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
594 }
595 #endif
596 
597 #ifdef CONFIG_KEXEC_CORE
598 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
599 {
600 	int cpu;
601 
602 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
603 	if (kdump_in_progress() && crash_wake_offline) {
604 		for_each_present_cpu(cpu) {
605 			if (cpu_online(cpu))
606 				continue;
607 			/*
608 			 * crash_ipi_callback will wait for
609 			 * all cpus, including offline CPUs.
610 			 * We don't care about nmi_ipi_function.
611 			 * Offline cpus will jump straight into
612 			 * crash_ipi_callback, we can skip the
613 			 * entire NMI dance and waiting for
614 			 * cpus to clear pending mask, etc.
615 			 */
616 			do_smp_send_nmi_ipi(cpu, false);
617 		}
618 	}
619 }
620 #endif
621 
622 void crash_smp_send_stop(void)
623 {
624 	static bool stopped = false;
625 
626 	/*
627 	 * In case of fadump, register data for all CPUs is captured by f/w
628 	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
629 	 * this rtas call to avoid tricky post processing of those CPUs'
630 	 * backtraces.
631 	 */
632 	if (should_fadump_crash())
633 		return;
634 
635 	if (stopped)
636 		return;
637 
638 	stopped = true;
639 
640 #ifdef CONFIG_KEXEC_CORE
641 	if (kexec_crash_image) {
642 		crash_kexec_prepare();
643 		return;
644 	}
645 #endif
646 
647 	smp_send_stop();
648 }
649 
650 #ifdef CONFIG_NMI_IPI
651 static void nmi_stop_this_cpu(struct pt_regs *regs)
652 {
653 	/*
654 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
655 	 */
656 	set_cpu_online(smp_processor_id(), false);
657 
658 	spin_begin();
659 	while (1)
660 		spin_cpu_relax();
661 }
662 
663 void smp_send_stop(void)
664 {
665 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
666 }
667 
668 #else /* CONFIG_NMI_IPI */
669 
670 static void stop_this_cpu(void *dummy)
671 {
672 	hard_irq_disable();
673 
674 	/*
675 	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
676 	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
677 	 * to know other CPUs are offline before it breaks locks to flush
678 	 * printk buffers, in case we panic()ed while holding the lock.
679 	 */
680 	set_cpu_online(smp_processor_id(), false);
681 
682 	spin_begin();
683 	while (1)
684 		spin_cpu_relax();
685 }
686 
687 void smp_send_stop(void)
688 {
689 	static bool stopped = false;
690 
691 	/*
692 	 * Prevent waiting on csd lock from a previous smp_send_stop.
693 	 * This is racy, but in general callers try to do the right
694 	 * thing and only fire off one smp_send_stop (e.g., see
695 	 * kernel/panic.c)
696 	 */
697 	if (stopped)
698 		return;
699 
700 	stopped = true;
701 
702 	smp_call_function(stop_this_cpu, NULL, 0);
703 }
704 #endif /* CONFIG_NMI_IPI */
705 
706 static struct task_struct *current_set[NR_CPUS];
707 
708 static void smp_store_cpu_info(int id)
709 {
710 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
711 #ifdef CONFIG_PPC_E500
712 	per_cpu(next_tlbcam_idx, id)
713 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
714 #endif
715 }
716 
717 /*
718  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
719  * rather than just passing around the cpumask we pass around a function that
720  * returns the that cpumask for the given CPU.
721  */
722 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
723 {
724 	cpumask_set_cpu(i, get_cpumask(j));
725 	cpumask_set_cpu(j, get_cpumask(i));
726 }
727 
728 #ifdef CONFIG_HOTPLUG_CPU
729 static void set_cpus_unrelated(int i, int j,
730 		struct cpumask *(*get_cpumask)(int))
731 {
732 	cpumask_clear_cpu(i, get_cpumask(j));
733 	cpumask_clear_cpu(j, get_cpumask(i));
734 }
735 #endif
736 
737 /*
738  * Extends set_cpus_related. Instead of setting one CPU at a time in
739  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
740  */
741 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
742 				struct cpumask *(*dstmask)(int))
743 {
744 	struct cpumask *mask;
745 	int k;
746 
747 	mask = srcmask(j);
748 	for_each_cpu(k, srcmask(i))
749 		cpumask_or(dstmask(k), dstmask(k), mask);
750 
751 	if (i == j)
752 		return;
753 
754 	mask = srcmask(i);
755 	for_each_cpu(k, srcmask(j))
756 		cpumask_or(dstmask(k), dstmask(k), mask);
757 }
758 
759 /*
760  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
761  *                      property for the CPU device node @dn and stores
762  *                      the parsed output in the thread_groups_list
763  *                      structure @tglp.
764  *
765  * @dn: The device node of the CPU device.
766  * @tglp: Pointer to a thread group list structure into which the parsed
767  *      output of "ibm,thread-groups" is stored.
768  *
769  * ibm,thread-groups[0..N-1] array defines which group of threads in
770  * the CPU-device node can be grouped together based on the property.
771  *
772  * This array can represent thread groupings for multiple properties.
773  *
774  * ibm,thread-groups[i + 0] tells us the property based on which the
775  * threads are being grouped together. If this value is 1, it implies
776  * that the threads in the same group share L1, translation cache. If
777  * the value is 2, it implies that the threads in the same group share
778  * the same L2 cache.
779  *
780  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
781  * property ibm,thread-groups[i]
782  *
783  * ibm,thread-groups[i+2] tells us the number of threads in each such
784  * group.
785  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
786  *
787  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
788  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
789  * the grouping.
790  *
791  * Example:
792  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
793  * This can be decomposed up into two consecutive arrays:
794  * a) [1,2,4,8,10,12,14,9,11,13,15]
795  * b) [2,2,4,8,10,12,14,9,11,13,15]
796  *
797  * where in,
798  *
799  * a) provides information of Property "1" being shared by "2" groups,
800  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
801  *  the first group is {8,10,12,14} and the
802  *  "ibm,ppc-interrupt-server#s" of the second group is
803  *  {9,11,13,15}. Property "1" is indicative of the thread in the
804  *  group sharing L1 cache, translation cache and Instruction Data
805  *  flow.
806  *
807  * b) provides information of Property "2" being shared by "2" groups,
808  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
809  *  the first group is {8,10,12,14} and the
810  *  "ibm,ppc-interrupt-server#s" of the second group is
811  *  {9,11,13,15}. Property "2" indicates that the threads in each
812  *  group share the L2-cache.
813  *
814  * Returns 0 on success, -EINVAL if the property does not exist,
815  * -ENODATA if property does not have a value, and -EOVERFLOW if the
816  * property data isn't large enough.
817  */
818 static int parse_thread_groups(struct device_node *dn,
819 			       struct thread_groups_list *tglp)
820 {
821 	unsigned int property_idx = 0;
822 	u32 *thread_group_array;
823 	size_t total_threads;
824 	int ret = 0, count;
825 	u32 *thread_list;
826 	int i = 0;
827 
828 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
829 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
830 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
831 					 thread_group_array, count);
832 	if (ret)
833 		goto out_free;
834 
835 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
836 		int j;
837 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
838 
839 		tg->property = thread_group_array[i];
840 		tg->nr_groups = thread_group_array[i + 1];
841 		tg->threads_per_group = thread_group_array[i + 2];
842 		total_threads = tg->nr_groups * tg->threads_per_group;
843 
844 		thread_list = &thread_group_array[i + 3];
845 
846 		for (j = 0; j < total_threads; j++)
847 			tg->thread_list[j] = thread_list[j];
848 		i = i + 3 + total_threads;
849 	}
850 
851 	tglp->nr_properties = property_idx;
852 
853 out_free:
854 	kfree(thread_group_array);
855 	return ret;
856 }
857 
858 /*
859  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
860  *                              that @cpu belongs to.
861  *
862  * @cpu : The logical CPU whose thread group is being searched.
863  * @tg : The thread-group structure of the CPU node which @cpu belongs
864  *       to.
865  *
866  * Returns the index to tg->thread_list that points to the start
867  * of the thread_group that @cpu belongs to.
868  *
869  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
870  * tg->thread_list.
871  */
872 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
873 {
874 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
875 	int i, j;
876 
877 	for (i = 0; i < tg->nr_groups; i++) {
878 		int group_start = i * tg->threads_per_group;
879 
880 		for (j = 0; j < tg->threads_per_group; j++) {
881 			int idx = group_start + j;
882 
883 			if (tg->thread_list[idx] == hw_cpu_id)
884 				return group_start;
885 		}
886 	}
887 
888 	return -1;
889 }
890 
891 static struct thread_groups *__init get_thread_groups(int cpu,
892 						      int group_property,
893 						      int *err)
894 {
895 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
896 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
897 	struct thread_groups *tg = NULL;
898 	int i;
899 	*err = 0;
900 
901 	if (!dn) {
902 		*err = -ENODATA;
903 		return NULL;
904 	}
905 
906 	if (!cpu_tgl->nr_properties) {
907 		*err = parse_thread_groups(dn, cpu_tgl);
908 		if (*err)
909 			goto out;
910 	}
911 
912 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
913 		if (cpu_tgl->property_tgs[i].property == group_property) {
914 			tg = &cpu_tgl->property_tgs[i];
915 			break;
916 		}
917 	}
918 
919 	if (!tg)
920 		*err = -EINVAL;
921 out:
922 	of_node_put(dn);
923 	return tg;
924 }
925 
926 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
927 					       int cpu, int cpu_group_start)
928 {
929 	int first_thread = cpu_first_thread_sibling(cpu);
930 	int i;
931 
932 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
933 
934 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
935 		int i_group_start = get_cpu_thread_group_start(i, tg);
936 
937 		if (unlikely(i_group_start == -1)) {
938 			WARN_ON_ONCE(1);
939 			return -ENODATA;
940 		}
941 
942 		if (i_group_start == cpu_group_start)
943 			cpumask_set_cpu(i, *mask);
944 	}
945 
946 	return 0;
947 }
948 
949 static int __init init_thread_group_cache_map(int cpu, int cache_property)
950 
951 {
952 	int cpu_group_start = -1, err = 0;
953 	struct thread_groups *tg = NULL;
954 	cpumask_var_t *mask = NULL;
955 
956 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
957 	    cache_property != THREAD_GROUP_SHARE_L2_L3)
958 		return -EINVAL;
959 
960 	tg = get_thread_groups(cpu, cache_property, &err);
961 
962 	if (!tg)
963 		return err;
964 
965 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
966 
967 	if (unlikely(cpu_group_start == -1)) {
968 		WARN_ON_ONCE(1);
969 		return -ENODATA;
970 	}
971 
972 	if (cache_property == THREAD_GROUP_SHARE_L1) {
973 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
974 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
975 	}
976 	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
977 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
978 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
979 		mask = &per_cpu(thread_group_l3_cache_map, cpu);
980 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
981 	}
982 
983 
984 	return 0;
985 }
986 
987 static bool shared_caches;
988 
989 #ifdef CONFIG_SCHED_SMT
990 /* cpumask of CPUs with asymmetric SMT dependency */
991 static int powerpc_smt_flags(void)
992 {
993 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
994 
995 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
996 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
997 		flags |= SD_ASYM_PACKING;
998 	}
999 	return flags;
1000 }
1001 #endif
1002 
1003 /*
1004  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1005  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1006  * since the migrated task remains cache hot. We want to take advantage of this
1007  * at the scheduler level so an extra topology level is required.
1008  */
1009 static int powerpc_shared_cache_flags(void)
1010 {
1011 	return SD_SHARE_PKG_RESOURCES;
1012 }
1013 
1014 /*
1015  * We can't just pass cpu_l2_cache_mask() directly because
1016  * returns a non-const pointer and the compiler barfs on that.
1017  */
1018 static const struct cpumask *shared_cache_mask(int cpu)
1019 {
1020 	return per_cpu(cpu_l2_cache_map, cpu);
1021 }
1022 
1023 #ifdef CONFIG_SCHED_SMT
1024 static const struct cpumask *smallcore_smt_mask(int cpu)
1025 {
1026 	return cpu_smallcore_mask(cpu);
1027 }
1028 #endif
1029 
1030 static struct cpumask *cpu_coregroup_mask(int cpu)
1031 {
1032 	return per_cpu(cpu_coregroup_map, cpu);
1033 }
1034 
1035 static bool has_coregroup_support(void)
1036 {
1037 	return coregroup_enabled;
1038 }
1039 
1040 static const struct cpumask *cpu_mc_mask(int cpu)
1041 {
1042 	return cpu_coregroup_mask(cpu);
1043 }
1044 
1045 static struct sched_domain_topology_level powerpc_topology[] = {
1046 #ifdef CONFIG_SCHED_SMT
1047 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1048 #endif
1049 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1050 	{ cpu_mc_mask, SD_INIT_NAME(MC) },
1051 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1052 	{ NULL, },
1053 };
1054 
1055 static int __init init_big_cores(void)
1056 {
1057 	int cpu;
1058 
1059 	for_each_possible_cpu(cpu) {
1060 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1061 
1062 		if (err)
1063 			return err;
1064 
1065 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1066 					GFP_KERNEL,
1067 					cpu_to_node(cpu));
1068 	}
1069 
1070 	has_big_cores = true;
1071 
1072 	for_each_possible_cpu(cpu) {
1073 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1074 
1075 		if (err)
1076 			return err;
1077 	}
1078 
1079 	thread_group_shares_l2 = true;
1080 	thread_group_shares_l3 = true;
1081 	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1082 
1083 	return 0;
1084 }
1085 
1086 void __init smp_prepare_cpus(unsigned int max_cpus)
1087 {
1088 	unsigned int cpu;
1089 
1090 	DBG("smp_prepare_cpus\n");
1091 
1092 	/*
1093 	 * setup_cpu may need to be called on the boot cpu. We haven't
1094 	 * spun any cpus up but lets be paranoid.
1095 	 */
1096 	BUG_ON(boot_cpuid != smp_processor_id());
1097 
1098 	/* Fixup boot cpu */
1099 	smp_store_cpu_info(boot_cpuid);
1100 	cpu_callin_map[boot_cpuid] = 1;
1101 
1102 	for_each_possible_cpu(cpu) {
1103 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1104 					GFP_KERNEL, cpu_to_node(cpu));
1105 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1106 					GFP_KERNEL, cpu_to_node(cpu));
1107 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1108 					GFP_KERNEL, cpu_to_node(cpu));
1109 		if (has_coregroup_support())
1110 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1111 						GFP_KERNEL, cpu_to_node(cpu));
1112 
1113 #ifdef CONFIG_NUMA
1114 		/*
1115 		 * numa_node_id() works after this.
1116 		 */
1117 		if (cpu_present(cpu)) {
1118 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1119 			set_cpu_numa_mem(cpu,
1120 				local_memory_node(numa_cpu_lookup_table[cpu]));
1121 		}
1122 #endif
1123 	}
1124 
1125 	/* Init the cpumasks so the boot CPU is related to itself */
1126 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1127 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1128 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1129 
1130 	if (has_coregroup_support())
1131 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1132 
1133 	init_big_cores();
1134 	if (has_big_cores) {
1135 		cpumask_set_cpu(boot_cpuid,
1136 				cpu_smallcore_mask(boot_cpuid));
1137 	}
1138 
1139 	if (cpu_to_chip_id(boot_cpuid) != -1) {
1140 		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1141 
1142 		/*
1143 		 * All threads of a core will all belong to the same core,
1144 		 * chip_id_lookup_table will have one entry per core.
1145 		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1146 		 * other CPUs, will also not have chip-id.
1147 		 */
1148 		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1149 		if (chip_id_lookup_table)
1150 			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1151 	}
1152 
1153 	if (smp_ops && smp_ops->probe)
1154 		smp_ops->probe();
1155 }
1156 
1157 void smp_prepare_boot_cpu(void)
1158 {
1159 	BUG_ON(smp_processor_id() != boot_cpuid);
1160 #ifdef CONFIG_PPC64
1161 	paca_ptrs[boot_cpuid]->__current = current;
1162 #endif
1163 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1164 	current_set[boot_cpuid] = current;
1165 }
1166 
1167 #ifdef CONFIG_HOTPLUG_CPU
1168 
1169 int generic_cpu_disable(void)
1170 {
1171 	unsigned int cpu = smp_processor_id();
1172 
1173 	if (cpu == boot_cpuid)
1174 		return -EBUSY;
1175 
1176 	set_cpu_online(cpu, false);
1177 #ifdef CONFIG_PPC64
1178 	vdso_data->processorCount--;
1179 #endif
1180 	/* Update affinity of all IRQs previously aimed at this CPU */
1181 	irq_migrate_all_off_this_cpu();
1182 
1183 	/*
1184 	 * Depending on the details of the interrupt controller, it's possible
1185 	 * that one of the interrupts we just migrated away from this CPU is
1186 	 * actually already pending on this CPU. If we leave it in that state
1187 	 * the interrupt will never be EOI'ed, and will never fire again. So
1188 	 * temporarily enable interrupts here, to allow any pending interrupt to
1189 	 * be received (and EOI'ed), before we take this CPU offline.
1190 	 */
1191 	local_irq_enable();
1192 	mdelay(1);
1193 	local_irq_disable();
1194 
1195 	return 0;
1196 }
1197 
1198 void generic_cpu_die(unsigned int cpu)
1199 {
1200 	int i;
1201 
1202 	for (i = 0; i < 100; i++) {
1203 		smp_rmb();
1204 		if (is_cpu_dead(cpu))
1205 			return;
1206 		msleep(100);
1207 	}
1208 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1209 }
1210 
1211 void generic_set_cpu_dead(unsigned int cpu)
1212 {
1213 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1214 }
1215 
1216 /*
1217  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1218  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1219  * which makes the delay in generic_cpu_die() not happen.
1220  */
1221 void generic_set_cpu_up(unsigned int cpu)
1222 {
1223 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1224 }
1225 
1226 int generic_check_cpu_restart(unsigned int cpu)
1227 {
1228 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1229 }
1230 
1231 int is_cpu_dead(unsigned int cpu)
1232 {
1233 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1234 }
1235 
1236 static bool secondaries_inhibited(void)
1237 {
1238 	return kvm_hv_mode_active();
1239 }
1240 
1241 #else /* HOTPLUG_CPU */
1242 
1243 #define secondaries_inhibited()		0
1244 
1245 #endif
1246 
1247 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1248 {
1249 #ifdef CONFIG_PPC64
1250 	paca_ptrs[cpu]->__current = idle;
1251 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1252 				 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1253 #endif
1254 	task_thread_info(idle)->cpu = cpu;
1255 	secondary_current = current_set[cpu] = idle;
1256 }
1257 
1258 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1259 {
1260 	const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1261 	const bool booting = system_state < SYSTEM_RUNNING;
1262 	const unsigned long hp_spin_ms = 1;
1263 	unsigned long deadline;
1264 	int rc;
1265 	const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1266 
1267 	/*
1268 	 * Don't allow secondary threads to come online if inhibited
1269 	 */
1270 	if (threads_per_core > 1 && secondaries_inhibited() &&
1271 	    cpu_thread_in_subcore(cpu))
1272 		return -EBUSY;
1273 
1274 	if (smp_ops == NULL ||
1275 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1276 		return -EINVAL;
1277 
1278 	cpu_idle_thread_init(cpu, tidle);
1279 
1280 	/*
1281 	 * The platform might need to allocate resources prior to bringing
1282 	 * up the CPU
1283 	 */
1284 	if (smp_ops->prepare_cpu) {
1285 		rc = smp_ops->prepare_cpu(cpu);
1286 		if (rc)
1287 			return rc;
1288 	}
1289 
1290 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1291 	 * hotplug
1292 	 */
1293 	cpu_callin_map[cpu] = 0;
1294 
1295 	/* The information for processor bringup must
1296 	 * be written out to main store before we release
1297 	 * the processor.
1298 	 */
1299 	smp_mb();
1300 
1301 	/* wake up cpus */
1302 	DBG("smp: kicking cpu %d\n", cpu);
1303 	rc = smp_ops->kick_cpu(cpu);
1304 	if (rc) {
1305 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1306 		return rc;
1307 	}
1308 
1309 	/*
1310 	 * At boot time, simply spin on the callin word until the
1311 	 * deadline passes.
1312 	 *
1313 	 * At run time, spin for an optimistic amount of time to avoid
1314 	 * sleeping in the common case.
1315 	 */
1316 	deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1317 	spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1318 
1319 	if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1320 		const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1321 		const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1322 
1323 		deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1324 		while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1325 			fsleep(sleep_interval_us);
1326 	}
1327 
1328 	if (!cpu_callin_map[cpu]) {
1329 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1330 		return -ENOENT;
1331 	}
1332 
1333 	DBG("Processor %u found.\n", cpu);
1334 
1335 	if (smp_ops->give_timebase)
1336 		smp_ops->give_timebase();
1337 
1338 	/* Wait until cpu puts itself in the online & active maps */
1339 	spin_until_cond(cpu_online(cpu));
1340 
1341 	return 0;
1342 }
1343 
1344 /* Return the value of the reg property corresponding to the given
1345  * logical cpu.
1346  */
1347 int cpu_to_core_id(int cpu)
1348 {
1349 	struct device_node *np;
1350 	int id = -1;
1351 
1352 	np = of_get_cpu_node(cpu, NULL);
1353 	if (!np)
1354 		goto out;
1355 
1356 	id = of_get_cpu_hwid(np, 0);
1357 out:
1358 	of_node_put(np);
1359 	return id;
1360 }
1361 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1362 
1363 /* Helper routines for cpu to core mapping */
1364 int cpu_core_index_of_thread(int cpu)
1365 {
1366 	return cpu >> threads_shift;
1367 }
1368 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1369 
1370 int cpu_first_thread_of_core(int core)
1371 {
1372 	return core << threads_shift;
1373 }
1374 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1375 
1376 /* Must be called when no change can occur to cpu_present_mask,
1377  * i.e. during cpu online or offline.
1378  */
1379 static struct device_node *cpu_to_l2cache(int cpu)
1380 {
1381 	struct device_node *np;
1382 	struct device_node *cache;
1383 
1384 	if (!cpu_present(cpu))
1385 		return NULL;
1386 
1387 	np = of_get_cpu_node(cpu, NULL);
1388 	if (np == NULL)
1389 		return NULL;
1390 
1391 	cache = of_find_next_cache_node(np);
1392 
1393 	of_node_put(np);
1394 
1395 	return cache;
1396 }
1397 
1398 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1399 {
1400 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1401 	struct device_node *l2_cache, *np;
1402 	int i;
1403 
1404 	if (has_big_cores)
1405 		submask_fn = cpu_smallcore_mask;
1406 
1407 	/*
1408 	 * If the threads in a thread-group share L2 cache, then the
1409 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1410 	 */
1411 	if (thread_group_shares_l2) {
1412 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1413 
1414 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1415 			if (cpu_online(i))
1416 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1417 		}
1418 
1419 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1420 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1421 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1422 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1423 				     cpu);
1424 		}
1425 
1426 		return true;
1427 	}
1428 
1429 	l2_cache = cpu_to_l2cache(cpu);
1430 	if (!l2_cache || !*mask) {
1431 		/* Assume only core siblings share cache with this CPU */
1432 		for_each_cpu(i, cpu_sibling_mask(cpu))
1433 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1434 
1435 		return false;
1436 	}
1437 
1438 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1439 
1440 	/* Update l2-cache mask with all the CPUs that are part of submask */
1441 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1442 
1443 	/* Skip all CPUs already part of current CPU l2-cache mask */
1444 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1445 
1446 	for_each_cpu(i, *mask) {
1447 		/*
1448 		 * when updating the marks the current CPU has not been marked
1449 		 * online, but we need to update the cache masks
1450 		 */
1451 		np = cpu_to_l2cache(i);
1452 
1453 		/* Skip all CPUs already part of current CPU l2-cache */
1454 		if (np == l2_cache) {
1455 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1456 			cpumask_andnot(*mask, *mask, submask_fn(i));
1457 		} else {
1458 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1459 		}
1460 
1461 		of_node_put(np);
1462 	}
1463 	of_node_put(l2_cache);
1464 
1465 	return true;
1466 }
1467 
1468 #ifdef CONFIG_HOTPLUG_CPU
1469 static void remove_cpu_from_masks(int cpu)
1470 {
1471 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1472 	int i;
1473 
1474 	unmap_cpu_from_node(cpu);
1475 
1476 	if (shared_caches)
1477 		mask_fn = cpu_l2_cache_mask;
1478 
1479 	for_each_cpu(i, mask_fn(cpu)) {
1480 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1481 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1482 		if (has_big_cores)
1483 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1484 	}
1485 
1486 	for_each_cpu(i, cpu_core_mask(cpu))
1487 		set_cpus_unrelated(cpu, i, cpu_core_mask);
1488 
1489 	if (has_coregroup_support()) {
1490 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1491 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1492 	}
1493 }
1494 #endif
1495 
1496 static inline void add_cpu_to_smallcore_masks(int cpu)
1497 {
1498 	int i;
1499 
1500 	if (!has_big_cores)
1501 		return;
1502 
1503 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1504 
1505 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1506 		if (cpu_online(i))
1507 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1508 	}
1509 }
1510 
1511 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1512 {
1513 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1514 	int coregroup_id = cpu_to_coregroup_id(cpu);
1515 	int i;
1516 
1517 	if (shared_caches)
1518 		submask_fn = cpu_l2_cache_mask;
1519 
1520 	if (!*mask) {
1521 		/* Assume only siblings are part of this CPU's coregroup */
1522 		for_each_cpu(i, submask_fn(cpu))
1523 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1524 
1525 		return;
1526 	}
1527 
1528 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1529 
1530 	/* Update coregroup mask with all the CPUs that are part of submask */
1531 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1532 
1533 	/* Skip all CPUs already part of coregroup mask */
1534 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1535 
1536 	for_each_cpu(i, *mask) {
1537 		/* Skip all CPUs not part of this coregroup */
1538 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1539 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1540 			cpumask_andnot(*mask, *mask, submask_fn(i));
1541 		} else {
1542 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1543 		}
1544 	}
1545 }
1546 
1547 static void add_cpu_to_masks(int cpu)
1548 {
1549 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1550 	int first_thread = cpu_first_thread_sibling(cpu);
1551 	cpumask_var_t mask;
1552 	int chip_id = -1;
1553 	bool ret;
1554 	int i;
1555 
1556 	/*
1557 	 * This CPU will not be in the online mask yet so we need to manually
1558 	 * add it to it's own thread sibling mask.
1559 	 */
1560 	map_cpu_to_node(cpu, cpu_to_node(cpu));
1561 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1562 	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1563 
1564 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1565 		if (cpu_online(i))
1566 			set_cpus_related(i, cpu, cpu_sibling_mask);
1567 
1568 	add_cpu_to_smallcore_masks(cpu);
1569 
1570 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1571 	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1572 	update_mask_by_l2(cpu, &mask);
1573 
1574 	if (has_coregroup_support())
1575 		update_coregroup_mask(cpu, &mask);
1576 
1577 	if (chip_id_lookup_table && ret)
1578 		chip_id = cpu_to_chip_id(cpu);
1579 
1580 	if (shared_caches)
1581 		submask_fn = cpu_l2_cache_mask;
1582 
1583 	/* Update core_mask with all the CPUs that are part of submask */
1584 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1585 
1586 	/* Skip all CPUs already part of current CPU core mask */
1587 	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1588 
1589 	/* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1590 	if (chip_id == -1)
1591 		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1592 
1593 	for_each_cpu(i, mask) {
1594 		if (chip_id == cpu_to_chip_id(i)) {
1595 			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1596 			cpumask_andnot(mask, mask, submask_fn(i));
1597 		} else {
1598 			cpumask_andnot(mask, mask, cpu_core_mask(i));
1599 		}
1600 	}
1601 
1602 	free_cpumask_var(mask);
1603 }
1604 
1605 /* Activate a secondary processor. */
1606 void start_secondary(void *unused)
1607 {
1608 	unsigned int cpu = raw_smp_processor_id();
1609 
1610 	/* PPC64 calls setup_kup() in early_setup_secondary() */
1611 	if (IS_ENABLED(CONFIG_PPC32))
1612 		setup_kup();
1613 
1614 	mmgrab(&init_mm);
1615 	current->active_mm = &init_mm;
1616 
1617 	smp_store_cpu_info(cpu);
1618 	set_dec(tb_ticks_per_jiffy);
1619 	rcu_cpu_starting(cpu);
1620 	cpu_callin_map[cpu] = 1;
1621 
1622 	if (smp_ops->setup_cpu)
1623 		smp_ops->setup_cpu(cpu);
1624 	if (smp_ops->take_timebase)
1625 		smp_ops->take_timebase();
1626 
1627 	secondary_cpu_time_init();
1628 
1629 #ifdef CONFIG_PPC64
1630 	if (system_state == SYSTEM_RUNNING)
1631 		vdso_data->processorCount++;
1632 
1633 	vdso_getcpu_init();
1634 #endif
1635 	set_numa_node(numa_cpu_lookup_table[cpu]);
1636 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1637 
1638 	/* Update topology CPU masks */
1639 	add_cpu_to_masks(cpu);
1640 
1641 	/*
1642 	 * Check for any shared caches. Note that this must be done on a
1643 	 * per-core basis because one core in the pair might be disabled.
1644 	 */
1645 	if (!shared_caches) {
1646 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1647 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1648 
1649 		if (has_big_cores)
1650 			sibling_mask = cpu_smallcore_mask;
1651 
1652 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1653 			shared_caches = true;
1654 	}
1655 
1656 	smp_wmb();
1657 	notify_cpu_starting(cpu);
1658 	set_cpu_online(cpu, true);
1659 
1660 	boot_init_stack_canary();
1661 
1662 	local_irq_enable();
1663 
1664 	/* We can enable ftrace for secondary cpus now */
1665 	this_cpu_enable_ftrace();
1666 
1667 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1668 
1669 	BUG();
1670 }
1671 
1672 static void __init fixup_topology(void)
1673 {
1674 	int i;
1675 
1676 #ifdef CONFIG_SCHED_SMT
1677 	if (has_big_cores) {
1678 		pr_info("Big cores detected but using small core scheduling\n");
1679 		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1680 	}
1681 #endif
1682 
1683 	if (!has_coregroup_support())
1684 		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1685 
1686 	/*
1687 	 * Try to consolidate topology levels here instead of
1688 	 * allowing scheduler to degenerate.
1689 	 * - Dont consolidate if masks are different.
1690 	 * - Dont consolidate if sd_flags exists and are different.
1691 	 */
1692 	for (i = 1; i <= die_idx; i++) {
1693 		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1694 			continue;
1695 
1696 		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1697 				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1698 			continue;
1699 
1700 		if (!powerpc_topology[i - 1].sd_flags)
1701 			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1702 
1703 		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1704 		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1705 #ifdef CONFIG_SCHED_DEBUG
1706 		powerpc_topology[i].name = powerpc_topology[i + 1].name;
1707 #endif
1708 	}
1709 }
1710 
1711 void __init smp_cpus_done(unsigned int max_cpus)
1712 {
1713 	/*
1714 	 * We are running pinned to the boot CPU, see rest_init().
1715 	 */
1716 	if (smp_ops && smp_ops->setup_cpu)
1717 		smp_ops->setup_cpu(boot_cpuid);
1718 
1719 	if (smp_ops && smp_ops->bringup_done)
1720 		smp_ops->bringup_done();
1721 
1722 	dump_numa_cpu_topology();
1723 
1724 	fixup_topology();
1725 	set_sched_topology(powerpc_topology);
1726 }
1727 
1728 #ifdef CONFIG_HOTPLUG_CPU
1729 int __cpu_disable(void)
1730 {
1731 	int cpu = smp_processor_id();
1732 	int err;
1733 
1734 	if (!smp_ops->cpu_disable)
1735 		return -ENOSYS;
1736 
1737 	this_cpu_disable_ftrace();
1738 
1739 	err = smp_ops->cpu_disable();
1740 	if (err)
1741 		return err;
1742 
1743 	/* Update sibling maps */
1744 	remove_cpu_from_masks(cpu);
1745 
1746 	return 0;
1747 }
1748 
1749 void __cpu_die(unsigned int cpu)
1750 {
1751 	if (smp_ops->cpu_die)
1752 		smp_ops->cpu_die(cpu);
1753 }
1754 
1755 void arch_cpu_idle_dead(void)
1756 {
1757 	/*
1758 	 * Disable on the down path. This will be re-enabled by
1759 	 * start_secondary() via start_secondary_resume() below
1760 	 */
1761 	this_cpu_disable_ftrace();
1762 
1763 	if (smp_ops->cpu_offline_self)
1764 		smp_ops->cpu_offline_self();
1765 
1766 	/* If we return, we re-enter start_secondary */
1767 	start_secondary_resume();
1768 }
1769 
1770 #endif
1771