xref: /linux/arch/powerpc/kernel/smp.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 #include <linux/kexec.h>
39 
40 #include <asm/ptrace.h>
41 #include <linux/atomic.h>
42 #include <asm/irq.h>
43 #include <asm/hw_irq.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/dbell.h>
46 #include <asm/page.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cputhreads.h>
52 #include <asm/cputable.h>
53 #include <asm/mpic.h>
54 #include <asm/vdso_datapage.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/paca.h>
57 #endif
58 #include <asm/vdso.h>
59 #include <asm/debug.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
62 #include <asm/kup.h>
63 #include <asm/fadump.h>
64 
65 #include <trace/events/ipi.h>
66 
67 #ifdef DEBUG
68 #include <asm/udbg.h>
69 #define DBG(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
73 
74 #ifdef CONFIG_HOTPLUG_CPU
75 /* State of each CPU during hotplug phases */
76 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
77 #endif
78 
79 struct task_struct *secondary_current;
80 bool has_big_cores __ro_after_init;
81 bool coregroup_enabled __ro_after_init;
82 bool thread_group_shares_l2 __ro_after_init;
83 bool thread_group_shares_l3 __ro_after_init;
84 
85 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
86 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
87 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
88 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
89 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
90 
91 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
94 EXPORT_SYMBOL_GPL(has_big_cores);
95 
96 #define MAX_THREAD_LIST_SIZE	8
97 #define THREAD_GROUP_SHARE_L1   1
98 #define THREAD_GROUP_SHARE_L2_L3 2
99 struct thread_groups {
100 	unsigned int property;
101 	unsigned int nr_groups;
102 	unsigned int threads_per_group;
103 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
104 };
105 
106 /* Maximum number of properties that groups of threads within a core can share */
107 #define MAX_THREAD_GROUP_PROPERTIES 2
108 
109 struct thread_groups_list {
110 	unsigned int nr_properties;
111 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
112 };
113 
114 static struct thread_groups_list tgl[NR_CPUS] __initdata;
115 /*
116  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
117  * the set its siblings that share the L1-cache.
118  */
119 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
120 
121 /*
122  * On some big-cores system, thread_group_l2_cache_map for each CPU
123  * corresponds to the set its siblings within the core that share the
124  * L2-cache.
125  */
126 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
127 
128 /*
129  * On P10, thread_group_l3_cache_map for each CPU is equal to the
130  * thread_group_l2_cache_map
131  */
132 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
133 
134 /* SMP operations for this machine */
135 struct smp_ops_t *smp_ops;
136 
137 /* Can't be static due to PowerMac hackery */
138 volatile unsigned int cpu_callin_map[NR_CPUS];
139 
140 int smt_enabled_at_boot = 1;
141 
142 /*
143  * Returns 1 if the specified cpu should be brought up during boot.
144  * Used to inhibit booting threads if they've been disabled or
145  * limited on the command line
146  */
147 int smp_generic_cpu_bootable(unsigned int nr)
148 {
149 	/* Special case - we inhibit secondary thread startup
150 	 * during boot if the user requests it.
151 	 */
152 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
153 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
154 			return 0;
155 		if (smt_enabled_at_boot
156 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
157 			return 0;
158 	}
159 
160 	return 1;
161 }
162 
163 
164 #ifdef CONFIG_PPC64
165 int smp_generic_kick_cpu(int nr)
166 {
167 	if (nr < 0 || nr >= nr_cpu_ids)
168 		return -EINVAL;
169 
170 	/*
171 	 * The processor is currently spinning, waiting for the
172 	 * cpu_start field to become non-zero After we set cpu_start,
173 	 * the processor will continue on to secondary_start
174 	 */
175 	if (!paca_ptrs[nr]->cpu_start) {
176 		paca_ptrs[nr]->cpu_start = 1;
177 		smp_mb();
178 		return 0;
179 	}
180 
181 #ifdef CONFIG_HOTPLUG_CPU
182 	/*
183 	 * Ok it's not there, so it might be soft-unplugged, let's
184 	 * try to bring it back
185 	 */
186 	generic_set_cpu_up(nr);
187 	smp_wmb();
188 	smp_send_reschedule(nr);
189 #endif /* CONFIG_HOTPLUG_CPU */
190 
191 	return 0;
192 }
193 #endif /* CONFIG_PPC64 */
194 
195 static irqreturn_t call_function_action(int irq, void *data)
196 {
197 	generic_smp_call_function_interrupt();
198 	return IRQ_HANDLED;
199 }
200 
201 static irqreturn_t reschedule_action(int irq, void *data)
202 {
203 	scheduler_ipi();
204 	return IRQ_HANDLED;
205 }
206 
207 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
208 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
209 {
210 	timer_broadcast_interrupt();
211 	return IRQ_HANDLED;
212 }
213 #endif
214 
215 #ifdef CONFIG_NMI_IPI
216 static irqreturn_t nmi_ipi_action(int irq, void *data)
217 {
218 	smp_handle_nmi_ipi(get_irq_regs());
219 	return IRQ_HANDLED;
220 }
221 #endif
222 
223 static irq_handler_t smp_ipi_action[] = {
224 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
225 	[PPC_MSG_RESCHEDULE] = reschedule_action,
226 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
227 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
228 #endif
229 #ifdef CONFIG_NMI_IPI
230 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
231 #endif
232 };
233 
234 /*
235  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
236  * than going through the call function infrastructure, and strongly
237  * serialized, so it is more appropriate for debugging.
238  */
239 const char *smp_ipi_name[] = {
240 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
241 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
244 #endif
245 #ifdef CONFIG_NMI_IPI
246 	[PPC_MSG_NMI_IPI] = "nmi ipi",
247 #endif
248 };
249 
250 /* optional function to request ipi, for controllers with >= 4 ipis */
251 int smp_request_message_ipi(int virq, int msg)
252 {
253 	int err;
254 
255 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
256 		return -EINVAL;
257 #ifndef CONFIG_NMI_IPI
258 	if (msg == PPC_MSG_NMI_IPI)
259 		return 1;
260 #endif
261 
262 	err = request_irq(virq, smp_ipi_action[msg],
263 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
264 			  smp_ipi_name[msg], NULL);
265 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
266 		virq, smp_ipi_name[msg], err);
267 
268 	return err;
269 }
270 
271 #ifdef CONFIG_PPC_SMP_MUXED_IPI
272 struct cpu_messages {
273 	long messages;			/* current messages */
274 };
275 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
276 
277 void smp_muxed_ipi_set_message(int cpu, int msg)
278 {
279 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
280 	char *message = (char *)&info->messages;
281 
282 	/*
283 	 * Order previous accesses before accesses in the IPI handler.
284 	 */
285 	smp_mb();
286 	WRITE_ONCE(message[msg], 1);
287 }
288 
289 void smp_muxed_ipi_message_pass(int cpu, int msg)
290 {
291 	smp_muxed_ipi_set_message(cpu, msg);
292 
293 	/*
294 	 * cause_ipi functions are required to include a full barrier
295 	 * before doing whatever causes the IPI.
296 	 */
297 	smp_ops->cause_ipi(cpu);
298 }
299 
300 #ifdef __BIG_ENDIAN__
301 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
302 #else
303 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
304 #endif
305 
306 irqreturn_t smp_ipi_demux(void)
307 {
308 	mb();	/* order any irq clear */
309 
310 	return smp_ipi_demux_relaxed();
311 }
312 
313 /* sync-free variant. Callers should ensure synchronization */
314 irqreturn_t smp_ipi_demux_relaxed(void)
315 {
316 	struct cpu_messages *info;
317 	unsigned long all;
318 
319 	info = this_cpu_ptr(&ipi_message);
320 	do {
321 		all = xchg(&info->messages, 0);
322 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
323 		/*
324 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
325 		 * before PPC_MSG_CALL_FUNCTION messages because when
326 		 * a VM is destroyed, we call kick_all_cpus_sync()
327 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
328 		 * messages have completed before we free any VCPUs.
329 		 */
330 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
331 			kvmppc_xics_ipi_action();
332 #endif
333 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
334 			generic_smp_call_function_interrupt();
335 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
336 			scheduler_ipi();
337 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
338 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
339 			timer_broadcast_interrupt();
340 #endif
341 #ifdef CONFIG_NMI_IPI
342 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
343 			nmi_ipi_action(0, NULL);
344 #endif
345 	} while (READ_ONCE(info->messages));
346 
347 	return IRQ_HANDLED;
348 }
349 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
350 
351 static inline void do_message_pass(int cpu, int msg)
352 {
353 	if (smp_ops->message_pass)
354 		smp_ops->message_pass(cpu, msg);
355 #ifdef CONFIG_PPC_SMP_MUXED_IPI
356 	else
357 		smp_muxed_ipi_message_pass(cpu, msg);
358 #endif
359 }
360 
361 void arch_smp_send_reschedule(int cpu)
362 {
363 	if (likely(smp_ops))
364 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
365 }
366 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
367 
368 void arch_send_call_function_single_ipi(int cpu)
369 {
370 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
371 }
372 
373 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
374 {
375 	unsigned int cpu;
376 
377 	for_each_cpu(cpu, mask)
378 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
379 }
380 
381 #ifdef CONFIG_NMI_IPI
382 
383 /*
384  * "NMI IPI" system.
385  *
386  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
387  * a running system. They can be used for crash, debug, halt/reboot, etc.
388  *
389  * The IPI call waits with interrupts disabled until all targets enter the
390  * NMI handler, then returns. Subsequent IPIs can be issued before targets
391  * have returned from their handlers, so there is no guarantee about
392  * concurrency or re-entrancy.
393  *
394  * A new NMI can be issued before all targets exit the handler.
395  *
396  * The IPI call may time out without all targets entering the NMI handler.
397  * In that case, there is some logic to recover (and ignore subsequent
398  * NMI interrupts that may eventually be raised), but the platform interrupt
399  * handler may not be able to distinguish this from other exception causes,
400  * which may cause a crash.
401  */
402 
403 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
404 static struct cpumask nmi_ipi_pending_mask;
405 static bool nmi_ipi_busy = false;
406 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
407 
408 noinstr static void nmi_ipi_lock_start(unsigned long *flags)
409 {
410 	raw_local_irq_save(*flags);
411 	hard_irq_disable();
412 	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
413 		raw_local_irq_restore(*flags);
414 		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
415 		raw_local_irq_save(*flags);
416 		hard_irq_disable();
417 	}
418 }
419 
420 noinstr static void nmi_ipi_lock(void)
421 {
422 	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
423 		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
424 }
425 
426 noinstr static void nmi_ipi_unlock(void)
427 {
428 	smp_mb();
429 	WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
430 	raw_atomic_set(&__nmi_ipi_lock, 0);
431 }
432 
433 noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
434 {
435 	nmi_ipi_unlock();
436 	raw_local_irq_restore(*flags);
437 }
438 
439 /*
440  * Platform NMI handler calls this to ack
441  */
442 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
443 {
444 	void (*fn)(struct pt_regs *) = NULL;
445 	unsigned long flags;
446 	int me = raw_smp_processor_id();
447 	int ret = 0;
448 
449 	/*
450 	 * Unexpected NMIs are possible here because the interrupt may not
451 	 * be able to distinguish NMI IPIs from other types of NMIs, or
452 	 * because the caller may have timed out.
453 	 */
454 	nmi_ipi_lock_start(&flags);
455 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
456 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
457 		fn = READ_ONCE(nmi_ipi_function);
458 		WARN_ON_ONCE(!fn);
459 		ret = 1;
460 	}
461 	nmi_ipi_unlock_end(&flags);
462 
463 	if (fn)
464 		fn(regs);
465 
466 	return ret;
467 }
468 
469 static void do_smp_send_nmi_ipi(int cpu, bool safe)
470 {
471 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
472 		return;
473 
474 	if (cpu >= 0) {
475 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
476 	} else {
477 		int c;
478 
479 		for_each_online_cpu(c) {
480 			if (c == raw_smp_processor_id())
481 				continue;
482 			do_message_pass(c, PPC_MSG_NMI_IPI);
483 		}
484 	}
485 }
486 
487 /*
488  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
489  * - fn is the target callback function.
490  * - delay_us > 0 is the delay before giving up waiting for targets to
491  *   begin executing the handler, == 0 specifies indefinite delay.
492  */
493 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
494 				u64 delay_us, bool safe)
495 {
496 	unsigned long flags;
497 	int me = raw_smp_processor_id();
498 	int ret = 1;
499 
500 	BUG_ON(cpu == me);
501 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
502 
503 	if (unlikely(!smp_ops))
504 		return 0;
505 
506 	nmi_ipi_lock_start(&flags);
507 	while (nmi_ipi_busy) {
508 		nmi_ipi_unlock_end(&flags);
509 		spin_until_cond(!nmi_ipi_busy);
510 		nmi_ipi_lock_start(&flags);
511 	}
512 	nmi_ipi_busy = true;
513 	nmi_ipi_function = fn;
514 
515 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
516 
517 	if (cpu < 0) {
518 		/* ALL_OTHERS */
519 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
520 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
521 	} else {
522 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
523 	}
524 
525 	nmi_ipi_unlock();
526 
527 	/* Interrupts remain hard disabled */
528 
529 	do_smp_send_nmi_ipi(cpu, safe);
530 
531 	nmi_ipi_lock();
532 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
533 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
534 		nmi_ipi_unlock();
535 		udelay(1);
536 		nmi_ipi_lock();
537 		if (delay_us) {
538 			delay_us--;
539 			if (!delay_us)
540 				break;
541 		}
542 	}
543 
544 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
545 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
546 		ret = 0;
547 		cpumask_clear(&nmi_ipi_pending_mask);
548 	}
549 
550 	nmi_ipi_function = NULL;
551 	nmi_ipi_busy = false;
552 
553 	nmi_ipi_unlock_end(&flags);
554 
555 	return ret;
556 }
557 
558 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
559 {
560 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
561 }
562 
563 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
564 {
565 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
566 }
567 #endif /* CONFIG_NMI_IPI */
568 
569 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
570 void tick_broadcast(const struct cpumask *mask)
571 {
572 	unsigned int cpu;
573 
574 	for_each_cpu(cpu, mask)
575 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
576 }
577 #endif
578 
579 #ifdef CONFIG_DEBUGGER
580 static void debugger_ipi_callback(struct pt_regs *regs)
581 {
582 	debugger_ipi(regs);
583 }
584 
585 void smp_send_debugger_break(void)
586 {
587 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
588 }
589 #endif
590 
591 #ifdef CONFIG_CRASH_DUMP
592 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
593 {
594 	int cpu;
595 
596 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
597 	if (kdump_in_progress() && crash_wake_offline) {
598 		for_each_present_cpu(cpu) {
599 			if (cpu_online(cpu))
600 				continue;
601 			/*
602 			 * crash_ipi_callback will wait for
603 			 * all cpus, including offline CPUs.
604 			 * We don't care about nmi_ipi_function.
605 			 * Offline cpus will jump straight into
606 			 * crash_ipi_callback, we can skip the
607 			 * entire NMI dance and waiting for
608 			 * cpus to clear pending mask, etc.
609 			 */
610 			do_smp_send_nmi_ipi(cpu, false);
611 		}
612 	}
613 }
614 #endif
615 
616 void crash_smp_send_stop(void)
617 {
618 	static bool stopped = false;
619 
620 	/*
621 	 * In case of fadump, register data for all CPUs is captured by f/w
622 	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
623 	 * this rtas call to avoid tricky post processing of those CPUs'
624 	 * backtraces.
625 	 */
626 	if (should_fadump_crash())
627 		return;
628 
629 	if (stopped)
630 		return;
631 
632 	stopped = true;
633 
634 #ifdef CONFIG_CRASH_DUMP
635 	if (kexec_crash_image) {
636 		crash_kexec_prepare();
637 		return;
638 	}
639 #endif
640 
641 	smp_send_stop();
642 }
643 
644 #ifdef CONFIG_NMI_IPI
645 static void nmi_stop_this_cpu(struct pt_regs *regs)
646 {
647 	/*
648 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
649 	 */
650 	set_cpu_online(smp_processor_id(), false);
651 
652 	spin_begin();
653 	while (1)
654 		spin_cpu_relax();
655 }
656 
657 void smp_send_stop(void)
658 {
659 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
660 }
661 
662 #else /* CONFIG_NMI_IPI */
663 
664 static void stop_this_cpu(void *dummy)
665 {
666 	hard_irq_disable();
667 
668 	/*
669 	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
670 	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
671 	 * to know other CPUs are offline before it breaks locks to flush
672 	 * printk buffers, in case we panic()ed while holding the lock.
673 	 */
674 	set_cpu_online(smp_processor_id(), false);
675 
676 	spin_begin();
677 	while (1)
678 		spin_cpu_relax();
679 }
680 
681 void smp_send_stop(void)
682 {
683 	static bool stopped = false;
684 
685 	/*
686 	 * Prevent waiting on csd lock from a previous smp_send_stop.
687 	 * This is racy, but in general callers try to do the right
688 	 * thing and only fire off one smp_send_stop (e.g., see
689 	 * kernel/panic.c)
690 	 */
691 	if (stopped)
692 		return;
693 
694 	stopped = true;
695 
696 	smp_call_function(stop_this_cpu, NULL, 0);
697 }
698 #endif /* CONFIG_NMI_IPI */
699 
700 static struct task_struct *current_set[NR_CPUS];
701 
702 static void smp_store_cpu_info(int id)
703 {
704 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
705 #ifdef CONFIG_PPC_E500
706 	per_cpu(next_tlbcam_idx, id)
707 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
708 #endif
709 }
710 
711 /*
712  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
713  * rather than just passing around the cpumask we pass around a function that
714  * returns the that cpumask for the given CPU.
715  */
716 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
717 {
718 	cpumask_set_cpu(i, get_cpumask(j));
719 	cpumask_set_cpu(j, get_cpumask(i));
720 }
721 
722 #ifdef CONFIG_HOTPLUG_CPU
723 static void set_cpus_unrelated(int i, int j,
724 		struct cpumask *(*get_cpumask)(int))
725 {
726 	cpumask_clear_cpu(i, get_cpumask(j));
727 	cpumask_clear_cpu(j, get_cpumask(i));
728 }
729 #endif
730 
731 /*
732  * Extends set_cpus_related. Instead of setting one CPU at a time in
733  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
734  */
735 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
736 				struct cpumask *(*dstmask)(int))
737 {
738 	struct cpumask *mask;
739 	int k;
740 
741 	mask = srcmask(j);
742 	for_each_cpu(k, srcmask(i))
743 		cpumask_or(dstmask(k), dstmask(k), mask);
744 
745 	if (i == j)
746 		return;
747 
748 	mask = srcmask(i);
749 	for_each_cpu(k, srcmask(j))
750 		cpumask_or(dstmask(k), dstmask(k), mask);
751 }
752 
753 /*
754  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
755  *                      property for the CPU device node @dn and stores
756  *                      the parsed output in the thread_groups_list
757  *                      structure @tglp.
758  *
759  * @dn: The device node of the CPU device.
760  * @tglp: Pointer to a thread group list structure into which the parsed
761  *      output of "ibm,thread-groups" is stored.
762  *
763  * ibm,thread-groups[0..N-1] array defines which group of threads in
764  * the CPU-device node can be grouped together based on the property.
765  *
766  * This array can represent thread groupings for multiple properties.
767  *
768  * ibm,thread-groups[i + 0] tells us the property based on which the
769  * threads are being grouped together. If this value is 1, it implies
770  * that the threads in the same group share L1, translation cache. If
771  * the value is 2, it implies that the threads in the same group share
772  * the same L2 cache.
773  *
774  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
775  * property ibm,thread-groups[i]
776  *
777  * ibm,thread-groups[i+2] tells us the number of threads in each such
778  * group.
779  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
780  *
781  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
782  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
783  * the grouping.
784  *
785  * Example:
786  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
787  * This can be decomposed up into two consecutive arrays:
788  * a) [1,2,4,8,10,12,14,9,11,13,15]
789  * b) [2,2,4,8,10,12,14,9,11,13,15]
790  *
791  * where in,
792  *
793  * a) provides information of Property "1" being shared by "2" groups,
794  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
795  *  the first group is {8,10,12,14} and the
796  *  "ibm,ppc-interrupt-server#s" of the second group is
797  *  {9,11,13,15}. Property "1" is indicative of the thread in the
798  *  group sharing L1 cache, translation cache and Instruction Data
799  *  flow.
800  *
801  * b) provides information of Property "2" being shared by "2" groups,
802  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
803  *  the first group is {8,10,12,14} and the
804  *  "ibm,ppc-interrupt-server#s" of the second group is
805  *  {9,11,13,15}. Property "2" indicates that the threads in each
806  *  group share the L2-cache.
807  *
808  * Returns 0 on success, -EINVAL if the property does not exist,
809  * -ENODATA if property does not have a value, and -EOVERFLOW if the
810  * property data isn't large enough.
811  */
812 static int parse_thread_groups(struct device_node *dn,
813 			       struct thread_groups_list *tglp)
814 {
815 	unsigned int property_idx = 0;
816 	u32 *thread_group_array;
817 	size_t total_threads;
818 	int ret = 0, count;
819 	u32 *thread_list;
820 	int i = 0;
821 
822 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
823 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
824 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
825 					 thread_group_array, count);
826 	if (ret)
827 		goto out_free;
828 
829 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
830 		int j;
831 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
832 
833 		tg->property = thread_group_array[i];
834 		tg->nr_groups = thread_group_array[i + 1];
835 		tg->threads_per_group = thread_group_array[i + 2];
836 		total_threads = tg->nr_groups * tg->threads_per_group;
837 
838 		thread_list = &thread_group_array[i + 3];
839 
840 		for (j = 0; j < total_threads; j++)
841 			tg->thread_list[j] = thread_list[j];
842 		i = i + 3 + total_threads;
843 	}
844 
845 	tglp->nr_properties = property_idx;
846 
847 out_free:
848 	kfree(thread_group_array);
849 	return ret;
850 }
851 
852 /*
853  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
854  *                              that @cpu belongs to.
855  *
856  * @cpu : The logical CPU whose thread group is being searched.
857  * @tg : The thread-group structure of the CPU node which @cpu belongs
858  *       to.
859  *
860  * Returns the index to tg->thread_list that points to the start
861  * of the thread_group that @cpu belongs to.
862  *
863  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
864  * tg->thread_list.
865  */
866 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
867 {
868 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
869 	int i, j;
870 
871 	for (i = 0; i < tg->nr_groups; i++) {
872 		int group_start = i * tg->threads_per_group;
873 
874 		for (j = 0; j < tg->threads_per_group; j++) {
875 			int idx = group_start + j;
876 
877 			if (tg->thread_list[idx] == hw_cpu_id)
878 				return group_start;
879 		}
880 	}
881 
882 	return -1;
883 }
884 
885 static struct thread_groups *__init get_thread_groups(int cpu,
886 						      int group_property,
887 						      int *err)
888 {
889 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
890 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
891 	struct thread_groups *tg = NULL;
892 	int i;
893 	*err = 0;
894 
895 	if (!dn) {
896 		*err = -ENODATA;
897 		return NULL;
898 	}
899 
900 	if (!cpu_tgl->nr_properties) {
901 		*err = parse_thread_groups(dn, cpu_tgl);
902 		if (*err)
903 			goto out;
904 	}
905 
906 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
907 		if (cpu_tgl->property_tgs[i].property == group_property) {
908 			tg = &cpu_tgl->property_tgs[i];
909 			break;
910 		}
911 	}
912 
913 	if (!tg)
914 		*err = -EINVAL;
915 out:
916 	of_node_put(dn);
917 	return tg;
918 }
919 
920 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
921 					       int cpu, int cpu_group_start)
922 {
923 	int first_thread = cpu_first_thread_sibling(cpu);
924 	int i;
925 
926 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
927 
928 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
929 		int i_group_start = get_cpu_thread_group_start(i, tg);
930 
931 		if (unlikely(i_group_start == -1)) {
932 			WARN_ON_ONCE(1);
933 			return -ENODATA;
934 		}
935 
936 		if (i_group_start == cpu_group_start)
937 			cpumask_set_cpu(i, *mask);
938 	}
939 
940 	return 0;
941 }
942 
943 static int __init init_thread_group_cache_map(int cpu, int cache_property)
944 
945 {
946 	int cpu_group_start = -1, err = 0;
947 	struct thread_groups *tg = NULL;
948 	cpumask_var_t *mask = NULL;
949 
950 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
951 	    cache_property != THREAD_GROUP_SHARE_L2_L3)
952 		return -EINVAL;
953 
954 	tg = get_thread_groups(cpu, cache_property, &err);
955 
956 	if (!tg)
957 		return err;
958 
959 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
960 
961 	if (unlikely(cpu_group_start == -1)) {
962 		WARN_ON_ONCE(1);
963 		return -ENODATA;
964 	}
965 
966 	if (cache_property == THREAD_GROUP_SHARE_L1) {
967 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
968 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
969 	}
970 	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
971 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
972 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
973 		mask = &per_cpu(thread_group_l3_cache_map, cpu);
974 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
975 	}
976 
977 
978 	return 0;
979 }
980 
981 static bool shared_caches __ro_after_init;
982 
983 #ifdef CONFIG_SCHED_SMT
984 /* cpumask of CPUs with asymmetric SMT dependency */
985 static int powerpc_smt_flags(void)
986 {
987 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_LLC;
988 
989 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
990 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
991 		flags |= SD_ASYM_PACKING;
992 	}
993 	return flags;
994 }
995 #endif
996 
997 /*
998  * On shared processor LPARs scheduled on a big core (which has two or more
999  * independent thread groups per core), prefer lower numbered CPUs, so
1000  * that workload consolidates to lesser number of cores.
1001  */
1002 static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack);
1003 
1004 /*
1005  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1006  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1007  * since the migrated task remains cache hot. We want to take advantage of this
1008  * at the scheduler level so an extra topology level is required.
1009  */
1010 static int powerpc_shared_cache_flags(void)
1011 {
1012 	if (static_branch_unlikely(&splpar_asym_pack))
1013 		return SD_SHARE_LLC | SD_ASYM_PACKING;
1014 
1015 	return SD_SHARE_LLC;
1016 }
1017 
1018 static int powerpc_shared_proc_flags(void)
1019 {
1020 	if (static_branch_unlikely(&splpar_asym_pack))
1021 		return SD_ASYM_PACKING;
1022 
1023 	return 0;
1024 }
1025 
1026 /*
1027  * We can't just pass cpu_l2_cache_mask() directly because
1028  * returns a non-const pointer and the compiler barfs on that.
1029  */
1030 static const struct cpumask *shared_cache_mask(int cpu)
1031 {
1032 	return per_cpu(cpu_l2_cache_map, cpu);
1033 }
1034 
1035 #ifdef CONFIG_SCHED_SMT
1036 static const struct cpumask *smallcore_smt_mask(int cpu)
1037 {
1038 	return cpu_smallcore_mask(cpu);
1039 }
1040 #endif
1041 
1042 static struct cpumask *cpu_coregroup_mask(int cpu)
1043 {
1044 	return per_cpu(cpu_coregroup_map, cpu);
1045 }
1046 
1047 static bool has_coregroup_support(void)
1048 {
1049 	/* Coregroup identification not available on shared systems */
1050 	if (is_shared_processor())
1051 		return 0;
1052 
1053 	return coregroup_enabled;
1054 }
1055 
1056 static const struct cpumask *cpu_mc_mask(int cpu)
1057 {
1058 	return cpu_coregroup_mask(cpu);
1059 }
1060 
1061 static int __init init_big_cores(void)
1062 {
1063 	int cpu;
1064 
1065 	for_each_possible_cpu(cpu) {
1066 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1067 
1068 		if (err)
1069 			return err;
1070 
1071 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1072 					GFP_KERNEL,
1073 					cpu_to_node(cpu));
1074 	}
1075 
1076 	has_big_cores = true;
1077 
1078 	for_each_possible_cpu(cpu) {
1079 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1080 
1081 		if (err)
1082 			return err;
1083 	}
1084 
1085 	thread_group_shares_l2 = true;
1086 	thread_group_shares_l3 = true;
1087 	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1088 
1089 	return 0;
1090 }
1091 
1092 void __init smp_prepare_cpus(unsigned int max_cpus)
1093 {
1094 	unsigned int cpu, num_threads;
1095 
1096 	DBG("smp_prepare_cpus\n");
1097 
1098 	/*
1099 	 * setup_cpu may need to be called on the boot cpu. We haven't
1100 	 * spun any cpus up but lets be paranoid.
1101 	 */
1102 	BUG_ON(boot_cpuid != smp_processor_id());
1103 
1104 	/* Fixup boot cpu */
1105 	smp_store_cpu_info(boot_cpuid);
1106 	cpu_callin_map[boot_cpuid] = 1;
1107 
1108 	for_each_possible_cpu(cpu) {
1109 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1110 					GFP_KERNEL, cpu_to_node(cpu));
1111 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1112 					GFP_KERNEL, cpu_to_node(cpu));
1113 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1114 					GFP_KERNEL, cpu_to_node(cpu));
1115 		if (has_coregroup_support())
1116 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1117 						GFP_KERNEL, cpu_to_node(cpu));
1118 
1119 #ifdef CONFIG_NUMA
1120 		/*
1121 		 * numa_node_id() works after this.
1122 		 */
1123 		if (cpu_present(cpu)) {
1124 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1125 			set_cpu_numa_mem(cpu,
1126 				local_memory_node(numa_cpu_lookup_table[cpu]));
1127 		}
1128 #endif
1129 	}
1130 
1131 	/* Init the cpumasks so the boot CPU is related to itself */
1132 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1133 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1134 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1135 
1136 	if (has_coregroup_support())
1137 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1138 
1139 	init_big_cores();
1140 	if (has_big_cores) {
1141 		cpumask_set_cpu(boot_cpuid,
1142 				cpu_smallcore_mask(boot_cpuid));
1143 	}
1144 
1145 	if (cpu_to_chip_id(boot_cpuid) != -1) {
1146 		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1147 
1148 		/*
1149 		 * All threads of a core will all belong to the same core,
1150 		 * chip_id_lookup_table will have one entry per core.
1151 		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1152 		 * other CPUs, will also not have chip-id.
1153 		 */
1154 		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1155 		if (chip_id_lookup_table)
1156 			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1157 	}
1158 
1159 	if (smp_ops && smp_ops->probe)
1160 		smp_ops->probe();
1161 
1162 	// Initalise the generic SMT topology support
1163 	num_threads = 1;
1164 	if (smt_enabled_at_boot)
1165 		num_threads = smt_enabled_at_boot;
1166 	cpu_smt_set_num_threads(num_threads, threads_per_core);
1167 }
1168 
1169 void __init smp_prepare_boot_cpu(void)
1170 {
1171 	BUG_ON(smp_processor_id() != boot_cpuid);
1172 #ifdef CONFIG_PPC64
1173 	paca_ptrs[boot_cpuid]->__current = current;
1174 #endif
1175 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1176 	current_set[boot_cpuid] = current;
1177 }
1178 
1179 #ifdef CONFIG_HOTPLUG_CPU
1180 
1181 int generic_cpu_disable(void)
1182 {
1183 	unsigned int cpu = smp_processor_id();
1184 
1185 	if (cpu == boot_cpuid)
1186 		return -EBUSY;
1187 
1188 	set_cpu_online(cpu, false);
1189 #ifdef CONFIG_PPC64
1190 	vdso_data->processorCount--;
1191 #endif
1192 	/* Update affinity of all IRQs previously aimed at this CPU */
1193 	irq_migrate_all_off_this_cpu();
1194 
1195 	/*
1196 	 * Depending on the details of the interrupt controller, it's possible
1197 	 * that one of the interrupts we just migrated away from this CPU is
1198 	 * actually already pending on this CPU. If we leave it in that state
1199 	 * the interrupt will never be EOI'ed, and will never fire again. So
1200 	 * temporarily enable interrupts here, to allow any pending interrupt to
1201 	 * be received (and EOI'ed), before we take this CPU offline.
1202 	 */
1203 	local_irq_enable();
1204 	mdelay(1);
1205 	local_irq_disable();
1206 
1207 	return 0;
1208 }
1209 
1210 void generic_cpu_die(unsigned int cpu)
1211 {
1212 	int i;
1213 
1214 	for (i = 0; i < 100; i++) {
1215 		smp_rmb();
1216 		if (is_cpu_dead(cpu))
1217 			return;
1218 		msleep(100);
1219 	}
1220 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1221 }
1222 
1223 void generic_set_cpu_dead(unsigned int cpu)
1224 {
1225 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1226 }
1227 
1228 /*
1229  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1230  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1231  * which makes the delay in generic_cpu_die() not happen.
1232  */
1233 void generic_set_cpu_up(unsigned int cpu)
1234 {
1235 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1236 }
1237 
1238 int generic_check_cpu_restart(unsigned int cpu)
1239 {
1240 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1241 }
1242 
1243 int is_cpu_dead(unsigned int cpu)
1244 {
1245 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1246 }
1247 
1248 static bool secondaries_inhibited(void)
1249 {
1250 	return kvm_hv_mode_active();
1251 }
1252 
1253 #else /* HOTPLUG_CPU */
1254 
1255 #define secondaries_inhibited()		0
1256 
1257 #endif
1258 
1259 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1260 {
1261 #ifdef CONFIG_PPC64
1262 	paca_ptrs[cpu]->__current = idle;
1263 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1264 				 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1265 #endif
1266 	task_thread_info(idle)->cpu = cpu;
1267 	secondary_current = current_set[cpu] = idle;
1268 }
1269 
1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1271 {
1272 	const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1273 	const bool booting = system_state < SYSTEM_RUNNING;
1274 	const unsigned long hp_spin_ms = 1;
1275 	unsigned long deadline;
1276 	int rc;
1277 	const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1278 
1279 	/*
1280 	 * Don't allow secondary threads to come online if inhibited
1281 	 */
1282 	if (threads_per_core > 1 && secondaries_inhibited() &&
1283 	    cpu_thread_in_subcore(cpu))
1284 		return -EBUSY;
1285 
1286 	if (smp_ops == NULL ||
1287 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1288 		return -EINVAL;
1289 
1290 	cpu_idle_thread_init(cpu, tidle);
1291 
1292 	/*
1293 	 * The platform might need to allocate resources prior to bringing
1294 	 * up the CPU
1295 	 */
1296 	if (smp_ops->prepare_cpu) {
1297 		rc = smp_ops->prepare_cpu(cpu);
1298 		if (rc)
1299 			return rc;
1300 	}
1301 
1302 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1303 	 * hotplug
1304 	 */
1305 	cpu_callin_map[cpu] = 0;
1306 
1307 	/* The information for processor bringup must
1308 	 * be written out to main store before we release
1309 	 * the processor.
1310 	 */
1311 	smp_mb();
1312 
1313 	/* wake up cpus */
1314 	DBG("smp: kicking cpu %d\n", cpu);
1315 	rc = smp_ops->kick_cpu(cpu);
1316 	if (rc) {
1317 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1318 		return rc;
1319 	}
1320 
1321 	/*
1322 	 * At boot time, simply spin on the callin word until the
1323 	 * deadline passes.
1324 	 *
1325 	 * At run time, spin for an optimistic amount of time to avoid
1326 	 * sleeping in the common case.
1327 	 */
1328 	deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1329 	spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1330 
1331 	if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1332 		const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1333 		const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1334 
1335 		deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1336 		while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1337 			fsleep(sleep_interval_us);
1338 	}
1339 
1340 	if (!cpu_callin_map[cpu]) {
1341 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1342 		return -ENOENT;
1343 	}
1344 
1345 	DBG("Processor %u found.\n", cpu);
1346 
1347 	if (smp_ops->give_timebase)
1348 		smp_ops->give_timebase();
1349 
1350 	/* Wait until cpu puts itself in the online & active maps */
1351 	spin_until_cond(cpu_online(cpu));
1352 
1353 	return 0;
1354 }
1355 
1356 /* Return the value of the reg property corresponding to the given
1357  * logical cpu.
1358  */
1359 int cpu_to_core_id(int cpu)
1360 {
1361 	struct device_node *np;
1362 	int id = -1;
1363 
1364 	np = of_get_cpu_node(cpu, NULL);
1365 	if (!np)
1366 		goto out;
1367 
1368 	id = of_get_cpu_hwid(np, 0);
1369 out:
1370 	of_node_put(np);
1371 	return id;
1372 }
1373 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1374 
1375 /* Helper routines for cpu to core mapping */
1376 int cpu_core_index_of_thread(int cpu)
1377 {
1378 	return cpu >> threads_shift;
1379 }
1380 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1381 
1382 int cpu_first_thread_of_core(int core)
1383 {
1384 	return core << threads_shift;
1385 }
1386 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1387 
1388 /* Must be called when no change can occur to cpu_present_mask,
1389  * i.e. during cpu online or offline.
1390  */
1391 static struct device_node *cpu_to_l2cache(int cpu)
1392 {
1393 	struct device_node *np;
1394 	struct device_node *cache;
1395 
1396 	if (!cpu_present(cpu))
1397 		return NULL;
1398 
1399 	np = of_get_cpu_node(cpu, NULL);
1400 	if (np == NULL)
1401 		return NULL;
1402 
1403 	cache = of_find_next_cache_node(np);
1404 
1405 	of_node_put(np);
1406 
1407 	return cache;
1408 }
1409 
1410 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1411 {
1412 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1413 	struct device_node *l2_cache, *np;
1414 	int i;
1415 
1416 	if (has_big_cores)
1417 		submask_fn = cpu_smallcore_mask;
1418 
1419 	/*
1420 	 * If the threads in a thread-group share L2 cache, then the
1421 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1422 	 */
1423 	if (thread_group_shares_l2) {
1424 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1425 
1426 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1427 			if (cpu_online(i))
1428 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1429 		}
1430 
1431 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1432 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1433 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1434 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1435 				     cpu);
1436 		}
1437 
1438 		return true;
1439 	}
1440 
1441 	l2_cache = cpu_to_l2cache(cpu);
1442 	if (!l2_cache || !*mask) {
1443 		/* Assume only core siblings share cache with this CPU */
1444 		for_each_cpu(i, cpu_sibling_mask(cpu))
1445 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1446 
1447 		return false;
1448 	}
1449 
1450 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1451 
1452 	/* Update l2-cache mask with all the CPUs that are part of submask */
1453 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1454 
1455 	/* Skip all CPUs already part of current CPU l2-cache mask */
1456 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1457 
1458 	for_each_cpu(i, *mask) {
1459 		/*
1460 		 * when updating the marks the current CPU has not been marked
1461 		 * online, but we need to update the cache masks
1462 		 */
1463 		np = cpu_to_l2cache(i);
1464 
1465 		/* Skip all CPUs already part of current CPU l2-cache */
1466 		if (np == l2_cache) {
1467 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1468 			cpumask_andnot(*mask, *mask, submask_fn(i));
1469 		} else {
1470 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1471 		}
1472 
1473 		of_node_put(np);
1474 	}
1475 	of_node_put(l2_cache);
1476 
1477 	return true;
1478 }
1479 
1480 #ifdef CONFIG_HOTPLUG_CPU
1481 static void remove_cpu_from_masks(int cpu)
1482 {
1483 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1484 	int i;
1485 
1486 	unmap_cpu_from_node(cpu);
1487 
1488 	if (shared_caches)
1489 		mask_fn = cpu_l2_cache_mask;
1490 
1491 	for_each_cpu(i, mask_fn(cpu)) {
1492 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1493 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1494 		if (has_big_cores)
1495 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1496 	}
1497 
1498 	for_each_cpu(i, cpu_core_mask(cpu))
1499 		set_cpus_unrelated(cpu, i, cpu_core_mask);
1500 
1501 	if (has_coregroup_support()) {
1502 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1503 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1504 	}
1505 }
1506 #endif
1507 
1508 static inline void add_cpu_to_smallcore_masks(int cpu)
1509 {
1510 	int i;
1511 
1512 	if (!has_big_cores)
1513 		return;
1514 
1515 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1516 
1517 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1518 		if (cpu_online(i))
1519 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1520 	}
1521 }
1522 
1523 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1524 {
1525 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1526 	int coregroup_id = cpu_to_coregroup_id(cpu);
1527 	int i;
1528 
1529 	if (shared_caches)
1530 		submask_fn = cpu_l2_cache_mask;
1531 
1532 	if (!*mask) {
1533 		/* Assume only siblings are part of this CPU's coregroup */
1534 		for_each_cpu(i, submask_fn(cpu))
1535 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1536 
1537 		return;
1538 	}
1539 
1540 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1541 
1542 	/* Update coregroup mask with all the CPUs that are part of submask */
1543 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1544 
1545 	/* Skip all CPUs already part of coregroup mask */
1546 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1547 
1548 	for_each_cpu(i, *mask) {
1549 		/* Skip all CPUs not part of this coregroup */
1550 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1551 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1552 			cpumask_andnot(*mask, *mask, submask_fn(i));
1553 		} else {
1554 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1555 		}
1556 	}
1557 }
1558 
1559 static void add_cpu_to_masks(int cpu)
1560 {
1561 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1562 	int first_thread = cpu_first_thread_sibling(cpu);
1563 	cpumask_var_t mask;
1564 	int chip_id = -1;
1565 	bool ret;
1566 	int i;
1567 
1568 	/*
1569 	 * This CPU will not be in the online mask yet so we need to manually
1570 	 * add it to its own thread sibling mask.
1571 	 */
1572 	map_cpu_to_node(cpu, cpu_to_node(cpu));
1573 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1574 	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1575 
1576 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1577 		if (cpu_online(i))
1578 			set_cpus_related(i, cpu, cpu_sibling_mask);
1579 
1580 	add_cpu_to_smallcore_masks(cpu);
1581 
1582 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1583 	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1584 	update_mask_by_l2(cpu, &mask);
1585 
1586 	if (has_coregroup_support())
1587 		update_coregroup_mask(cpu, &mask);
1588 
1589 	if (chip_id_lookup_table && ret)
1590 		chip_id = cpu_to_chip_id(cpu);
1591 
1592 	if (shared_caches)
1593 		submask_fn = cpu_l2_cache_mask;
1594 
1595 	/* Update core_mask with all the CPUs that are part of submask */
1596 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1597 
1598 	/* Skip all CPUs already part of current CPU core mask */
1599 	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1600 
1601 	/* If chip_id is -1; limit the cpu_core_mask to within PKG */
1602 	if (chip_id == -1)
1603 		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1604 
1605 	for_each_cpu(i, mask) {
1606 		if (chip_id == cpu_to_chip_id(i)) {
1607 			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1608 			cpumask_andnot(mask, mask, submask_fn(i));
1609 		} else {
1610 			cpumask_andnot(mask, mask, cpu_core_mask(i));
1611 		}
1612 	}
1613 
1614 	free_cpumask_var(mask);
1615 }
1616 
1617 /* Activate a secondary processor. */
1618 __no_stack_protector
1619 void start_secondary(void *unused)
1620 {
1621 	unsigned int cpu = raw_smp_processor_id();
1622 
1623 	/* PPC64 calls setup_kup() in early_setup_secondary() */
1624 	if (IS_ENABLED(CONFIG_PPC32))
1625 		setup_kup();
1626 
1627 	mmgrab_lazy_tlb(&init_mm);
1628 	current->active_mm = &init_mm;
1629 	VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
1630 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
1631 	inc_mm_active_cpus(&init_mm);
1632 
1633 	smp_store_cpu_info(cpu);
1634 	set_dec(tb_ticks_per_jiffy);
1635 	rcutree_report_cpu_starting(cpu);
1636 	cpu_callin_map[cpu] = 1;
1637 
1638 	if (smp_ops->setup_cpu)
1639 		smp_ops->setup_cpu(cpu);
1640 	if (smp_ops->take_timebase)
1641 		smp_ops->take_timebase();
1642 
1643 	secondary_cpu_time_init();
1644 
1645 #ifdef CONFIG_PPC64
1646 	if (system_state == SYSTEM_RUNNING)
1647 		vdso_data->processorCount++;
1648 
1649 	vdso_getcpu_init();
1650 #endif
1651 	set_numa_node(numa_cpu_lookup_table[cpu]);
1652 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1653 
1654 	/* Update topology CPU masks */
1655 	add_cpu_to_masks(cpu);
1656 
1657 	/*
1658 	 * Check for any shared caches. Note that this must be done on a
1659 	 * per-core basis because one core in the pair might be disabled.
1660 	 */
1661 	if (!shared_caches) {
1662 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1663 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1664 
1665 		if (has_big_cores)
1666 			sibling_mask = cpu_smallcore_mask;
1667 
1668 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1669 			shared_caches = true;
1670 	}
1671 
1672 	smp_wmb();
1673 	notify_cpu_starting(cpu);
1674 	set_cpu_online(cpu, true);
1675 
1676 	boot_init_stack_canary();
1677 
1678 	local_irq_enable();
1679 
1680 	/* We can enable ftrace for secondary cpus now */
1681 	this_cpu_enable_ftrace();
1682 
1683 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1684 
1685 	BUG();
1686 }
1687 
1688 static struct sched_domain_topology_level powerpc_topology[6];
1689 
1690 static void __init build_sched_topology(void)
1691 {
1692 	int i = 0;
1693 
1694 	if (is_shared_processor() && has_big_cores)
1695 		static_branch_enable(&splpar_asym_pack);
1696 
1697 #ifdef CONFIG_SCHED_SMT
1698 	if (has_big_cores) {
1699 		pr_info("Big cores detected but using small core scheduling\n");
1700 		powerpc_topology[i++] = (struct sched_domain_topology_level){
1701 			smallcore_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
1702 		};
1703 	} else {
1704 		powerpc_topology[i++] = (struct sched_domain_topology_level){
1705 			cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
1706 		};
1707 	}
1708 #endif
1709 	if (shared_caches) {
1710 		powerpc_topology[i++] = (struct sched_domain_topology_level){
1711 			shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE)
1712 		};
1713 	}
1714 	if (has_coregroup_support()) {
1715 		powerpc_topology[i++] = (struct sched_domain_topology_level){
1716 			cpu_mc_mask, powerpc_shared_proc_flags, SD_INIT_NAME(MC)
1717 		};
1718 	}
1719 	powerpc_topology[i++] = (struct sched_domain_topology_level){
1720 		cpu_cpu_mask, powerpc_shared_proc_flags, SD_INIT_NAME(PKG)
1721 	};
1722 
1723 	/* There must be one trailing NULL entry left.  */
1724 	BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1);
1725 
1726 	set_sched_topology(powerpc_topology);
1727 }
1728 
1729 void __init smp_cpus_done(unsigned int max_cpus)
1730 {
1731 	/*
1732 	 * We are running pinned to the boot CPU, see rest_init().
1733 	 */
1734 	if (smp_ops && smp_ops->setup_cpu)
1735 		smp_ops->setup_cpu(boot_cpuid);
1736 
1737 	if (smp_ops && smp_ops->bringup_done)
1738 		smp_ops->bringup_done();
1739 
1740 	dump_numa_cpu_topology();
1741 	build_sched_topology();
1742 }
1743 
1744 /*
1745  * For asym packing, by default lower numbered CPU has higher priority.
1746  * On shared processors, pack to lower numbered core. However avoid moving
1747  * between thread_groups within the same core.
1748  */
1749 int arch_asym_cpu_priority(int cpu)
1750 {
1751 	if (static_branch_unlikely(&splpar_asym_pack))
1752 		return -cpu / threads_per_core;
1753 
1754 	return -cpu;
1755 }
1756 
1757 #ifdef CONFIG_HOTPLUG_CPU
1758 int __cpu_disable(void)
1759 {
1760 	int cpu = smp_processor_id();
1761 	int err;
1762 
1763 	if (!smp_ops->cpu_disable)
1764 		return -ENOSYS;
1765 
1766 	this_cpu_disable_ftrace();
1767 
1768 	err = smp_ops->cpu_disable();
1769 	if (err)
1770 		return err;
1771 
1772 	/* Update sibling maps */
1773 	remove_cpu_from_masks(cpu);
1774 
1775 	return 0;
1776 }
1777 
1778 void __cpu_die(unsigned int cpu)
1779 {
1780 	/*
1781 	 * This could perhaps be a generic call in idlea_task_dead(), but
1782 	 * that requires testing from all archs, so first put it here to
1783 	 */
1784 	VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm)));
1785 	dec_mm_active_cpus(&init_mm);
1786 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
1787 
1788 	if (smp_ops->cpu_die)
1789 		smp_ops->cpu_die(cpu);
1790 }
1791 
1792 void __noreturn arch_cpu_idle_dead(void)
1793 {
1794 	/*
1795 	 * Disable on the down path. This will be re-enabled by
1796 	 * start_secondary() via start_secondary_resume() below
1797 	 */
1798 	this_cpu_disable_ftrace();
1799 
1800 	if (smp_ops->cpu_offline_self)
1801 		smp_ops->cpu_offline_self();
1802 
1803 	/* If we return, we re-enter start_secondary */
1804 	start_secondary_resume();
1805 }
1806 
1807 #endif
1808