1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 #include <linux/pgtable.h> 37 #include <linux/clockchips.h> 38 #include <linux/kexec.h> 39 40 #include <asm/ptrace.h> 41 #include <linux/atomic.h> 42 #include <asm/irq.h> 43 #include <asm/hw_irq.h> 44 #include <asm/kvm_ppc.h> 45 #include <asm/dbell.h> 46 #include <asm/page.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/mmu_context.h> 51 #include <asm/cputhreads.h> 52 #include <asm/cputable.h> 53 #include <asm/mpic.h> 54 #include <asm/vdso_datapage.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/paca.h> 57 #endif 58 #include <asm/vdso.h> 59 #include <asm/debug.h> 60 #include <asm/cpu_has_feature.h> 61 #include <asm/ftrace.h> 62 #include <asm/kup.h> 63 #include <asm/fadump.h> 64 65 #include <trace/events/ipi.h> 66 67 #ifdef DEBUG 68 #include <asm/udbg.h> 69 #define DBG(fmt...) udbg_printf(fmt) 70 #else 71 #define DBG(fmt...) 72 #endif 73 74 #ifdef CONFIG_HOTPLUG_CPU 75 /* State of each CPU during hotplug phases */ 76 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 77 #endif 78 79 struct task_struct *secondary_current; 80 bool has_big_cores; 81 bool coregroup_enabled; 82 bool thread_group_shares_l2; 83 bool thread_group_shares_l3; 84 85 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 86 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 87 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 88 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 89 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); 90 91 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 92 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 93 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 94 EXPORT_SYMBOL_GPL(has_big_cores); 95 96 enum { 97 #ifdef CONFIG_SCHED_SMT 98 smt_idx, 99 #endif 100 cache_idx, 101 mc_idx, 102 die_idx, 103 }; 104 105 #define MAX_THREAD_LIST_SIZE 8 106 #define THREAD_GROUP_SHARE_L1 1 107 #define THREAD_GROUP_SHARE_L2_L3 2 108 struct thread_groups { 109 unsigned int property; 110 unsigned int nr_groups; 111 unsigned int threads_per_group; 112 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 113 }; 114 115 /* Maximum number of properties that groups of threads within a core can share */ 116 #define MAX_THREAD_GROUP_PROPERTIES 2 117 118 struct thread_groups_list { 119 unsigned int nr_properties; 120 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; 121 }; 122 123 static struct thread_groups_list tgl[NR_CPUS] __initdata; 124 /* 125 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to 126 * the set its siblings that share the L1-cache. 127 */ 128 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); 129 130 /* 131 * On some big-cores system, thread_group_l2_cache_map for each CPU 132 * corresponds to the set its siblings within the core that share the 133 * L2-cache. 134 */ 135 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); 136 137 /* 138 * On P10, thread_group_l3_cache_map for each CPU is equal to the 139 * thread_group_l2_cache_map 140 */ 141 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map); 142 143 /* SMP operations for this machine */ 144 struct smp_ops_t *smp_ops; 145 146 /* Can't be static due to PowerMac hackery */ 147 volatile unsigned int cpu_callin_map[NR_CPUS]; 148 149 int smt_enabled_at_boot = 1; 150 151 /* 152 * Returns 1 if the specified cpu should be brought up during boot. 153 * Used to inhibit booting threads if they've been disabled or 154 * limited on the command line 155 */ 156 int smp_generic_cpu_bootable(unsigned int nr) 157 { 158 /* Special case - we inhibit secondary thread startup 159 * during boot if the user requests it. 160 */ 161 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 162 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 163 return 0; 164 if (smt_enabled_at_boot 165 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 166 return 0; 167 } 168 169 return 1; 170 } 171 172 173 #ifdef CONFIG_PPC64 174 int smp_generic_kick_cpu(int nr) 175 { 176 if (nr < 0 || nr >= nr_cpu_ids) 177 return -EINVAL; 178 179 /* 180 * The processor is currently spinning, waiting for the 181 * cpu_start field to become non-zero After we set cpu_start, 182 * the processor will continue on to secondary_start 183 */ 184 if (!paca_ptrs[nr]->cpu_start) { 185 paca_ptrs[nr]->cpu_start = 1; 186 smp_mb(); 187 return 0; 188 } 189 190 #ifdef CONFIG_HOTPLUG_CPU 191 /* 192 * Ok it's not there, so it might be soft-unplugged, let's 193 * try to bring it back 194 */ 195 generic_set_cpu_up(nr); 196 smp_wmb(); 197 smp_send_reschedule(nr); 198 #endif /* CONFIG_HOTPLUG_CPU */ 199 200 return 0; 201 } 202 #endif /* CONFIG_PPC64 */ 203 204 static irqreturn_t call_function_action(int irq, void *data) 205 { 206 generic_smp_call_function_interrupt(); 207 return IRQ_HANDLED; 208 } 209 210 static irqreturn_t reschedule_action(int irq, void *data) 211 { 212 scheduler_ipi(); 213 return IRQ_HANDLED; 214 } 215 216 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 217 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 218 { 219 timer_broadcast_interrupt(); 220 return IRQ_HANDLED; 221 } 222 #endif 223 224 #ifdef CONFIG_NMI_IPI 225 static irqreturn_t nmi_ipi_action(int irq, void *data) 226 { 227 smp_handle_nmi_ipi(get_irq_regs()); 228 return IRQ_HANDLED; 229 } 230 #endif 231 232 static irq_handler_t smp_ipi_action[] = { 233 [PPC_MSG_CALL_FUNCTION] = call_function_action, 234 [PPC_MSG_RESCHEDULE] = reschedule_action, 235 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 236 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 237 #endif 238 #ifdef CONFIG_NMI_IPI 239 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 240 #endif 241 }; 242 243 /* 244 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 245 * than going through the call function infrastructure, and strongly 246 * serialized, so it is more appropriate for debugging. 247 */ 248 const char *smp_ipi_name[] = { 249 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 250 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 251 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 252 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 253 #endif 254 #ifdef CONFIG_NMI_IPI 255 [PPC_MSG_NMI_IPI] = "nmi ipi", 256 #endif 257 }; 258 259 /* optional function to request ipi, for controllers with >= 4 ipis */ 260 int smp_request_message_ipi(int virq, int msg) 261 { 262 int err; 263 264 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 265 return -EINVAL; 266 #ifndef CONFIG_NMI_IPI 267 if (msg == PPC_MSG_NMI_IPI) 268 return 1; 269 #endif 270 271 err = request_irq(virq, smp_ipi_action[msg], 272 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 273 smp_ipi_name[msg], NULL); 274 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 275 virq, smp_ipi_name[msg], err); 276 277 return err; 278 } 279 280 #ifdef CONFIG_PPC_SMP_MUXED_IPI 281 struct cpu_messages { 282 long messages; /* current messages */ 283 }; 284 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 285 286 void smp_muxed_ipi_set_message(int cpu, int msg) 287 { 288 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 289 char *message = (char *)&info->messages; 290 291 /* 292 * Order previous accesses before accesses in the IPI handler. 293 */ 294 smp_mb(); 295 WRITE_ONCE(message[msg], 1); 296 } 297 298 void smp_muxed_ipi_message_pass(int cpu, int msg) 299 { 300 smp_muxed_ipi_set_message(cpu, msg); 301 302 /* 303 * cause_ipi functions are required to include a full barrier 304 * before doing whatever causes the IPI. 305 */ 306 smp_ops->cause_ipi(cpu); 307 } 308 309 #ifdef __BIG_ENDIAN__ 310 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 311 #else 312 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 313 #endif 314 315 irqreturn_t smp_ipi_demux(void) 316 { 317 mb(); /* order any irq clear */ 318 319 return smp_ipi_demux_relaxed(); 320 } 321 322 /* sync-free variant. Callers should ensure synchronization */ 323 irqreturn_t smp_ipi_demux_relaxed(void) 324 { 325 struct cpu_messages *info; 326 unsigned long all; 327 328 info = this_cpu_ptr(&ipi_message); 329 do { 330 all = xchg(&info->messages, 0); 331 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 332 /* 333 * Must check for PPC_MSG_RM_HOST_ACTION messages 334 * before PPC_MSG_CALL_FUNCTION messages because when 335 * a VM is destroyed, we call kick_all_cpus_sync() 336 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 337 * messages have completed before we free any VCPUs. 338 */ 339 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 340 kvmppc_xics_ipi_action(); 341 #endif 342 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 343 generic_smp_call_function_interrupt(); 344 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 345 scheduler_ipi(); 346 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 347 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 348 timer_broadcast_interrupt(); 349 #endif 350 #ifdef CONFIG_NMI_IPI 351 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 352 nmi_ipi_action(0, NULL); 353 #endif 354 } while (READ_ONCE(info->messages)); 355 356 return IRQ_HANDLED; 357 } 358 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 359 360 static inline void do_message_pass(int cpu, int msg) 361 { 362 if (smp_ops->message_pass) 363 smp_ops->message_pass(cpu, msg); 364 #ifdef CONFIG_PPC_SMP_MUXED_IPI 365 else 366 smp_muxed_ipi_message_pass(cpu, msg); 367 #endif 368 } 369 370 void arch_smp_send_reschedule(int cpu) 371 { 372 if (likely(smp_ops)) 373 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 374 } 375 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); 376 377 void arch_send_call_function_single_ipi(int cpu) 378 { 379 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 380 } 381 382 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 383 { 384 unsigned int cpu; 385 386 for_each_cpu(cpu, mask) 387 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 388 } 389 390 #ifdef CONFIG_NMI_IPI 391 392 /* 393 * "NMI IPI" system. 394 * 395 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 396 * a running system. They can be used for crash, debug, halt/reboot, etc. 397 * 398 * The IPI call waits with interrupts disabled until all targets enter the 399 * NMI handler, then returns. Subsequent IPIs can be issued before targets 400 * have returned from their handlers, so there is no guarantee about 401 * concurrency or re-entrancy. 402 * 403 * A new NMI can be issued before all targets exit the handler. 404 * 405 * The IPI call may time out without all targets entering the NMI handler. 406 * In that case, there is some logic to recover (and ignore subsequent 407 * NMI interrupts that may eventually be raised), but the platform interrupt 408 * handler may not be able to distinguish this from other exception causes, 409 * which may cause a crash. 410 */ 411 412 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 413 static struct cpumask nmi_ipi_pending_mask; 414 static bool nmi_ipi_busy = false; 415 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 416 417 noinstr static void nmi_ipi_lock_start(unsigned long *flags) 418 { 419 raw_local_irq_save(*flags); 420 hard_irq_disable(); 421 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 422 raw_local_irq_restore(*flags); 423 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0); 424 raw_local_irq_save(*flags); 425 hard_irq_disable(); 426 } 427 } 428 429 noinstr static void nmi_ipi_lock(void) 430 { 431 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 432 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0); 433 } 434 435 noinstr static void nmi_ipi_unlock(void) 436 { 437 smp_mb(); 438 WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1); 439 raw_atomic_set(&__nmi_ipi_lock, 0); 440 } 441 442 noinstr static void nmi_ipi_unlock_end(unsigned long *flags) 443 { 444 nmi_ipi_unlock(); 445 raw_local_irq_restore(*flags); 446 } 447 448 /* 449 * Platform NMI handler calls this to ack 450 */ 451 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs) 452 { 453 void (*fn)(struct pt_regs *) = NULL; 454 unsigned long flags; 455 int me = raw_smp_processor_id(); 456 int ret = 0; 457 458 /* 459 * Unexpected NMIs are possible here because the interrupt may not 460 * be able to distinguish NMI IPIs from other types of NMIs, or 461 * because the caller may have timed out. 462 */ 463 nmi_ipi_lock_start(&flags); 464 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 465 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 466 fn = READ_ONCE(nmi_ipi_function); 467 WARN_ON_ONCE(!fn); 468 ret = 1; 469 } 470 nmi_ipi_unlock_end(&flags); 471 472 if (fn) 473 fn(regs); 474 475 return ret; 476 } 477 478 static void do_smp_send_nmi_ipi(int cpu, bool safe) 479 { 480 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 481 return; 482 483 if (cpu >= 0) { 484 do_message_pass(cpu, PPC_MSG_NMI_IPI); 485 } else { 486 int c; 487 488 for_each_online_cpu(c) { 489 if (c == raw_smp_processor_id()) 490 continue; 491 do_message_pass(c, PPC_MSG_NMI_IPI); 492 } 493 } 494 } 495 496 /* 497 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 498 * - fn is the target callback function. 499 * - delay_us > 0 is the delay before giving up waiting for targets to 500 * begin executing the handler, == 0 specifies indefinite delay. 501 */ 502 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 503 u64 delay_us, bool safe) 504 { 505 unsigned long flags; 506 int me = raw_smp_processor_id(); 507 int ret = 1; 508 509 BUG_ON(cpu == me); 510 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 511 512 if (unlikely(!smp_ops)) 513 return 0; 514 515 nmi_ipi_lock_start(&flags); 516 while (nmi_ipi_busy) { 517 nmi_ipi_unlock_end(&flags); 518 spin_until_cond(!nmi_ipi_busy); 519 nmi_ipi_lock_start(&flags); 520 } 521 nmi_ipi_busy = true; 522 nmi_ipi_function = fn; 523 524 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 525 526 if (cpu < 0) { 527 /* ALL_OTHERS */ 528 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 529 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 530 } else { 531 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 532 } 533 534 nmi_ipi_unlock(); 535 536 /* Interrupts remain hard disabled */ 537 538 do_smp_send_nmi_ipi(cpu, safe); 539 540 nmi_ipi_lock(); 541 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 542 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 543 nmi_ipi_unlock(); 544 udelay(1); 545 nmi_ipi_lock(); 546 if (delay_us) { 547 delay_us--; 548 if (!delay_us) 549 break; 550 } 551 } 552 553 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 554 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 555 ret = 0; 556 cpumask_clear(&nmi_ipi_pending_mask); 557 } 558 559 nmi_ipi_function = NULL; 560 nmi_ipi_busy = false; 561 562 nmi_ipi_unlock_end(&flags); 563 564 return ret; 565 } 566 567 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 568 { 569 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 570 } 571 572 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 573 { 574 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 575 } 576 #endif /* CONFIG_NMI_IPI */ 577 578 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 579 void tick_broadcast(const struct cpumask *mask) 580 { 581 unsigned int cpu; 582 583 for_each_cpu(cpu, mask) 584 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 585 } 586 #endif 587 588 #ifdef CONFIG_DEBUGGER 589 static void debugger_ipi_callback(struct pt_regs *regs) 590 { 591 debugger_ipi(regs); 592 } 593 594 void smp_send_debugger_break(void) 595 { 596 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 597 } 598 #endif 599 600 #ifdef CONFIG_KEXEC_CORE 601 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 602 { 603 int cpu; 604 605 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 606 if (kdump_in_progress() && crash_wake_offline) { 607 for_each_present_cpu(cpu) { 608 if (cpu_online(cpu)) 609 continue; 610 /* 611 * crash_ipi_callback will wait for 612 * all cpus, including offline CPUs. 613 * We don't care about nmi_ipi_function. 614 * Offline cpus will jump straight into 615 * crash_ipi_callback, we can skip the 616 * entire NMI dance and waiting for 617 * cpus to clear pending mask, etc. 618 */ 619 do_smp_send_nmi_ipi(cpu, false); 620 } 621 } 622 } 623 #endif 624 625 void crash_smp_send_stop(void) 626 { 627 static bool stopped = false; 628 629 /* 630 * In case of fadump, register data for all CPUs is captured by f/w 631 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before 632 * this rtas call to avoid tricky post processing of those CPUs' 633 * backtraces. 634 */ 635 if (should_fadump_crash()) 636 return; 637 638 if (stopped) 639 return; 640 641 stopped = true; 642 643 #ifdef CONFIG_KEXEC_CORE 644 if (kexec_crash_image) { 645 crash_kexec_prepare(); 646 return; 647 } 648 #endif 649 650 smp_send_stop(); 651 } 652 653 #ifdef CONFIG_NMI_IPI 654 static void nmi_stop_this_cpu(struct pt_regs *regs) 655 { 656 /* 657 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 658 */ 659 set_cpu_online(smp_processor_id(), false); 660 661 spin_begin(); 662 while (1) 663 spin_cpu_relax(); 664 } 665 666 void smp_send_stop(void) 667 { 668 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 669 } 670 671 #else /* CONFIG_NMI_IPI */ 672 673 static void stop_this_cpu(void *dummy) 674 { 675 hard_irq_disable(); 676 677 /* 678 * Offlining CPUs in stop_this_cpu can result in scheduler warnings, 679 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants 680 * to know other CPUs are offline before it breaks locks to flush 681 * printk buffers, in case we panic()ed while holding the lock. 682 */ 683 set_cpu_online(smp_processor_id(), false); 684 685 spin_begin(); 686 while (1) 687 spin_cpu_relax(); 688 } 689 690 void smp_send_stop(void) 691 { 692 static bool stopped = false; 693 694 /* 695 * Prevent waiting on csd lock from a previous smp_send_stop. 696 * This is racy, but in general callers try to do the right 697 * thing and only fire off one smp_send_stop (e.g., see 698 * kernel/panic.c) 699 */ 700 if (stopped) 701 return; 702 703 stopped = true; 704 705 smp_call_function(stop_this_cpu, NULL, 0); 706 } 707 #endif /* CONFIG_NMI_IPI */ 708 709 static struct task_struct *current_set[NR_CPUS]; 710 711 static void smp_store_cpu_info(int id) 712 { 713 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 714 #ifdef CONFIG_PPC_E500 715 per_cpu(next_tlbcam_idx, id) 716 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 717 #endif 718 } 719 720 /* 721 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 722 * rather than just passing around the cpumask we pass around a function that 723 * returns the that cpumask for the given CPU. 724 */ 725 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 726 { 727 cpumask_set_cpu(i, get_cpumask(j)); 728 cpumask_set_cpu(j, get_cpumask(i)); 729 } 730 731 #ifdef CONFIG_HOTPLUG_CPU 732 static void set_cpus_unrelated(int i, int j, 733 struct cpumask *(*get_cpumask)(int)) 734 { 735 cpumask_clear_cpu(i, get_cpumask(j)); 736 cpumask_clear_cpu(j, get_cpumask(i)); 737 } 738 #endif 739 740 /* 741 * Extends set_cpus_related. Instead of setting one CPU at a time in 742 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. 743 */ 744 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), 745 struct cpumask *(*dstmask)(int)) 746 { 747 struct cpumask *mask; 748 int k; 749 750 mask = srcmask(j); 751 for_each_cpu(k, srcmask(i)) 752 cpumask_or(dstmask(k), dstmask(k), mask); 753 754 if (i == j) 755 return; 756 757 mask = srcmask(i); 758 for_each_cpu(k, srcmask(j)) 759 cpumask_or(dstmask(k), dstmask(k), mask); 760 } 761 762 /* 763 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 764 * property for the CPU device node @dn and stores 765 * the parsed output in the thread_groups_list 766 * structure @tglp. 767 * 768 * @dn: The device node of the CPU device. 769 * @tglp: Pointer to a thread group list structure into which the parsed 770 * output of "ibm,thread-groups" is stored. 771 * 772 * ibm,thread-groups[0..N-1] array defines which group of threads in 773 * the CPU-device node can be grouped together based on the property. 774 * 775 * This array can represent thread groupings for multiple properties. 776 * 777 * ibm,thread-groups[i + 0] tells us the property based on which the 778 * threads are being grouped together. If this value is 1, it implies 779 * that the threads in the same group share L1, translation cache. If 780 * the value is 2, it implies that the threads in the same group share 781 * the same L2 cache. 782 * 783 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the 784 * property ibm,thread-groups[i] 785 * 786 * ibm,thread-groups[i+2] tells us the number of threads in each such 787 * group. 788 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, 789 * 790 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by 791 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 792 * the grouping. 793 * 794 * Example: 795 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] 796 * This can be decomposed up into two consecutive arrays: 797 * a) [1,2,4,8,10,12,14,9,11,13,15] 798 * b) [2,2,4,8,10,12,14,9,11,13,15] 799 * 800 * where in, 801 * 802 * a) provides information of Property "1" being shared by "2" groups, 803 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of 804 * the first group is {8,10,12,14} and the 805 * "ibm,ppc-interrupt-server#s" of the second group is 806 * {9,11,13,15}. Property "1" is indicative of the thread in the 807 * group sharing L1 cache, translation cache and Instruction Data 808 * flow. 809 * 810 * b) provides information of Property "2" being shared by "2" groups, 811 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of 812 * the first group is {8,10,12,14} and the 813 * "ibm,ppc-interrupt-server#s" of the second group is 814 * {9,11,13,15}. Property "2" indicates that the threads in each 815 * group share the L2-cache. 816 * 817 * Returns 0 on success, -EINVAL if the property does not exist, 818 * -ENODATA if property does not have a value, and -EOVERFLOW if the 819 * property data isn't large enough. 820 */ 821 static int parse_thread_groups(struct device_node *dn, 822 struct thread_groups_list *tglp) 823 { 824 unsigned int property_idx = 0; 825 u32 *thread_group_array; 826 size_t total_threads; 827 int ret = 0, count; 828 u32 *thread_list; 829 int i = 0; 830 831 count = of_property_count_u32_elems(dn, "ibm,thread-groups"); 832 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); 833 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 834 thread_group_array, count); 835 if (ret) 836 goto out_free; 837 838 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { 839 int j; 840 struct thread_groups *tg = &tglp->property_tgs[property_idx++]; 841 842 tg->property = thread_group_array[i]; 843 tg->nr_groups = thread_group_array[i + 1]; 844 tg->threads_per_group = thread_group_array[i + 2]; 845 total_threads = tg->nr_groups * tg->threads_per_group; 846 847 thread_list = &thread_group_array[i + 3]; 848 849 for (j = 0; j < total_threads; j++) 850 tg->thread_list[j] = thread_list[j]; 851 i = i + 3 + total_threads; 852 } 853 854 tglp->nr_properties = property_idx; 855 856 out_free: 857 kfree(thread_group_array); 858 return ret; 859 } 860 861 /* 862 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 863 * that @cpu belongs to. 864 * 865 * @cpu : The logical CPU whose thread group is being searched. 866 * @tg : The thread-group structure of the CPU node which @cpu belongs 867 * to. 868 * 869 * Returns the index to tg->thread_list that points to the start 870 * of the thread_group that @cpu belongs to. 871 * 872 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 873 * tg->thread_list. 874 */ 875 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 876 { 877 int hw_cpu_id = get_hard_smp_processor_id(cpu); 878 int i, j; 879 880 for (i = 0; i < tg->nr_groups; i++) { 881 int group_start = i * tg->threads_per_group; 882 883 for (j = 0; j < tg->threads_per_group; j++) { 884 int idx = group_start + j; 885 886 if (tg->thread_list[idx] == hw_cpu_id) 887 return group_start; 888 } 889 } 890 891 return -1; 892 } 893 894 static struct thread_groups *__init get_thread_groups(int cpu, 895 int group_property, 896 int *err) 897 { 898 struct device_node *dn = of_get_cpu_node(cpu, NULL); 899 struct thread_groups_list *cpu_tgl = &tgl[cpu]; 900 struct thread_groups *tg = NULL; 901 int i; 902 *err = 0; 903 904 if (!dn) { 905 *err = -ENODATA; 906 return NULL; 907 } 908 909 if (!cpu_tgl->nr_properties) { 910 *err = parse_thread_groups(dn, cpu_tgl); 911 if (*err) 912 goto out; 913 } 914 915 for (i = 0; i < cpu_tgl->nr_properties; i++) { 916 if (cpu_tgl->property_tgs[i].property == group_property) { 917 tg = &cpu_tgl->property_tgs[i]; 918 break; 919 } 920 } 921 922 if (!tg) 923 *err = -EINVAL; 924 out: 925 of_node_put(dn); 926 return tg; 927 } 928 929 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, 930 int cpu, int cpu_group_start) 931 { 932 int first_thread = cpu_first_thread_sibling(cpu); 933 int i; 934 935 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); 936 937 for (i = first_thread; i < first_thread + threads_per_core; i++) { 938 int i_group_start = get_cpu_thread_group_start(i, tg); 939 940 if (unlikely(i_group_start == -1)) { 941 WARN_ON_ONCE(1); 942 return -ENODATA; 943 } 944 945 if (i_group_start == cpu_group_start) 946 cpumask_set_cpu(i, *mask); 947 } 948 949 return 0; 950 } 951 952 static int __init init_thread_group_cache_map(int cpu, int cache_property) 953 954 { 955 int cpu_group_start = -1, err = 0; 956 struct thread_groups *tg = NULL; 957 cpumask_var_t *mask = NULL; 958 959 if (cache_property != THREAD_GROUP_SHARE_L1 && 960 cache_property != THREAD_GROUP_SHARE_L2_L3) 961 return -EINVAL; 962 963 tg = get_thread_groups(cpu, cache_property, &err); 964 965 if (!tg) 966 return err; 967 968 cpu_group_start = get_cpu_thread_group_start(cpu, tg); 969 970 if (unlikely(cpu_group_start == -1)) { 971 WARN_ON_ONCE(1); 972 return -ENODATA; 973 } 974 975 if (cache_property == THREAD_GROUP_SHARE_L1) { 976 mask = &per_cpu(thread_group_l1_cache_map, cpu); 977 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 978 } 979 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) { 980 mask = &per_cpu(thread_group_l2_cache_map, cpu); 981 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 982 mask = &per_cpu(thread_group_l3_cache_map, cpu); 983 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 984 } 985 986 987 return 0; 988 } 989 990 static bool shared_caches; 991 992 #ifdef CONFIG_SCHED_SMT 993 /* cpumask of CPUs with asymmetric SMT dependency */ 994 static int powerpc_smt_flags(void) 995 { 996 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 997 998 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 999 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 1000 flags |= SD_ASYM_PACKING; 1001 } 1002 return flags; 1003 } 1004 #endif 1005 1006 /* 1007 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1008 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1009 * since the migrated task remains cache hot. We want to take advantage of this 1010 * at the scheduler level so an extra topology level is required. 1011 */ 1012 static int powerpc_shared_cache_flags(void) 1013 { 1014 return SD_SHARE_PKG_RESOURCES; 1015 } 1016 1017 /* 1018 * We can't just pass cpu_l2_cache_mask() directly because 1019 * returns a non-const pointer and the compiler barfs on that. 1020 */ 1021 static const struct cpumask *shared_cache_mask(int cpu) 1022 { 1023 return per_cpu(cpu_l2_cache_map, cpu); 1024 } 1025 1026 #ifdef CONFIG_SCHED_SMT 1027 static const struct cpumask *smallcore_smt_mask(int cpu) 1028 { 1029 return cpu_smallcore_mask(cpu); 1030 } 1031 #endif 1032 1033 static struct cpumask *cpu_coregroup_mask(int cpu) 1034 { 1035 return per_cpu(cpu_coregroup_map, cpu); 1036 } 1037 1038 static bool has_coregroup_support(void) 1039 { 1040 return coregroup_enabled; 1041 } 1042 1043 static const struct cpumask *cpu_mc_mask(int cpu) 1044 { 1045 return cpu_coregroup_mask(cpu); 1046 } 1047 1048 static struct sched_domain_topology_level powerpc_topology[] = { 1049 #ifdef CONFIG_SCHED_SMT 1050 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1051 #endif 1052 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1053 { cpu_mc_mask, SD_INIT_NAME(MC) }, 1054 { cpu_cpu_mask, SD_INIT_NAME(PKG) }, 1055 { NULL, }, 1056 }; 1057 1058 static int __init init_big_cores(void) 1059 { 1060 int cpu; 1061 1062 for_each_possible_cpu(cpu) { 1063 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); 1064 1065 if (err) 1066 return err; 1067 1068 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 1069 GFP_KERNEL, 1070 cpu_to_node(cpu)); 1071 } 1072 1073 has_big_cores = true; 1074 1075 for_each_possible_cpu(cpu) { 1076 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3); 1077 1078 if (err) 1079 return err; 1080 } 1081 1082 thread_group_shares_l2 = true; 1083 thread_group_shares_l3 = true; 1084 pr_debug("L2/L3 cache only shared by the threads in the small core\n"); 1085 1086 return 0; 1087 } 1088 1089 void __init smp_prepare_cpus(unsigned int max_cpus) 1090 { 1091 unsigned int cpu, num_threads; 1092 1093 DBG("smp_prepare_cpus\n"); 1094 1095 /* 1096 * setup_cpu may need to be called on the boot cpu. We haven't 1097 * spun any cpus up but lets be paranoid. 1098 */ 1099 BUG_ON(boot_cpuid != smp_processor_id()); 1100 1101 /* Fixup boot cpu */ 1102 smp_store_cpu_info(boot_cpuid); 1103 cpu_callin_map[boot_cpuid] = 1; 1104 1105 for_each_possible_cpu(cpu) { 1106 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 1107 GFP_KERNEL, cpu_to_node(cpu)); 1108 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 1109 GFP_KERNEL, cpu_to_node(cpu)); 1110 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 1111 GFP_KERNEL, cpu_to_node(cpu)); 1112 if (has_coregroup_support()) 1113 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), 1114 GFP_KERNEL, cpu_to_node(cpu)); 1115 1116 #ifdef CONFIG_NUMA 1117 /* 1118 * numa_node_id() works after this. 1119 */ 1120 if (cpu_present(cpu)) { 1121 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 1122 set_cpu_numa_mem(cpu, 1123 local_memory_node(numa_cpu_lookup_table[cpu])); 1124 } 1125 #endif 1126 } 1127 1128 /* Init the cpumasks so the boot CPU is related to itself */ 1129 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 1130 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 1131 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 1132 1133 if (has_coregroup_support()) 1134 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); 1135 1136 init_big_cores(); 1137 if (has_big_cores) { 1138 cpumask_set_cpu(boot_cpuid, 1139 cpu_smallcore_mask(boot_cpuid)); 1140 } 1141 1142 if (cpu_to_chip_id(boot_cpuid) != -1) { 1143 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1144 1145 /* 1146 * All threads of a core will all belong to the same core, 1147 * chip_id_lookup_table will have one entry per core. 1148 * Assumption: if boot_cpuid doesn't have a chip-id, then no 1149 * other CPUs, will also not have chip-id. 1150 */ 1151 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); 1152 if (chip_id_lookup_table) 1153 memset(chip_id_lookup_table, -1, sizeof(int) * idx); 1154 } 1155 1156 if (smp_ops && smp_ops->probe) 1157 smp_ops->probe(); 1158 1159 // Initalise the generic SMT topology support 1160 num_threads = 1; 1161 if (smt_enabled_at_boot) 1162 num_threads = smt_enabled_at_boot; 1163 cpu_smt_set_num_threads(num_threads, threads_per_core); 1164 } 1165 1166 void smp_prepare_boot_cpu(void) 1167 { 1168 BUG_ON(smp_processor_id() != boot_cpuid); 1169 #ifdef CONFIG_PPC64 1170 paca_ptrs[boot_cpuid]->__current = current; 1171 #endif 1172 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 1173 current_set[boot_cpuid] = current; 1174 } 1175 1176 #ifdef CONFIG_HOTPLUG_CPU 1177 1178 int generic_cpu_disable(void) 1179 { 1180 unsigned int cpu = smp_processor_id(); 1181 1182 if (cpu == boot_cpuid) 1183 return -EBUSY; 1184 1185 set_cpu_online(cpu, false); 1186 #ifdef CONFIG_PPC64 1187 vdso_data->processorCount--; 1188 #endif 1189 /* Update affinity of all IRQs previously aimed at this CPU */ 1190 irq_migrate_all_off_this_cpu(); 1191 1192 /* 1193 * Depending on the details of the interrupt controller, it's possible 1194 * that one of the interrupts we just migrated away from this CPU is 1195 * actually already pending on this CPU. If we leave it in that state 1196 * the interrupt will never be EOI'ed, and will never fire again. So 1197 * temporarily enable interrupts here, to allow any pending interrupt to 1198 * be received (and EOI'ed), before we take this CPU offline. 1199 */ 1200 local_irq_enable(); 1201 mdelay(1); 1202 local_irq_disable(); 1203 1204 return 0; 1205 } 1206 1207 void generic_cpu_die(unsigned int cpu) 1208 { 1209 int i; 1210 1211 for (i = 0; i < 100; i++) { 1212 smp_rmb(); 1213 if (is_cpu_dead(cpu)) 1214 return; 1215 msleep(100); 1216 } 1217 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 1218 } 1219 1220 void generic_set_cpu_dead(unsigned int cpu) 1221 { 1222 per_cpu(cpu_state, cpu) = CPU_DEAD; 1223 } 1224 1225 /* 1226 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 1227 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 1228 * which makes the delay in generic_cpu_die() not happen. 1229 */ 1230 void generic_set_cpu_up(unsigned int cpu) 1231 { 1232 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 1233 } 1234 1235 int generic_check_cpu_restart(unsigned int cpu) 1236 { 1237 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 1238 } 1239 1240 int is_cpu_dead(unsigned int cpu) 1241 { 1242 return per_cpu(cpu_state, cpu) == CPU_DEAD; 1243 } 1244 1245 static bool secondaries_inhibited(void) 1246 { 1247 return kvm_hv_mode_active(); 1248 } 1249 1250 #else /* HOTPLUG_CPU */ 1251 1252 #define secondaries_inhibited() 0 1253 1254 #endif 1255 1256 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 1257 { 1258 #ifdef CONFIG_PPC64 1259 paca_ptrs[cpu]->__current = idle; 1260 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 1261 THREAD_SIZE - STACK_FRAME_MIN_SIZE; 1262 #endif 1263 task_thread_info(idle)->cpu = cpu; 1264 secondary_current = current_set[cpu] = idle; 1265 } 1266 1267 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1268 { 1269 const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC; 1270 const bool booting = system_state < SYSTEM_RUNNING; 1271 const unsigned long hp_spin_ms = 1; 1272 unsigned long deadline; 1273 int rc; 1274 const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms; 1275 1276 /* 1277 * Don't allow secondary threads to come online if inhibited 1278 */ 1279 if (threads_per_core > 1 && secondaries_inhibited() && 1280 cpu_thread_in_subcore(cpu)) 1281 return -EBUSY; 1282 1283 if (smp_ops == NULL || 1284 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1285 return -EINVAL; 1286 1287 cpu_idle_thread_init(cpu, tidle); 1288 1289 /* 1290 * The platform might need to allocate resources prior to bringing 1291 * up the CPU 1292 */ 1293 if (smp_ops->prepare_cpu) { 1294 rc = smp_ops->prepare_cpu(cpu); 1295 if (rc) 1296 return rc; 1297 } 1298 1299 /* Make sure callin-map entry is 0 (can be leftover a CPU 1300 * hotplug 1301 */ 1302 cpu_callin_map[cpu] = 0; 1303 1304 /* The information for processor bringup must 1305 * be written out to main store before we release 1306 * the processor. 1307 */ 1308 smp_mb(); 1309 1310 /* wake up cpus */ 1311 DBG("smp: kicking cpu %d\n", cpu); 1312 rc = smp_ops->kick_cpu(cpu); 1313 if (rc) { 1314 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1315 return rc; 1316 } 1317 1318 /* 1319 * At boot time, simply spin on the callin word until the 1320 * deadline passes. 1321 * 1322 * At run time, spin for an optimistic amount of time to avoid 1323 * sleeping in the common case. 1324 */ 1325 deadline = jiffies + msecs_to_jiffies(spin_wait_ms); 1326 spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline)); 1327 1328 if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) { 1329 const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC; 1330 const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC; 1331 1332 deadline = jiffies + msecs_to_jiffies(sleep_wait_ms); 1333 while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline)) 1334 fsleep(sleep_interval_us); 1335 } 1336 1337 if (!cpu_callin_map[cpu]) { 1338 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1339 return -ENOENT; 1340 } 1341 1342 DBG("Processor %u found.\n", cpu); 1343 1344 if (smp_ops->give_timebase) 1345 smp_ops->give_timebase(); 1346 1347 /* Wait until cpu puts itself in the online & active maps */ 1348 spin_until_cond(cpu_online(cpu)); 1349 1350 return 0; 1351 } 1352 1353 /* Return the value of the reg property corresponding to the given 1354 * logical cpu. 1355 */ 1356 int cpu_to_core_id(int cpu) 1357 { 1358 struct device_node *np; 1359 int id = -1; 1360 1361 np = of_get_cpu_node(cpu, NULL); 1362 if (!np) 1363 goto out; 1364 1365 id = of_get_cpu_hwid(np, 0); 1366 out: 1367 of_node_put(np); 1368 return id; 1369 } 1370 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1371 1372 /* Helper routines for cpu to core mapping */ 1373 int cpu_core_index_of_thread(int cpu) 1374 { 1375 return cpu >> threads_shift; 1376 } 1377 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1378 1379 int cpu_first_thread_of_core(int core) 1380 { 1381 return core << threads_shift; 1382 } 1383 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1384 1385 /* Must be called when no change can occur to cpu_present_mask, 1386 * i.e. during cpu online or offline. 1387 */ 1388 static struct device_node *cpu_to_l2cache(int cpu) 1389 { 1390 struct device_node *np; 1391 struct device_node *cache; 1392 1393 if (!cpu_present(cpu)) 1394 return NULL; 1395 1396 np = of_get_cpu_node(cpu, NULL); 1397 if (np == NULL) 1398 return NULL; 1399 1400 cache = of_find_next_cache_node(np); 1401 1402 of_node_put(np); 1403 1404 return cache; 1405 } 1406 1407 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) 1408 { 1409 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1410 struct device_node *l2_cache, *np; 1411 int i; 1412 1413 if (has_big_cores) 1414 submask_fn = cpu_smallcore_mask; 1415 1416 /* 1417 * If the threads in a thread-group share L2 cache, then the 1418 * L2-mask can be obtained from thread_group_l2_cache_map. 1419 */ 1420 if (thread_group_shares_l2) { 1421 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); 1422 1423 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { 1424 if (cpu_online(i)) 1425 set_cpus_related(i, cpu, cpu_l2_cache_mask); 1426 } 1427 1428 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ 1429 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && 1430 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { 1431 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", 1432 cpu); 1433 } 1434 1435 return true; 1436 } 1437 1438 l2_cache = cpu_to_l2cache(cpu); 1439 if (!l2_cache || !*mask) { 1440 /* Assume only core siblings share cache with this CPU */ 1441 for_each_cpu(i, cpu_sibling_mask(cpu)) 1442 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1443 1444 return false; 1445 } 1446 1447 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1448 1449 /* Update l2-cache mask with all the CPUs that are part of submask */ 1450 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); 1451 1452 /* Skip all CPUs already part of current CPU l2-cache mask */ 1453 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); 1454 1455 for_each_cpu(i, *mask) { 1456 /* 1457 * when updating the marks the current CPU has not been marked 1458 * online, but we need to update the cache masks 1459 */ 1460 np = cpu_to_l2cache(i); 1461 1462 /* Skip all CPUs already part of current CPU l2-cache */ 1463 if (np == l2_cache) { 1464 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); 1465 cpumask_andnot(*mask, *mask, submask_fn(i)); 1466 } else { 1467 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); 1468 } 1469 1470 of_node_put(np); 1471 } 1472 of_node_put(l2_cache); 1473 1474 return true; 1475 } 1476 1477 #ifdef CONFIG_HOTPLUG_CPU 1478 static void remove_cpu_from_masks(int cpu) 1479 { 1480 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; 1481 int i; 1482 1483 unmap_cpu_from_node(cpu); 1484 1485 if (shared_caches) 1486 mask_fn = cpu_l2_cache_mask; 1487 1488 for_each_cpu(i, mask_fn(cpu)) { 1489 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1490 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1491 if (has_big_cores) 1492 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1493 } 1494 1495 for_each_cpu(i, cpu_core_mask(cpu)) 1496 set_cpus_unrelated(cpu, i, cpu_core_mask); 1497 1498 if (has_coregroup_support()) { 1499 for_each_cpu(i, cpu_coregroup_mask(cpu)) 1500 set_cpus_unrelated(cpu, i, cpu_coregroup_mask); 1501 } 1502 } 1503 #endif 1504 1505 static inline void add_cpu_to_smallcore_masks(int cpu) 1506 { 1507 int i; 1508 1509 if (!has_big_cores) 1510 return; 1511 1512 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1513 1514 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { 1515 if (cpu_online(i)) 1516 set_cpus_related(i, cpu, cpu_smallcore_mask); 1517 } 1518 } 1519 1520 static void update_coregroup_mask(int cpu, cpumask_var_t *mask) 1521 { 1522 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1523 int coregroup_id = cpu_to_coregroup_id(cpu); 1524 int i; 1525 1526 if (shared_caches) 1527 submask_fn = cpu_l2_cache_mask; 1528 1529 if (!*mask) { 1530 /* Assume only siblings are part of this CPU's coregroup */ 1531 for_each_cpu(i, submask_fn(cpu)) 1532 set_cpus_related(cpu, i, cpu_coregroup_mask); 1533 1534 return; 1535 } 1536 1537 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1538 1539 /* Update coregroup mask with all the CPUs that are part of submask */ 1540 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); 1541 1542 /* Skip all CPUs already part of coregroup mask */ 1543 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); 1544 1545 for_each_cpu(i, *mask) { 1546 /* Skip all CPUs not part of this coregroup */ 1547 if (coregroup_id == cpu_to_coregroup_id(i)) { 1548 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); 1549 cpumask_andnot(*mask, *mask, submask_fn(i)); 1550 } else { 1551 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); 1552 } 1553 } 1554 } 1555 1556 static void add_cpu_to_masks(int cpu) 1557 { 1558 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1559 int first_thread = cpu_first_thread_sibling(cpu); 1560 cpumask_var_t mask; 1561 int chip_id = -1; 1562 bool ret; 1563 int i; 1564 1565 /* 1566 * This CPU will not be in the online mask yet so we need to manually 1567 * add it to it's own thread sibling mask. 1568 */ 1569 map_cpu_to_node(cpu, cpu_to_node(cpu)); 1570 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1571 cpumask_set_cpu(cpu, cpu_core_mask(cpu)); 1572 1573 for (i = first_thread; i < first_thread + threads_per_core; i++) 1574 if (cpu_online(i)) 1575 set_cpus_related(i, cpu, cpu_sibling_mask); 1576 1577 add_cpu_to_smallcore_masks(cpu); 1578 1579 /* In CPU-hotplug path, hence use GFP_ATOMIC */ 1580 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); 1581 update_mask_by_l2(cpu, &mask); 1582 1583 if (has_coregroup_support()) 1584 update_coregroup_mask(cpu, &mask); 1585 1586 if (chip_id_lookup_table && ret) 1587 chip_id = cpu_to_chip_id(cpu); 1588 1589 if (shared_caches) 1590 submask_fn = cpu_l2_cache_mask; 1591 1592 /* Update core_mask with all the CPUs that are part of submask */ 1593 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); 1594 1595 /* Skip all CPUs already part of current CPU core mask */ 1596 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); 1597 1598 /* If chip_id is -1; limit the cpu_core_mask to within PKG */ 1599 if (chip_id == -1) 1600 cpumask_and(mask, mask, cpu_cpu_mask(cpu)); 1601 1602 for_each_cpu(i, mask) { 1603 if (chip_id == cpu_to_chip_id(i)) { 1604 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); 1605 cpumask_andnot(mask, mask, submask_fn(i)); 1606 } else { 1607 cpumask_andnot(mask, mask, cpu_core_mask(i)); 1608 } 1609 } 1610 1611 free_cpumask_var(mask); 1612 } 1613 1614 /* Activate a secondary processor. */ 1615 __no_stack_protector 1616 void start_secondary(void *unused) 1617 { 1618 unsigned int cpu = raw_smp_processor_id(); 1619 1620 /* PPC64 calls setup_kup() in early_setup_secondary() */ 1621 if (IS_ENABLED(CONFIG_PPC32)) 1622 setup_kup(); 1623 1624 mmgrab_lazy_tlb(&init_mm); 1625 current->active_mm = &init_mm; 1626 VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm))); 1627 cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); 1628 inc_mm_active_cpus(&init_mm); 1629 1630 smp_store_cpu_info(cpu); 1631 set_dec(tb_ticks_per_jiffy); 1632 rcutree_report_cpu_starting(cpu); 1633 cpu_callin_map[cpu] = 1; 1634 1635 if (smp_ops->setup_cpu) 1636 smp_ops->setup_cpu(cpu); 1637 if (smp_ops->take_timebase) 1638 smp_ops->take_timebase(); 1639 1640 secondary_cpu_time_init(); 1641 1642 #ifdef CONFIG_PPC64 1643 if (system_state == SYSTEM_RUNNING) 1644 vdso_data->processorCount++; 1645 1646 vdso_getcpu_init(); 1647 #endif 1648 set_numa_node(numa_cpu_lookup_table[cpu]); 1649 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1650 1651 /* Update topology CPU masks */ 1652 add_cpu_to_masks(cpu); 1653 1654 /* 1655 * Check for any shared caches. Note that this must be done on a 1656 * per-core basis because one core in the pair might be disabled. 1657 */ 1658 if (!shared_caches) { 1659 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1660 struct cpumask *mask = cpu_l2_cache_mask(cpu); 1661 1662 if (has_big_cores) 1663 sibling_mask = cpu_smallcore_mask; 1664 1665 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) 1666 shared_caches = true; 1667 } 1668 1669 smp_wmb(); 1670 notify_cpu_starting(cpu); 1671 set_cpu_online(cpu, true); 1672 1673 boot_init_stack_canary(); 1674 1675 local_irq_enable(); 1676 1677 /* We can enable ftrace for secondary cpus now */ 1678 this_cpu_enable_ftrace(); 1679 1680 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1681 1682 BUG(); 1683 } 1684 1685 static void __init fixup_topology(void) 1686 { 1687 int i; 1688 1689 #ifdef CONFIG_SCHED_SMT 1690 if (has_big_cores) { 1691 pr_info("Big cores detected but using small core scheduling\n"); 1692 powerpc_topology[smt_idx].mask = smallcore_smt_mask; 1693 } 1694 #endif 1695 1696 if (!has_coregroup_support()) 1697 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask; 1698 1699 /* 1700 * Try to consolidate topology levels here instead of 1701 * allowing scheduler to degenerate. 1702 * - Dont consolidate if masks are different. 1703 * - Dont consolidate if sd_flags exists and are different. 1704 */ 1705 for (i = 1; i <= die_idx; i++) { 1706 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask) 1707 continue; 1708 1709 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags && 1710 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags) 1711 continue; 1712 1713 if (!powerpc_topology[i - 1].sd_flags) 1714 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags; 1715 1716 powerpc_topology[i].mask = powerpc_topology[i + 1].mask; 1717 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags; 1718 #ifdef CONFIG_SCHED_DEBUG 1719 powerpc_topology[i].name = powerpc_topology[i + 1].name; 1720 #endif 1721 } 1722 } 1723 1724 void __init smp_cpus_done(unsigned int max_cpus) 1725 { 1726 /* 1727 * We are running pinned to the boot CPU, see rest_init(). 1728 */ 1729 if (smp_ops && smp_ops->setup_cpu) 1730 smp_ops->setup_cpu(boot_cpuid); 1731 1732 if (smp_ops && smp_ops->bringup_done) 1733 smp_ops->bringup_done(); 1734 1735 dump_numa_cpu_topology(); 1736 1737 fixup_topology(); 1738 set_sched_topology(powerpc_topology); 1739 } 1740 1741 #ifdef CONFIG_HOTPLUG_CPU 1742 int __cpu_disable(void) 1743 { 1744 int cpu = smp_processor_id(); 1745 int err; 1746 1747 if (!smp_ops->cpu_disable) 1748 return -ENOSYS; 1749 1750 this_cpu_disable_ftrace(); 1751 1752 err = smp_ops->cpu_disable(); 1753 if (err) 1754 return err; 1755 1756 /* Update sibling maps */ 1757 remove_cpu_from_masks(cpu); 1758 1759 return 0; 1760 } 1761 1762 void __cpu_die(unsigned int cpu) 1763 { 1764 /* 1765 * This could perhaps be a generic call in idlea_task_dead(), but 1766 * that requires testing from all archs, so first put it here to 1767 */ 1768 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm))); 1769 dec_mm_active_cpus(&init_mm); 1770 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); 1771 1772 if (smp_ops->cpu_die) 1773 smp_ops->cpu_die(cpu); 1774 } 1775 1776 void __noreturn arch_cpu_idle_dead(void) 1777 { 1778 /* 1779 * Disable on the down path. This will be re-enabled by 1780 * start_secondary() via start_secondary_resume() below 1781 */ 1782 this_cpu_disable_ftrace(); 1783 1784 if (smp_ops->cpu_offline_self) 1785 smp_ops->cpu_offline_self(); 1786 1787 /* If we return, we re-enter start_secondary */ 1788 start_secondary_resume(); 1789 } 1790 1791 #endif 1792