xref: /linux/arch/powerpc/kernel/signal_64.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/kernel/signal.c"
7  *    Copyright (C) 1991, 1992 Linus Torvalds
8  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/mm.h>
13 #include <linux/smp.h>
14 #include <linux/kernel.h>
15 #include <linux/signal.h>
16 #include <linux/errno.h>
17 #include <linux/wait.h>
18 #include <linux/unistd.h>
19 #include <linux/stddef.h>
20 #include <linux/elf.h>
21 #include <linux/ptrace.h>
22 #include <linux/ratelimit.h>
23 #include <linux/syscalls.h>
24 
25 #include <asm/sigcontext.h>
26 #include <asm/ucontext.h>
27 #include <linux/uaccess.h>
28 #include <asm/pgtable.h>
29 #include <asm/unistd.h>
30 #include <asm/cacheflush.h>
31 #include <asm/syscalls.h>
32 #include <asm/vdso.h>
33 #include <asm/switch_to.h>
34 #include <asm/tm.h>
35 #include <asm/asm-prototypes.h>
36 
37 #include "signal.h"
38 
39 
40 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
41 #define FP_REGS_SIZE	sizeof(elf_fpregset_t)
42 
43 #define TRAMP_TRACEBACK	3
44 #define TRAMP_SIZE	6
45 
46 /*
47  * When we have signals to deliver, we set up on the user stack,
48  * going down from the original stack pointer:
49  *	1) a rt_sigframe struct which contains the ucontext
50  *	2) a gap of __SIGNAL_FRAMESIZE bytes which acts as a dummy caller
51  *	   frame for the signal handler.
52  */
53 
54 struct rt_sigframe {
55 	/* sys_rt_sigreturn requires the ucontext be the first field */
56 	struct ucontext uc;
57 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
58 	struct ucontext uc_transact;
59 #endif
60 	unsigned long _unused[2];
61 	unsigned int tramp[TRAMP_SIZE];
62 	struct siginfo __user *pinfo;
63 	void __user *puc;
64 	struct siginfo info;
65 	/* New 64 bit little-endian ABI allows redzone of 512 bytes below sp */
66 	char abigap[USER_REDZONE_SIZE];
67 } __attribute__ ((aligned (16)));
68 
69 static const char fmt32[] = KERN_INFO \
70 	"%s[%d]: bad frame in %s: %08lx nip %08lx lr %08lx\n";
71 static const char fmt64[] = KERN_INFO \
72 	"%s[%d]: bad frame in %s: %016lx nip %016lx lr %016lx\n";
73 
74 /*
75  * This computes a quad word aligned pointer inside the vmx_reserve array
76  * element. For historical reasons sigcontext might not be quad word aligned,
77  * but the location we write the VMX regs to must be. See the comment in
78  * sigcontext for more detail.
79  */
80 #ifdef CONFIG_ALTIVEC
81 static elf_vrreg_t __user *sigcontext_vmx_regs(struct sigcontext __user *sc)
82 {
83 	return (elf_vrreg_t __user *) (((unsigned long)sc->vmx_reserve + 15) & ~0xful);
84 }
85 #endif
86 
87 /*
88  * Set up the sigcontext for the signal frame.
89  */
90 
91 static long setup_sigcontext(struct sigcontext __user *sc,
92 		struct task_struct *tsk, int signr, sigset_t *set,
93 		unsigned long handler, int ctx_has_vsx_region)
94 {
95 	/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
96 	 * process never used altivec yet (MSR_VEC is zero in pt_regs of
97 	 * the context). This is very important because we must ensure we
98 	 * don't lose the VRSAVE content that may have been set prior to
99 	 * the process doing its first vector operation
100 	 * Userland shall check AT_HWCAP to know whether it can rely on the
101 	 * v_regs pointer or not
102 	 */
103 #ifdef CONFIG_ALTIVEC
104 	elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc);
105 	unsigned long vrsave;
106 #endif
107 	struct pt_regs *regs = tsk->thread.regs;
108 	unsigned long msr = regs->msr;
109 	long err = 0;
110 	/* Force usr to alway see softe as 1 (interrupts enabled) */
111 	unsigned long softe = 0x1;
112 
113 	BUG_ON(tsk != current);
114 
115 #ifdef CONFIG_ALTIVEC
116 	err |= __put_user(v_regs, &sc->v_regs);
117 
118 	/* save altivec registers */
119 	if (tsk->thread.used_vr) {
120 		flush_altivec_to_thread(tsk);
121 		/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
122 		err |= __copy_to_user(v_regs, &tsk->thread.vr_state,
123 				      33 * sizeof(vector128));
124 		/* set MSR_VEC in the MSR value in the frame to indicate that sc->v_reg)
125 		 * contains valid data.
126 		 */
127 		msr |= MSR_VEC;
128 	}
129 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
130 	 * use altivec.
131 	 */
132 	vrsave = 0;
133 	if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
134 		vrsave = mfspr(SPRN_VRSAVE);
135 		tsk->thread.vrsave = vrsave;
136 	}
137 
138 	err |= __put_user(vrsave, (u32 __user *)&v_regs[33]);
139 #else /* CONFIG_ALTIVEC */
140 	err |= __put_user(0, &sc->v_regs);
141 #endif /* CONFIG_ALTIVEC */
142 	flush_fp_to_thread(tsk);
143 	/* copy fpr regs and fpscr */
144 	err |= copy_fpr_to_user(&sc->fp_regs, tsk);
145 
146 	/*
147 	 * Clear the MSR VSX bit to indicate there is no valid state attached
148 	 * to this context, except in the specific case below where we set it.
149 	 */
150 	msr &= ~MSR_VSX;
151 #ifdef CONFIG_VSX
152 	/*
153 	 * Copy VSX low doubleword to local buffer for formatting,
154 	 * then out to userspace.  Update v_regs to point after the
155 	 * VMX data.
156 	 */
157 	if (tsk->thread.used_vsr && ctx_has_vsx_region) {
158 		flush_vsx_to_thread(tsk);
159 		v_regs += ELF_NVRREG;
160 		err |= copy_vsx_to_user(v_regs, tsk);
161 		/* set MSR_VSX in the MSR value in the frame to
162 		 * indicate that sc->vs_reg) contains valid data.
163 		 */
164 		msr |= MSR_VSX;
165 	}
166 #endif /* CONFIG_VSX */
167 	err |= __put_user(&sc->gp_regs, &sc->regs);
168 	WARN_ON(!FULL_REGS(regs));
169 	err |= __copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE);
170 	err |= __put_user(msr, &sc->gp_regs[PT_MSR]);
171 	err |= __put_user(softe, &sc->gp_regs[PT_SOFTE]);
172 	err |= __put_user(signr, &sc->signal);
173 	err |= __put_user(handler, &sc->handler);
174 	if (set != NULL)
175 		err |=  __put_user(set->sig[0], &sc->oldmask);
176 
177 	return err;
178 }
179 
180 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
181 /*
182  * As above, but Transactional Memory is in use, so deliver sigcontexts
183  * containing checkpointed and transactional register states.
184  *
185  * To do this, we treclaim (done before entering here) to gather both sets of
186  * registers and set up the 'normal' sigcontext registers with rolled-back
187  * register values such that a simple signal handler sees a correct
188  * checkpointed register state.  If interested, a TM-aware sighandler can
189  * examine the transactional registers in the 2nd sigcontext to determine the
190  * real origin of the signal.
191  */
192 static long setup_tm_sigcontexts(struct sigcontext __user *sc,
193 				 struct sigcontext __user *tm_sc,
194 				 struct task_struct *tsk,
195 				 int signr, sigset_t *set, unsigned long handler,
196 				 unsigned long msr)
197 {
198 	/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
199 	 * process never used altivec yet (MSR_VEC is zero in pt_regs of
200 	 * the context). This is very important because we must ensure we
201 	 * don't lose the VRSAVE content that may have been set prior to
202 	 * the process doing its first vector operation
203 	 * Userland shall check AT_HWCAP to know wether it can rely on the
204 	 * v_regs pointer or not.
205 	 */
206 #ifdef CONFIG_ALTIVEC
207 	elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc);
208 	elf_vrreg_t __user *tm_v_regs = sigcontext_vmx_regs(tm_sc);
209 #endif
210 	struct pt_regs *regs = tsk->thread.regs;
211 	long err = 0;
212 
213 	BUG_ON(tsk != current);
214 
215 	BUG_ON(!MSR_TM_ACTIVE(msr));
216 
217 	WARN_ON(tm_suspend_disabled);
218 
219 	/* Restore checkpointed FP, VEC, and VSX bits from ckpt_regs as
220 	 * it contains the correct FP, VEC, VSX state after we treclaimed
221 	 * the transaction and giveup_all() was called on reclaiming.
222 	 */
223 	msr |= tsk->thread.ckpt_regs.msr & (MSR_FP | MSR_VEC | MSR_VSX);
224 
225 #ifdef CONFIG_ALTIVEC
226 	err |= __put_user(v_regs, &sc->v_regs);
227 	err |= __put_user(tm_v_regs, &tm_sc->v_regs);
228 
229 	/* save altivec registers */
230 	if (tsk->thread.used_vr) {
231 		/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
232 		err |= __copy_to_user(v_regs, &tsk->thread.ckvr_state,
233 				      33 * sizeof(vector128));
234 		/* If VEC was enabled there are transactional VRs valid too,
235 		 * else they're a copy of the checkpointed VRs.
236 		 */
237 		if (msr & MSR_VEC)
238 			err |= __copy_to_user(tm_v_regs,
239 					      &tsk->thread.vr_state,
240 					      33 * sizeof(vector128));
241 		else
242 			err |= __copy_to_user(tm_v_regs,
243 					      &tsk->thread.ckvr_state,
244 					      33 * sizeof(vector128));
245 
246 		/* set MSR_VEC in the MSR value in the frame to indicate
247 		 * that sc->v_reg contains valid data.
248 		 */
249 		msr |= MSR_VEC;
250 	}
251 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
252 	 * use altivec.
253 	 */
254 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
255 		tsk->thread.ckvrsave = mfspr(SPRN_VRSAVE);
256 	err |= __put_user(tsk->thread.ckvrsave, (u32 __user *)&v_regs[33]);
257 	if (msr & MSR_VEC)
258 		err |= __put_user(tsk->thread.vrsave,
259 				  (u32 __user *)&tm_v_regs[33]);
260 	else
261 		err |= __put_user(tsk->thread.ckvrsave,
262 				  (u32 __user *)&tm_v_regs[33]);
263 
264 #else /* CONFIG_ALTIVEC */
265 	err |= __put_user(0, &sc->v_regs);
266 	err |= __put_user(0, &tm_sc->v_regs);
267 #endif /* CONFIG_ALTIVEC */
268 
269 	/* copy fpr regs and fpscr */
270 	err |= copy_ckfpr_to_user(&sc->fp_regs, tsk);
271 	if (msr & MSR_FP)
272 		err |= copy_fpr_to_user(&tm_sc->fp_regs, tsk);
273 	else
274 		err |= copy_ckfpr_to_user(&tm_sc->fp_regs, tsk);
275 
276 #ifdef CONFIG_VSX
277 	/*
278 	 * Copy VSX low doubleword to local buffer for formatting,
279 	 * then out to userspace.  Update v_regs to point after the
280 	 * VMX data.
281 	 */
282 	if (tsk->thread.used_vsr) {
283 		v_regs += ELF_NVRREG;
284 		tm_v_regs += ELF_NVRREG;
285 
286 		err |= copy_ckvsx_to_user(v_regs, tsk);
287 
288 		if (msr & MSR_VSX)
289 			err |= copy_vsx_to_user(tm_v_regs, tsk);
290 		else
291 			err |= copy_ckvsx_to_user(tm_v_regs, tsk);
292 
293 		/* set MSR_VSX in the MSR value in the frame to
294 		 * indicate that sc->vs_reg) contains valid data.
295 		 */
296 		msr |= MSR_VSX;
297 	}
298 #endif /* CONFIG_VSX */
299 
300 	err |= __put_user(&sc->gp_regs, &sc->regs);
301 	err |= __put_user(&tm_sc->gp_regs, &tm_sc->regs);
302 	WARN_ON(!FULL_REGS(regs));
303 	err |= __copy_to_user(&tm_sc->gp_regs, regs, GP_REGS_SIZE);
304 	err |= __copy_to_user(&sc->gp_regs,
305 			      &tsk->thread.ckpt_regs, GP_REGS_SIZE);
306 	err |= __put_user(msr, &tm_sc->gp_regs[PT_MSR]);
307 	err |= __put_user(msr, &sc->gp_regs[PT_MSR]);
308 	err |= __put_user(signr, &sc->signal);
309 	err |= __put_user(handler, &sc->handler);
310 	if (set != NULL)
311 		err |=  __put_user(set->sig[0], &sc->oldmask);
312 
313 	return err;
314 }
315 #endif
316 
317 /*
318  * Restore the sigcontext from the signal frame.
319  */
320 
321 static long restore_sigcontext(struct task_struct *tsk, sigset_t *set, int sig,
322 			      struct sigcontext __user *sc)
323 {
324 #ifdef CONFIG_ALTIVEC
325 	elf_vrreg_t __user *v_regs;
326 #endif
327 	unsigned long err = 0;
328 	unsigned long save_r13 = 0;
329 	unsigned long msr;
330 	struct pt_regs *regs = tsk->thread.regs;
331 #ifdef CONFIG_VSX
332 	int i;
333 #endif
334 
335 	BUG_ON(tsk != current);
336 
337 	/* If this is not a signal return, we preserve the TLS in r13 */
338 	if (!sig)
339 		save_r13 = regs->gpr[13];
340 
341 	/* copy the GPRs */
342 	err |= __copy_from_user(regs->gpr, sc->gp_regs, sizeof(regs->gpr));
343 	err |= __get_user(regs->nip, &sc->gp_regs[PT_NIP]);
344 	/* get MSR separately, transfer the LE bit if doing signal return */
345 	err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
346 	if (sig)
347 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
348 	err |= __get_user(regs->orig_gpr3, &sc->gp_regs[PT_ORIG_R3]);
349 	err |= __get_user(regs->ctr, &sc->gp_regs[PT_CTR]);
350 	err |= __get_user(regs->link, &sc->gp_regs[PT_LNK]);
351 	err |= __get_user(regs->xer, &sc->gp_regs[PT_XER]);
352 	err |= __get_user(regs->ccr, &sc->gp_regs[PT_CCR]);
353 	/* skip SOFTE */
354 	regs->trap = 0;
355 	err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]);
356 	err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]);
357 	err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]);
358 
359 	if (!sig)
360 		regs->gpr[13] = save_r13;
361 	if (set != NULL)
362 		err |=  __get_user(set->sig[0], &sc->oldmask);
363 
364 	/*
365 	 * Force reload of FP/VEC.
366 	 * This has to be done before copying stuff into tsk->thread.fpr/vr
367 	 * for the reasons explained in the previous comment.
368 	 */
369 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX);
370 
371 #ifdef CONFIG_ALTIVEC
372 	err |= __get_user(v_regs, &sc->v_regs);
373 	if (err)
374 		return err;
375 	if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128)))
376 		return -EFAULT;
377 	/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
378 	if (v_regs != NULL && (msr & MSR_VEC) != 0) {
379 		err |= __copy_from_user(&tsk->thread.vr_state, v_regs,
380 					33 * sizeof(vector128));
381 		tsk->thread.used_vr = true;
382 	} else if (tsk->thread.used_vr) {
383 		memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128));
384 	}
385 	/* Always get VRSAVE back */
386 	if (v_regs != NULL)
387 		err |= __get_user(tsk->thread.vrsave, (u32 __user *)&v_regs[33]);
388 	else
389 		tsk->thread.vrsave = 0;
390 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
391 		mtspr(SPRN_VRSAVE, tsk->thread.vrsave);
392 #endif /* CONFIG_ALTIVEC */
393 	/* restore floating point */
394 	err |= copy_fpr_from_user(tsk, &sc->fp_regs);
395 #ifdef CONFIG_VSX
396 	/*
397 	 * Get additional VSX data. Update v_regs to point after the
398 	 * VMX data.  Copy VSX low doubleword from userspace to local
399 	 * buffer for formatting, then into the taskstruct.
400 	 */
401 	v_regs += ELF_NVRREG;
402 	if ((msr & MSR_VSX) != 0) {
403 		err |= copy_vsx_from_user(tsk, v_regs);
404 		tsk->thread.used_vsr = true;
405 	} else {
406 		for (i = 0; i < 32 ; i++)
407 			tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
408 	}
409 #endif
410 	return err;
411 }
412 
413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
414 /*
415  * Restore the two sigcontexts from the frame of a transactional processes.
416  */
417 
418 static long restore_tm_sigcontexts(struct task_struct *tsk,
419 				   struct sigcontext __user *sc,
420 				   struct sigcontext __user *tm_sc)
421 {
422 #ifdef CONFIG_ALTIVEC
423 	elf_vrreg_t __user *v_regs, *tm_v_regs;
424 #endif
425 	unsigned long err = 0;
426 	unsigned long msr;
427 	struct pt_regs *regs = tsk->thread.regs;
428 #ifdef CONFIG_VSX
429 	int i;
430 #endif
431 
432 	BUG_ON(tsk != current);
433 
434 	if (tm_suspend_disabled)
435 		return -EINVAL;
436 
437 	/* copy the GPRs */
438 	err |= __copy_from_user(regs->gpr, tm_sc->gp_regs, sizeof(regs->gpr));
439 	err |= __copy_from_user(&tsk->thread.ckpt_regs, sc->gp_regs,
440 				sizeof(regs->gpr));
441 
442 	/*
443 	 * TFHAR is restored from the checkpointed 'wound-back' ucontext's NIP.
444 	 * TEXASR was set by the signal delivery reclaim, as was TFIAR.
445 	 * Users doing anything abhorrent like thread-switching w/ signals for
446 	 * TM-Suspended code will have to back TEXASR/TFIAR up themselves.
447 	 * For the case of getting a signal and simply returning from it,
448 	 * we don't need to re-copy them here.
449 	 */
450 	err |= __get_user(regs->nip, &tm_sc->gp_regs[PT_NIP]);
451 	err |= __get_user(tsk->thread.tm_tfhar, &sc->gp_regs[PT_NIP]);
452 
453 	/* get MSR separately, transfer the LE bit if doing signal return */
454 	err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
455 	/* Don't allow reserved mode. */
456 	if (MSR_TM_RESV(msr))
457 		return -EINVAL;
458 
459 	/* pull in MSR LE from user context */
460 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
461 
462 	/* The following non-GPR non-FPR non-VR state is also checkpointed: */
463 	err |= __get_user(regs->ctr, &tm_sc->gp_regs[PT_CTR]);
464 	err |= __get_user(regs->link, &tm_sc->gp_regs[PT_LNK]);
465 	err |= __get_user(regs->xer, &tm_sc->gp_regs[PT_XER]);
466 	err |= __get_user(regs->ccr, &tm_sc->gp_regs[PT_CCR]);
467 	err |= __get_user(tsk->thread.ckpt_regs.ctr,
468 			  &sc->gp_regs[PT_CTR]);
469 	err |= __get_user(tsk->thread.ckpt_regs.link,
470 			  &sc->gp_regs[PT_LNK]);
471 	err |= __get_user(tsk->thread.ckpt_regs.xer,
472 			  &sc->gp_regs[PT_XER]);
473 	err |= __get_user(tsk->thread.ckpt_regs.ccr,
474 			  &sc->gp_regs[PT_CCR]);
475 
476 	/* These regs are not checkpointed; they can go in 'regs'. */
477 	err |= __get_user(regs->trap, &sc->gp_regs[PT_TRAP]);
478 	err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]);
479 	err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]);
480 	err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]);
481 
482 	/*
483 	 * Force reload of FP/VEC.
484 	 * This has to be done before copying stuff into tsk->thread.fpr/vr
485 	 * for the reasons explained in the previous comment.
486 	 */
487 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX);
488 
489 #ifdef CONFIG_ALTIVEC
490 	err |= __get_user(v_regs, &sc->v_regs);
491 	err |= __get_user(tm_v_regs, &tm_sc->v_regs);
492 	if (err)
493 		return err;
494 	if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128)))
495 		return -EFAULT;
496 	if (tm_v_regs && !access_ok(tm_v_regs, 34 * sizeof(vector128)))
497 		return -EFAULT;
498 	/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
499 	if (v_regs != NULL && tm_v_regs != NULL && (msr & MSR_VEC) != 0) {
500 		err |= __copy_from_user(&tsk->thread.ckvr_state, v_regs,
501 					33 * sizeof(vector128));
502 		err |= __copy_from_user(&tsk->thread.vr_state, tm_v_regs,
503 					33 * sizeof(vector128));
504 		current->thread.used_vr = true;
505 	}
506 	else if (tsk->thread.used_vr) {
507 		memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128));
508 		memset(&tsk->thread.ckvr_state, 0, 33 * sizeof(vector128));
509 	}
510 	/* Always get VRSAVE back */
511 	if (v_regs != NULL && tm_v_regs != NULL) {
512 		err |= __get_user(tsk->thread.ckvrsave,
513 				  (u32 __user *)&v_regs[33]);
514 		err |= __get_user(tsk->thread.vrsave,
515 				  (u32 __user *)&tm_v_regs[33]);
516 	}
517 	else {
518 		tsk->thread.vrsave = 0;
519 		tsk->thread.ckvrsave = 0;
520 	}
521 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
522 		mtspr(SPRN_VRSAVE, tsk->thread.vrsave);
523 #endif /* CONFIG_ALTIVEC */
524 	/* restore floating point */
525 	err |= copy_fpr_from_user(tsk, &tm_sc->fp_regs);
526 	err |= copy_ckfpr_from_user(tsk, &sc->fp_regs);
527 #ifdef CONFIG_VSX
528 	/*
529 	 * Get additional VSX data. Update v_regs to point after the
530 	 * VMX data.  Copy VSX low doubleword from userspace to local
531 	 * buffer for formatting, then into the taskstruct.
532 	 */
533 	if (v_regs && ((msr & MSR_VSX) != 0)) {
534 		v_regs += ELF_NVRREG;
535 		tm_v_regs += ELF_NVRREG;
536 		err |= copy_vsx_from_user(tsk, tm_v_regs);
537 		err |= copy_ckvsx_from_user(tsk, v_regs);
538 		tsk->thread.used_vsr = true;
539 	} else {
540 		for (i = 0; i < 32 ; i++) {
541 			tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
542 			tsk->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
543 		}
544 	}
545 #endif
546 	tm_enable();
547 	/* Make sure the transaction is marked as failed */
548 	tsk->thread.tm_texasr |= TEXASR_FS;
549 
550 	/*
551 	 * Disabling preemption, since it is unsafe to be preempted
552 	 * with MSR[TS] set without recheckpointing.
553 	 */
554 	preempt_disable();
555 
556 	/* pull in MSR TS bits from user context */
557 	regs->msr |= msr & MSR_TS_MASK;
558 
559 	/*
560 	 * Ensure that TM is enabled in regs->msr before we leave the signal
561 	 * handler. It could be the case that (a) user disabled the TM bit
562 	 * through the manipulation of the MSR bits in uc_mcontext or (b) the
563 	 * TM bit was disabled because a sufficient number of context switches
564 	 * happened whilst in the signal handler and load_tm overflowed,
565 	 * disabling the TM bit. In either case we can end up with an illegal
566 	 * TM state leading to a TM Bad Thing when we return to userspace.
567 	 *
568 	 * CAUTION:
569 	 * After regs->MSR[TS] being updated, make sure that get_user(),
570 	 * put_user() or similar functions are *not* called. These
571 	 * functions can generate page faults which will cause the process
572 	 * to be de-scheduled with MSR[TS] set but without calling
573 	 * tm_recheckpoint(). This can cause a bug.
574 	 */
575 	regs->msr |= MSR_TM;
576 
577 	/* This loads the checkpointed FP/VEC state, if used */
578 	tm_recheckpoint(&tsk->thread);
579 
580 	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
581 	if (msr & MSR_FP) {
582 		load_fp_state(&tsk->thread.fp_state);
583 		regs->msr |= (MSR_FP | tsk->thread.fpexc_mode);
584 	}
585 	if (msr & MSR_VEC) {
586 		load_vr_state(&tsk->thread.vr_state);
587 		regs->msr |= MSR_VEC;
588 	}
589 
590 	preempt_enable();
591 
592 	return err;
593 }
594 #endif
595 
596 /*
597  * Setup the trampoline code on the stack
598  */
599 static long setup_trampoline(unsigned int syscall, unsigned int __user *tramp)
600 {
601 	int i;
602 	long err = 0;
603 
604 	/* addi r1, r1, __SIGNAL_FRAMESIZE  # Pop the dummy stackframe */
605 	err |= __put_user(PPC_INST_ADDI | __PPC_RT(R1) | __PPC_RA(R1) |
606 			  (__SIGNAL_FRAMESIZE & 0xffff), &tramp[0]);
607 	/* li r0, __NR_[rt_]sigreturn| */
608 	err |= __put_user(PPC_INST_ADDI | (syscall & 0xffff), &tramp[1]);
609 	/* sc */
610 	err |= __put_user(PPC_INST_SC, &tramp[2]);
611 
612 	/* Minimal traceback info */
613 	for (i=TRAMP_TRACEBACK; i < TRAMP_SIZE ;i++)
614 		err |= __put_user(0, &tramp[i]);
615 
616 	if (!err)
617 		flush_icache_range((unsigned long) &tramp[0],
618 			   (unsigned long) &tramp[TRAMP_SIZE]);
619 
620 	return err;
621 }
622 
623 /*
624  * Userspace code may pass a ucontext which doesn't include VSX added
625  * at the end.  We need to check for this case.
626  */
627 #define UCONTEXTSIZEWITHOUTVSX \
628 		(sizeof(struct ucontext) - 32*sizeof(long))
629 
630 /*
631  * Handle {get,set,swap}_context operations
632  */
633 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
634 		struct ucontext __user *, new_ctx, long, ctx_size)
635 {
636 	unsigned char tmp;
637 	sigset_t set;
638 	unsigned long new_msr = 0;
639 	int ctx_has_vsx_region = 0;
640 
641 	if (new_ctx &&
642 	    get_user(new_msr, &new_ctx->uc_mcontext.gp_regs[PT_MSR]))
643 		return -EFAULT;
644 	/*
645 	 * Check that the context is not smaller than the original
646 	 * size (with VMX but without VSX)
647 	 */
648 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
649 		return -EINVAL;
650 	/*
651 	 * If the new context state sets the MSR VSX bits but
652 	 * it doesn't provide VSX state.
653 	 */
654 	if ((ctx_size < sizeof(struct ucontext)) &&
655 	    (new_msr & MSR_VSX))
656 		return -EINVAL;
657 	/* Does the context have enough room to store VSX data? */
658 	if (ctx_size >= sizeof(struct ucontext))
659 		ctx_has_vsx_region = 1;
660 
661 	if (old_ctx != NULL) {
662 		if (!access_ok(old_ctx, ctx_size)
663 		    || setup_sigcontext(&old_ctx->uc_mcontext, current, 0, NULL, 0,
664 					ctx_has_vsx_region)
665 		    || __copy_to_user(&old_ctx->uc_sigmask,
666 				      &current->blocked, sizeof(sigset_t)))
667 			return -EFAULT;
668 	}
669 	if (new_ctx == NULL)
670 		return 0;
671 	if (!access_ok(new_ctx, ctx_size)
672 	    || __get_user(tmp, (u8 __user *) new_ctx)
673 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
674 		return -EFAULT;
675 
676 	/*
677 	 * If we get a fault copying the context into the kernel's
678 	 * image of the user's registers, we can't just return -EFAULT
679 	 * because the user's registers will be corrupted.  For instance
680 	 * the NIP value may have been updated but not some of the
681 	 * other registers.  Given that we have done the access_ok
682 	 * and successfully read the first and last bytes of the region
683 	 * above, this should only happen in an out-of-memory situation
684 	 * or if another thread unmaps the region containing the context.
685 	 * We kill the task with a SIGSEGV in this situation.
686 	 */
687 
688 	if (__copy_from_user(&set, &new_ctx->uc_sigmask, sizeof(set)))
689 		do_exit(SIGSEGV);
690 	set_current_blocked(&set);
691 	if (restore_sigcontext(current, NULL, 0, &new_ctx->uc_mcontext))
692 		do_exit(SIGSEGV);
693 
694 	/* This returns like rt_sigreturn */
695 	set_thread_flag(TIF_RESTOREALL);
696 	return 0;
697 }
698 
699 
700 /*
701  * Do a signal return; undo the signal stack.
702  */
703 
704 SYSCALL_DEFINE0(rt_sigreturn)
705 {
706 	struct pt_regs *regs = current_pt_regs();
707 	struct ucontext __user *uc = (struct ucontext __user *)regs->gpr[1];
708 	sigset_t set;
709 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
710 	unsigned long msr;
711 #endif
712 
713 	/* Always make any pending restarted system calls return -EINTR */
714 	current->restart_block.fn = do_no_restart_syscall;
715 
716 	if (!access_ok(uc, sizeof(*uc)))
717 		goto badframe;
718 
719 	if (__copy_from_user(&set, &uc->uc_sigmask, sizeof(set)))
720 		goto badframe;
721 	set_current_blocked(&set);
722 
723 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
724 	/*
725 	 * If there is a transactional state then throw it away.
726 	 * The purpose of a sigreturn is to destroy all traces of the
727 	 * signal frame, this includes any transactional state created
728 	 * within in. We only check for suspended as we can never be
729 	 * active in the kernel, we are active, there is nothing better to
730 	 * do than go ahead and Bad Thing later.
731 	 * The cause is not important as there will never be a
732 	 * recheckpoint so it's not user visible.
733 	 */
734 	if (MSR_TM_SUSPENDED(mfmsr()))
735 		tm_reclaim_current(0);
736 
737 	/*
738 	 * Disable MSR[TS] bit also, so, if there is an exception in the
739 	 * code below (as a page fault in copy_ckvsx_to_user()), it does
740 	 * not recheckpoint this task if there was a context switch inside
741 	 * the exception.
742 	 *
743 	 * A major page fault can indirectly call schedule(). A reschedule
744 	 * process in the middle of an exception can have a side effect
745 	 * (Changing the CPU MSR[TS] state), since schedule() is called
746 	 * with the CPU MSR[TS] disable and returns with MSR[TS]=Suspended
747 	 * (switch_to() calls tm_recheckpoint() for the 'new' process). In
748 	 * this case, the process continues to be the same in the CPU, but
749 	 * the CPU state just changed.
750 	 *
751 	 * This can cause a TM Bad Thing, since the MSR in the stack will
752 	 * have the MSR[TS]=0, and this is what will be used to RFID.
753 	 *
754 	 * Clearing MSR[TS] state here will avoid a recheckpoint if there
755 	 * is any process reschedule in kernel space. The MSR[TS] state
756 	 * does not need to be saved also, since it will be replaced with
757 	 * the MSR[TS] that came from user context later, at
758 	 * restore_tm_sigcontexts.
759 	 */
760 	regs->msr &= ~MSR_TS_MASK;
761 
762 	if (__get_user(msr, &uc->uc_mcontext.gp_regs[PT_MSR]))
763 		goto badframe;
764 	if (MSR_TM_ACTIVE(msr)) {
765 		/* We recheckpoint on return. */
766 		struct ucontext __user *uc_transact;
767 
768 		/* Trying to start TM on non TM system */
769 		if (!cpu_has_feature(CPU_FTR_TM))
770 			goto badframe;
771 
772 		if (__get_user(uc_transact, &uc->uc_link))
773 			goto badframe;
774 		if (restore_tm_sigcontexts(current, &uc->uc_mcontext,
775 					   &uc_transact->uc_mcontext))
776 			goto badframe;
777 	} else
778 #endif
779 	{
780 		/*
781 		 * Fall through, for non-TM restore
782 		 *
783 		 * Unset MSR[TS] on the thread regs since MSR from user
784 		 * context does not have MSR active, and recheckpoint was
785 		 * not called since restore_tm_sigcontexts() was not called
786 		 * also.
787 		 *
788 		 * If not unsetting it, the code can RFID to userspace with
789 		 * MSR[TS] set, but without CPU in the proper state,
790 		 * causing a TM bad thing.
791 		 */
792 		current->thread.regs->msr &= ~MSR_TS_MASK;
793 		if (restore_sigcontext(current, NULL, 1, &uc->uc_mcontext))
794 			goto badframe;
795 	}
796 
797 	if (restore_altstack(&uc->uc_stack))
798 		goto badframe;
799 
800 	set_thread_flag(TIF_RESTOREALL);
801 	return 0;
802 
803 badframe:
804 	if (show_unhandled_signals)
805 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
806 				   current->comm, current->pid, "rt_sigreturn",
807 				   (long)uc, regs->nip, regs->link);
808 
809 	force_sig(SIGSEGV);
810 	return 0;
811 }
812 
813 int handle_rt_signal64(struct ksignal *ksig, sigset_t *set,
814 		struct task_struct *tsk)
815 {
816 	struct rt_sigframe __user *frame;
817 	unsigned long newsp = 0;
818 	long err = 0;
819 	struct pt_regs *regs = tsk->thread.regs;
820 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
821 	/* Save the thread's msr before get_tm_stackpointer() changes it */
822 	unsigned long msr = regs->msr;
823 #endif
824 
825 	BUG_ON(tsk != current);
826 
827 	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 0);
828 	if (unlikely(frame == NULL))
829 		goto badframe;
830 
831 	err |= __put_user(&frame->info, &frame->pinfo);
832 	err |= __put_user(&frame->uc, &frame->puc);
833 	err |= copy_siginfo_to_user(&frame->info, &ksig->info);
834 	if (err)
835 		goto badframe;
836 
837 	/* Create the ucontext.  */
838 	err |= __put_user(0, &frame->uc.uc_flags);
839 	err |= __save_altstack(&frame->uc.uc_stack, regs->gpr[1]);
840 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
841 	if (MSR_TM_ACTIVE(msr)) {
842 		/* The ucontext_t passed to userland points to the second
843 		 * ucontext_t (for transactional state) with its uc_link ptr.
844 		 */
845 		err |= __put_user(&frame->uc_transact, &frame->uc.uc_link);
846 		err |= setup_tm_sigcontexts(&frame->uc.uc_mcontext,
847 					    &frame->uc_transact.uc_mcontext,
848 					    tsk, ksig->sig, NULL,
849 					    (unsigned long)ksig->ka.sa.sa_handler,
850 					    msr);
851 	} else
852 #endif
853 	{
854 		err |= __put_user(0, &frame->uc.uc_link);
855 		err |= setup_sigcontext(&frame->uc.uc_mcontext, tsk, ksig->sig,
856 					NULL, (unsigned long)ksig->ka.sa.sa_handler,
857 					1);
858 	}
859 	err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
860 	if (err)
861 		goto badframe;
862 
863 	/* Make sure signal handler doesn't get spurious FP exceptions */
864 	tsk->thread.fp_state.fpscr = 0;
865 
866 	/* Set up to return from userspace. */
867 	if (vdso64_rt_sigtramp && tsk->mm->context.vdso_base) {
868 		regs->link = tsk->mm->context.vdso_base + vdso64_rt_sigtramp;
869 	} else {
870 		err |= setup_trampoline(__NR_rt_sigreturn, &frame->tramp[0]);
871 		if (err)
872 			goto badframe;
873 		regs->link = (unsigned long) &frame->tramp[0];
874 	}
875 
876 	/* Allocate a dummy caller frame for the signal handler. */
877 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
878 	err |= put_user(regs->gpr[1], (unsigned long __user *)newsp);
879 
880 	/* Set up "regs" so we "return" to the signal handler. */
881 	if (is_elf2_task()) {
882 		regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
883 		regs->gpr[12] = regs->nip;
884 	} else {
885 		/* Handler is *really* a pointer to the function descriptor for
886 		 * the signal routine.  The first entry in the function
887 		 * descriptor is the entry address of signal and the second
888 		 * entry is the TOC value we need to use.
889 		 */
890 		func_descr_t __user *funct_desc_ptr =
891 			(func_descr_t __user *) ksig->ka.sa.sa_handler;
892 
893 		err |= get_user(regs->nip, &funct_desc_ptr->entry);
894 		err |= get_user(regs->gpr[2], &funct_desc_ptr->toc);
895 	}
896 
897 	/* enter the signal handler in native-endian mode */
898 	regs->msr &= ~MSR_LE;
899 	regs->msr |= (MSR_KERNEL & MSR_LE);
900 	regs->gpr[1] = newsp;
901 	regs->gpr[3] = ksig->sig;
902 	regs->result = 0;
903 	if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
904 		err |= get_user(regs->gpr[4], (unsigned long __user *)&frame->pinfo);
905 		err |= get_user(regs->gpr[5], (unsigned long __user *)&frame->puc);
906 		regs->gpr[6] = (unsigned long) frame;
907 	} else {
908 		regs->gpr[4] = (unsigned long)&frame->uc.uc_mcontext;
909 	}
910 	if (err)
911 		goto badframe;
912 
913 	return 0;
914 
915 badframe:
916 	if (show_unhandled_signals)
917 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
918 				   tsk->comm, tsk->pid, "setup_rt_frame",
919 				   (long)frame, regs->nip, regs->link);
920 
921 	return 1;
922 }
923