xref: /linux/arch/powerpc/kernel/signal_32.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3  *
4  *  PowerPC version
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  * Copyright (C) 2001 IBM
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9  *
10  *  Derived from "arch/i386/kernel/signal.c"
11  *    Copyright (C) 1991, 1992 Linus Torvalds
12  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39 
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
54 
55 #include "signal.h"
56 
57 
58 #ifdef CONFIG_PPC64
59 #define sys_rt_sigreturn	compat_sys_rt_sigreturn
60 #define sys_swapcontext	compat_sys_swapcontext
61 #define sys_sigreturn	compat_sys_sigreturn
62 
63 #define old_sigaction	old_sigaction32
64 #define sigcontext	sigcontext32
65 #define mcontext	mcontext32
66 #define ucontext	ucontext32
67 
68 #define __save_altstack __compat_save_altstack
69 
70 /*
71  * Userspace code may pass a ucontext which doesn't include VSX added
72  * at the end.  We need to check for this case.
73  */
74 #define UCONTEXTSIZEWITHOUTVSX \
75 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
76 
77 /*
78  * Returning 0 means we return to userspace via
79  * ret_from_except and thus restore all user
80  * registers from *regs.  This is what we need
81  * to do when a signal has been delivered.
82  */
83 
84 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
85 #undef __SIGNAL_FRAMESIZE
86 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
87 #undef ELF_NVRREG
88 #define ELF_NVRREG	ELF_NVRREG32
89 
90 /*
91  * Functions for flipping sigsets (thanks to brain dead generic
92  * implementation that makes things simple for little endian only)
93  */
94 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
95 {
96 	compat_sigset_t	cset;
97 
98 	switch (_NSIG_WORDS) {
99 	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
100 		cset.sig[7] = set->sig[3] >> 32;
101 	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
102 		cset.sig[5] = set->sig[2] >> 32;
103 	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
104 		cset.sig[3] = set->sig[1] >> 32;
105 	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
106 		cset.sig[1] = set->sig[0] >> 32;
107 	}
108 	return copy_to_user(uset, &cset, sizeof(*uset));
109 }
110 
111 static inline int get_sigset_t(sigset_t *set,
112 			       const compat_sigset_t __user *uset)
113 {
114 	compat_sigset_t s32;
115 
116 	if (copy_from_user(&s32, uset, sizeof(*uset)))
117 		return -EFAULT;
118 
119 	/*
120 	 * Swap the 2 words of the 64-bit sigset_t (they are stored
121 	 * in the "wrong" endian in 32-bit user storage).
122 	 */
123 	switch (_NSIG_WORDS) {
124 	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
125 	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
126 	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
127 	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
128 	}
129 	return 0;
130 }
131 
132 #define to_user_ptr(p)		ptr_to_compat(p)
133 #define from_user_ptr(p)	compat_ptr(p)
134 
135 static inline int save_general_regs(struct pt_regs *regs,
136 		struct mcontext __user *frame)
137 {
138 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
139 	int i;
140 
141 	WARN_ON(!FULL_REGS(regs));
142 
143 	for (i = 0; i <= PT_RESULT; i ++) {
144 		if (i == 14 && !FULL_REGS(regs))
145 			i = 32;
146 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
147 			return -EFAULT;
148 	}
149 	return 0;
150 }
151 
152 static inline int restore_general_regs(struct pt_regs *regs,
153 		struct mcontext __user *sr)
154 {
155 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
156 	int i;
157 
158 	for (i = 0; i <= PT_RESULT; i++) {
159 		if ((i == PT_MSR) || (i == PT_SOFTE))
160 			continue;
161 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
162 			return -EFAULT;
163 	}
164 	return 0;
165 }
166 
167 #else /* CONFIG_PPC64 */
168 
169 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
170 
171 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
172 {
173 	return copy_to_user(uset, set, sizeof(*uset));
174 }
175 
176 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
177 {
178 	return copy_from_user(set, uset, sizeof(*uset));
179 }
180 
181 #define to_user_ptr(p)		((unsigned long)(p))
182 #define from_user_ptr(p)	((void __user *)(p))
183 
184 static inline int save_general_regs(struct pt_regs *regs,
185 		struct mcontext __user *frame)
186 {
187 	WARN_ON(!FULL_REGS(regs));
188 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
189 }
190 
191 static inline int restore_general_regs(struct pt_regs *regs,
192 		struct mcontext __user *sr)
193 {
194 	/* copy up to but not including MSR */
195 	if (__copy_from_user(regs, &sr->mc_gregs,
196 				PT_MSR * sizeof(elf_greg_t)))
197 		return -EFAULT;
198 	/* copy from orig_r3 (the word after the MSR) up to the end */
199 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
200 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
201 		return -EFAULT;
202 	return 0;
203 }
204 #endif
205 
206 /*
207  * When we have signals to deliver, we set up on the
208  * user stack, going down from the original stack pointer:
209  *	an ABI gap of 56 words
210  *	an mcontext struct
211  *	a sigcontext struct
212  *	a gap of __SIGNAL_FRAMESIZE bytes
213  *
214  * Each of these things must be a multiple of 16 bytes in size. The following
215  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
216  *
217  */
218 struct sigframe {
219 	struct sigcontext sctx;		/* the sigcontext */
220 	struct mcontext	mctx;		/* all the register values */
221 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
222 	struct sigcontext sctx_transact;
223 	struct mcontext	mctx_transact;
224 #endif
225 	/*
226 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
227 	 * regs and 18 fp regs below sp before decrementing it.
228 	 */
229 	int			abigap[56];
230 };
231 
232 /* We use the mc_pad field for the signal return trampoline. */
233 #define tramp	mc_pad
234 
235 /*
236  *  When we have rt signals to deliver, we set up on the
237  *  user stack, going down from the original stack pointer:
238  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
239  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
240  *  (the +16 is to get the siginfo and ucontext in the same
241  *  positions as in older kernels).
242  *
243  *  Each of these things must be a multiple of 16 bytes in size.
244  *
245  */
246 struct rt_sigframe {
247 #ifdef CONFIG_PPC64
248 	compat_siginfo_t info;
249 #else
250 	struct siginfo info;
251 #endif
252 	struct ucontext	uc;
253 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
254 	struct ucontext	uc_transact;
255 #endif
256 	/*
257 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
258 	 * regs and 18 fp regs below sp before decrementing it.
259 	 */
260 	int			abigap[56];
261 };
262 
263 #ifdef CONFIG_VSX
264 unsigned long copy_fpr_to_user(void __user *to,
265 			       struct task_struct *task)
266 {
267 	u64 buf[ELF_NFPREG];
268 	int i;
269 
270 	/* save FPR copy to local buffer then write to the thread_struct */
271 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
272 		buf[i] = task->thread.TS_FPR(i);
273 	buf[i] = task->thread.fp_state.fpscr;
274 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
275 }
276 
277 unsigned long copy_fpr_from_user(struct task_struct *task,
278 				 void __user *from)
279 {
280 	u64 buf[ELF_NFPREG];
281 	int i;
282 
283 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
284 		return 1;
285 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
286 		task->thread.TS_FPR(i) = buf[i];
287 	task->thread.fp_state.fpscr = buf[i];
288 
289 	return 0;
290 }
291 
292 unsigned long copy_vsx_to_user(void __user *to,
293 			       struct task_struct *task)
294 {
295 	u64 buf[ELF_NVSRHALFREG];
296 	int i;
297 
298 	/* save FPR copy to local buffer then write to the thread_struct */
299 	for (i = 0; i < ELF_NVSRHALFREG; i++)
300 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
301 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
302 }
303 
304 unsigned long copy_vsx_from_user(struct task_struct *task,
305 				 void __user *from)
306 {
307 	u64 buf[ELF_NVSRHALFREG];
308 	int i;
309 
310 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
311 		return 1;
312 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
313 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
314 	return 0;
315 }
316 
317 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
318 unsigned long copy_transact_fpr_to_user(void __user *to,
319 				  struct task_struct *task)
320 {
321 	u64 buf[ELF_NFPREG];
322 	int i;
323 
324 	/* save FPR copy to local buffer then write to the thread_struct */
325 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
326 		buf[i] = task->thread.TS_TRANS_FPR(i);
327 	buf[i] = task->thread.transact_fp.fpscr;
328 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
329 }
330 
331 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
332 					  void __user *from)
333 {
334 	u64 buf[ELF_NFPREG];
335 	int i;
336 
337 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
338 		return 1;
339 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
340 		task->thread.TS_TRANS_FPR(i) = buf[i];
341 	task->thread.transact_fp.fpscr = buf[i];
342 
343 	return 0;
344 }
345 
346 unsigned long copy_transact_vsx_to_user(void __user *to,
347 				  struct task_struct *task)
348 {
349 	u64 buf[ELF_NVSRHALFREG];
350 	int i;
351 
352 	/* save FPR copy to local buffer then write to the thread_struct */
353 	for (i = 0; i < ELF_NVSRHALFREG; i++)
354 		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
355 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
356 }
357 
358 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
359 					  void __user *from)
360 {
361 	u64 buf[ELF_NVSRHALFREG];
362 	int i;
363 
364 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
365 		return 1;
366 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
367 		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
368 	return 0;
369 }
370 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
371 #else
372 inline unsigned long copy_fpr_to_user(void __user *to,
373 				      struct task_struct *task)
374 {
375 	return __copy_to_user(to, task->thread.fp_state.fpr,
376 			      ELF_NFPREG * sizeof(double));
377 }
378 
379 inline unsigned long copy_fpr_from_user(struct task_struct *task,
380 					void __user *from)
381 {
382 	return __copy_from_user(task->thread.fp_state.fpr, from,
383 			      ELF_NFPREG * sizeof(double));
384 }
385 
386 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
387 inline unsigned long copy_transact_fpr_to_user(void __user *to,
388 					 struct task_struct *task)
389 {
390 	return __copy_to_user(to, task->thread.transact_fp.fpr,
391 			      ELF_NFPREG * sizeof(double));
392 }
393 
394 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
395 						 void __user *from)
396 {
397 	return __copy_from_user(task->thread.transact_fp.fpr, from,
398 				ELF_NFPREG * sizeof(double));
399 }
400 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
401 #endif
402 
403 /*
404  * Save the current user registers on the user stack.
405  * We only save the altivec/spe registers if the process has used
406  * altivec/spe instructions at some point.
407  */
408 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
409 			  struct mcontext __user *tm_frame, int sigret,
410 			  int ctx_has_vsx_region)
411 {
412 	unsigned long msr = regs->msr;
413 
414 	/* Make sure floating point registers are stored in regs */
415 	flush_fp_to_thread(current);
416 
417 	/* save general registers */
418 	if (save_general_regs(regs, frame))
419 		return 1;
420 
421 #ifdef CONFIG_ALTIVEC
422 	/* save altivec registers */
423 	if (current->thread.used_vr) {
424 		flush_altivec_to_thread(current);
425 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
426 				   ELF_NVRREG * sizeof(vector128)))
427 			return 1;
428 		/* set MSR_VEC in the saved MSR value to indicate that
429 		   frame->mc_vregs contains valid data */
430 		msr |= MSR_VEC;
431 	}
432 	/* else assert((regs->msr & MSR_VEC) == 0) */
433 
434 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
435 	 * use altivec. Since VSCR only contains 32 bits saved in the least
436 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
437 	 * most significant bits of that same vector. --BenH
438 	 * Note that the current VRSAVE value is in the SPR at this point.
439 	 */
440 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
441 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
442 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
443 		return 1;
444 #endif /* CONFIG_ALTIVEC */
445 	if (copy_fpr_to_user(&frame->mc_fregs, current))
446 		return 1;
447 
448 	/*
449 	 * Clear the MSR VSX bit to indicate there is no valid state attached
450 	 * to this context, except in the specific case below where we set it.
451 	 */
452 	msr &= ~MSR_VSX;
453 #ifdef CONFIG_VSX
454 	/*
455 	 * Copy VSR 0-31 upper half from thread_struct to local
456 	 * buffer, then write that to userspace.  Also set MSR_VSX in
457 	 * the saved MSR value to indicate that frame->mc_vregs
458 	 * contains valid data
459 	 */
460 	if (current->thread.used_vsr && ctx_has_vsx_region) {
461 		flush_vsx_to_thread(current);
462 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
463 			return 1;
464 		msr |= MSR_VSX;
465 	}
466 #endif /* CONFIG_VSX */
467 #ifdef CONFIG_SPE
468 	/* save spe registers */
469 	if (current->thread.used_spe) {
470 		flush_spe_to_thread(current);
471 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
472 				   ELF_NEVRREG * sizeof(u32)))
473 			return 1;
474 		/* set MSR_SPE in the saved MSR value to indicate that
475 		   frame->mc_vregs contains valid data */
476 		msr |= MSR_SPE;
477 	}
478 	/* else assert((regs->msr & MSR_SPE) == 0) */
479 
480 	/* We always copy to/from spefscr */
481 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
482 		return 1;
483 #endif /* CONFIG_SPE */
484 
485 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
486 		return 1;
487 	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
488 	 * can check it on the restore to see if TM is active
489 	 */
490 	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
491 		return 1;
492 
493 	if (sigret) {
494 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
495 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
496 		    || __put_user(0x44000002UL, &frame->tramp[1]))
497 			return 1;
498 		flush_icache_range((unsigned long) &frame->tramp[0],
499 				   (unsigned long) &frame->tramp[2]);
500 	}
501 
502 	return 0;
503 }
504 
505 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
506 /*
507  * Save the current user registers on the user stack.
508  * We only save the altivec/spe registers if the process has used
509  * altivec/spe instructions at some point.
510  * We also save the transactional registers to a second ucontext in the
511  * frame.
512  *
513  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
514  */
515 static int save_tm_user_regs(struct pt_regs *regs,
516 			     struct mcontext __user *frame,
517 			     struct mcontext __user *tm_frame, int sigret)
518 {
519 	unsigned long msr = regs->msr;
520 
521 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
522 	 * just indicates to userland that we were doing a transaction, but we
523 	 * don't want to return in transactional state.  This also ensures
524 	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
525 	 */
526 	regs->msr &= ~MSR_TS_MASK;
527 
528 	/* Make sure floating point registers are stored in regs */
529 	flush_fp_to_thread(current);
530 
531 	/* Save both sets of general registers */
532 	if (save_general_regs(&current->thread.ckpt_regs, frame)
533 	    || save_general_regs(regs, tm_frame))
534 		return 1;
535 
536 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
537 	 * of the transactional mcontext.  This way we have a backward-compatible
538 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
539 	 * also look at what type of transaction (T or S) was active at the
540 	 * time of the signal.
541 	 */
542 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
543 		return 1;
544 
545 #ifdef CONFIG_ALTIVEC
546 	/* save altivec registers */
547 	if (current->thread.used_vr) {
548 		flush_altivec_to_thread(current);
549 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
550 				   ELF_NVRREG * sizeof(vector128)))
551 			return 1;
552 		if (msr & MSR_VEC) {
553 			if (__copy_to_user(&tm_frame->mc_vregs,
554 					   &current->thread.transact_vr,
555 					   ELF_NVRREG * sizeof(vector128)))
556 				return 1;
557 		} else {
558 			if (__copy_to_user(&tm_frame->mc_vregs,
559 					   &current->thread.vr_state,
560 					   ELF_NVRREG * sizeof(vector128)))
561 				return 1;
562 		}
563 
564 		/* set MSR_VEC in the saved MSR value to indicate that
565 		 * frame->mc_vregs contains valid data
566 		 */
567 		msr |= MSR_VEC;
568 	}
569 
570 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
571 	 * use altivec. Since VSCR only contains 32 bits saved in the least
572 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
573 	 * most significant bits of that same vector. --BenH
574 	 */
575 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
576 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
577 	if (__put_user(current->thread.vrsave,
578 		       (u32 __user *)&frame->mc_vregs[32]))
579 		return 1;
580 	if (msr & MSR_VEC) {
581 		if (__put_user(current->thread.transact_vrsave,
582 			       (u32 __user *)&tm_frame->mc_vregs[32]))
583 			return 1;
584 	} else {
585 		if (__put_user(current->thread.vrsave,
586 			       (u32 __user *)&tm_frame->mc_vregs[32]))
587 			return 1;
588 	}
589 #endif /* CONFIG_ALTIVEC */
590 
591 	if (copy_fpr_to_user(&frame->mc_fregs, current))
592 		return 1;
593 	if (msr & MSR_FP) {
594 		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
595 			return 1;
596 	} else {
597 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
598 			return 1;
599 	}
600 
601 #ifdef CONFIG_VSX
602 	/*
603 	 * Copy VSR 0-31 upper half from thread_struct to local
604 	 * buffer, then write that to userspace.  Also set MSR_VSX in
605 	 * the saved MSR value to indicate that frame->mc_vregs
606 	 * contains valid data
607 	 */
608 	if (current->thread.used_vsr) {
609 		flush_vsx_to_thread(current);
610 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
611 			return 1;
612 		if (msr & MSR_VSX) {
613 			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
614 						      current))
615 				return 1;
616 		} else {
617 			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
618 				return 1;
619 		}
620 
621 		msr |= MSR_VSX;
622 	}
623 #endif /* CONFIG_VSX */
624 #ifdef CONFIG_SPE
625 	/* SPE regs are not checkpointed with TM, so this section is
626 	 * simply the same as in save_user_regs().
627 	 */
628 	if (current->thread.used_spe) {
629 		flush_spe_to_thread(current);
630 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
631 				   ELF_NEVRREG * sizeof(u32)))
632 			return 1;
633 		/* set MSR_SPE in the saved MSR value to indicate that
634 		 * frame->mc_vregs contains valid data */
635 		msr |= MSR_SPE;
636 	}
637 
638 	/* We always copy to/from spefscr */
639 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
640 		return 1;
641 #endif /* CONFIG_SPE */
642 
643 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
644 		return 1;
645 	if (sigret) {
646 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
647 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
648 		    || __put_user(0x44000002UL, &frame->tramp[1]))
649 			return 1;
650 		flush_icache_range((unsigned long) &frame->tramp[0],
651 				   (unsigned long) &frame->tramp[2]);
652 	}
653 
654 	return 0;
655 }
656 #endif
657 
658 /*
659  * Restore the current user register values from the user stack,
660  * (except for MSR).
661  */
662 static long restore_user_regs(struct pt_regs *regs,
663 			      struct mcontext __user *sr, int sig)
664 {
665 	long err;
666 	unsigned int save_r2 = 0;
667 	unsigned long msr;
668 #ifdef CONFIG_VSX
669 	int i;
670 #endif
671 
672 	/*
673 	 * restore general registers but not including MSR or SOFTE. Also
674 	 * take care of keeping r2 (TLS) intact if not a signal
675 	 */
676 	if (!sig)
677 		save_r2 = (unsigned int)regs->gpr[2];
678 	err = restore_general_regs(regs, sr);
679 	regs->trap = 0;
680 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
681 	if (!sig)
682 		regs->gpr[2] = (unsigned long) save_r2;
683 	if (err)
684 		return 1;
685 
686 	/* if doing signal return, restore the previous little-endian mode */
687 	if (sig)
688 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
689 
690 #ifdef CONFIG_ALTIVEC
691 	/*
692 	 * Force the process to reload the altivec registers from
693 	 * current->thread when it next does altivec instructions
694 	 */
695 	regs->msr &= ~MSR_VEC;
696 	if (msr & MSR_VEC) {
697 		/* restore altivec registers from the stack */
698 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
699 				     sizeof(sr->mc_vregs)))
700 			return 1;
701 	} else if (current->thread.used_vr)
702 		memset(&current->thread.vr_state, 0,
703 		       ELF_NVRREG * sizeof(vector128));
704 
705 	/* Always get VRSAVE back */
706 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
707 		return 1;
708 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
709 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
710 #endif /* CONFIG_ALTIVEC */
711 	if (copy_fpr_from_user(current, &sr->mc_fregs))
712 		return 1;
713 
714 #ifdef CONFIG_VSX
715 	/*
716 	 * Force the process to reload the VSX registers from
717 	 * current->thread when it next does VSX instruction.
718 	 */
719 	regs->msr &= ~MSR_VSX;
720 	if (msr & MSR_VSX) {
721 		/*
722 		 * Restore altivec registers from the stack to a local
723 		 * buffer, then write this out to the thread_struct
724 		 */
725 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
726 			return 1;
727 	} else if (current->thread.used_vsr)
728 		for (i = 0; i < 32 ; i++)
729 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
730 #endif /* CONFIG_VSX */
731 	/*
732 	 * force the process to reload the FP registers from
733 	 * current->thread when it next does FP instructions
734 	 */
735 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
736 
737 #ifdef CONFIG_SPE
738 	/* force the process to reload the spe registers from
739 	   current->thread when it next does spe instructions */
740 	regs->msr &= ~MSR_SPE;
741 	if (msr & MSR_SPE) {
742 		/* restore spe registers from the stack */
743 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
744 				     ELF_NEVRREG * sizeof(u32)))
745 			return 1;
746 	} else if (current->thread.used_spe)
747 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
748 
749 	/* Always get SPEFSCR back */
750 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
751 		return 1;
752 #endif /* CONFIG_SPE */
753 
754 	return 0;
755 }
756 
757 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
758 /*
759  * Restore the current user register values from the user stack, except for
760  * MSR, and recheckpoint the original checkpointed register state for processes
761  * in transactions.
762  */
763 static long restore_tm_user_regs(struct pt_regs *regs,
764 				 struct mcontext __user *sr,
765 				 struct mcontext __user *tm_sr)
766 {
767 	long err;
768 	unsigned long msr, msr_hi;
769 #ifdef CONFIG_VSX
770 	int i;
771 #endif
772 
773 	/*
774 	 * restore general registers but not including MSR or SOFTE. Also
775 	 * take care of keeping r2 (TLS) intact if not a signal.
776 	 * See comment in signal_64.c:restore_tm_sigcontexts();
777 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
778 	 * were set by the signal delivery.
779 	 */
780 	err = restore_general_regs(regs, tm_sr);
781 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
782 
783 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
784 
785 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
786 	if (err)
787 		return 1;
788 
789 	/* Restore the previous little-endian mode */
790 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
791 
792 #ifdef CONFIG_ALTIVEC
793 	regs->msr &= ~MSR_VEC;
794 	if (msr & MSR_VEC) {
795 		/* restore altivec registers from the stack */
796 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
797 				     sizeof(sr->mc_vregs)) ||
798 		    __copy_from_user(&current->thread.transact_vr,
799 				     &tm_sr->mc_vregs,
800 				     sizeof(sr->mc_vregs)))
801 			return 1;
802 	} else if (current->thread.used_vr) {
803 		memset(&current->thread.vr_state, 0,
804 		       ELF_NVRREG * sizeof(vector128));
805 		memset(&current->thread.transact_vr, 0,
806 		       ELF_NVRREG * sizeof(vector128));
807 	}
808 
809 	/* Always get VRSAVE back */
810 	if (__get_user(current->thread.vrsave,
811 		       (u32 __user *)&sr->mc_vregs[32]) ||
812 	    __get_user(current->thread.transact_vrsave,
813 		       (u32 __user *)&tm_sr->mc_vregs[32]))
814 		return 1;
815 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
816 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
817 #endif /* CONFIG_ALTIVEC */
818 
819 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
820 
821 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
822 	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
823 		return 1;
824 
825 #ifdef CONFIG_VSX
826 	regs->msr &= ~MSR_VSX;
827 	if (msr & MSR_VSX) {
828 		/*
829 		 * Restore altivec registers from the stack to a local
830 		 * buffer, then write this out to the thread_struct
831 		 */
832 		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
833 		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
834 			return 1;
835 	} else if (current->thread.used_vsr)
836 		for (i = 0; i < 32 ; i++) {
837 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
838 			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
839 		}
840 #endif /* CONFIG_VSX */
841 
842 #ifdef CONFIG_SPE
843 	/* SPE regs are not checkpointed with TM, so this section is
844 	 * simply the same as in restore_user_regs().
845 	 */
846 	regs->msr &= ~MSR_SPE;
847 	if (msr & MSR_SPE) {
848 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
849 				     ELF_NEVRREG * sizeof(u32)))
850 			return 1;
851 	} else if (current->thread.used_spe)
852 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
853 
854 	/* Always get SPEFSCR back */
855 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
856 		       + ELF_NEVRREG))
857 		return 1;
858 #endif /* CONFIG_SPE */
859 
860 	/* Get the top half of the MSR from the user context */
861 	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
862 		return 1;
863 	msr_hi <<= 32;
864 	/* If TM bits are set to the reserved value, it's an invalid context */
865 	if (MSR_TM_RESV(msr_hi))
866 		return 1;
867 	/* Pull in the MSR TM bits from the user context */
868 	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
869 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
870 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
871 	 * transactional versions should be loaded.
872 	 */
873 	tm_enable();
874 	/* Make sure the transaction is marked as failed */
875 	current->thread.tm_texasr |= TEXASR_FS;
876 	/* This loads the checkpointed FP/VEC state, if used */
877 	tm_recheckpoint(&current->thread, msr);
878 
879 	/* This loads the speculative FP/VEC state, if used */
880 	if (msr & MSR_FP) {
881 		do_load_up_transact_fpu(&current->thread);
882 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
883 	}
884 #ifdef CONFIG_ALTIVEC
885 	if (msr & MSR_VEC) {
886 		do_load_up_transact_altivec(&current->thread);
887 		regs->msr |= MSR_VEC;
888 	}
889 #endif
890 
891 	return 0;
892 }
893 #endif
894 
895 #ifdef CONFIG_PPC64
896 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
897 {
898 	int err;
899 
900 	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
901 		return -EFAULT;
902 
903 	/* If you change siginfo_t structure, please be sure
904 	 * this code is fixed accordingly.
905 	 * It should never copy any pad contained in the structure
906 	 * to avoid security leaks, but must copy the generic
907 	 * 3 ints plus the relevant union member.
908 	 * This routine must convert siginfo from 64bit to 32bit as well
909 	 * at the same time.
910 	 */
911 	err = __put_user(s->si_signo, &d->si_signo);
912 	err |= __put_user(s->si_errno, &d->si_errno);
913 	err |= __put_user((short)s->si_code, &d->si_code);
914 	if (s->si_code < 0)
915 		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
916 				      SI_PAD_SIZE32);
917 	else switch(s->si_code >> 16) {
918 	case __SI_CHLD >> 16:
919 		err |= __put_user(s->si_pid, &d->si_pid);
920 		err |= __put_user(s->si_uid, &d->si_uid);
921 		err |= __put_user(s->si_utime, &d->si_utime);
922 		err |= __put_user(s->si_stime, &d->si_stime);
923 		err |= __put_user(s->si_status, &d->si_status);
924 		break;
925 	case __SI_FAULT >> 16:
926 		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
927 				  &d->si_addr);
928 		break;
929 	case __SI_POLL >> 16:
930 		err |= __put_user(s->si_band, &d->si_band);
931 		err |= __put_user(s->si_fd, &d->si_fd);
932 		break;
933 	case __SI_TIMER >> 16:
934 		err |= __put_user(s->si_tid, &d->si_tid);
935 		err |= __put_user(s->si_overrun, &d->si_overrun);
936 		err |= __put_user(s->si_int, &d->si_int);
937 		break;
938 	case __SI_SYS >> 16:
939 		err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr);
940 		err |= __put_user(s->si_syscall, &d->si_syscall);
941 		err |= __put_user(s->si_arch, &d->si_arch);
942 		break;
943 	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
944 	case __SI_MESGQ >> 16:
945 		err |= __put_user(s->si_int, &d->si_int);
946 		/* fallthrough */
947 	case __SI_KILL >> 16:
948 	default:
949 		err |= __put_user(s->si_pid, &d->si_pid);
950 		err |= __put_user(s->si_uid, &d->si_uid);
951 		break;
952 	}
953 	return err;
954 }
955 
956 #define copy_siginfo_to_user	copy_siginfo_to_user32
957 
958 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
959 {
960 	if (copy_from_user(to, from, 3*sizeof(int)) ||
961 	    copy_from_user(to->_sifields._pad,
962 			   from->_sifields._pad, SI_PAD_SIZE32))
963 		return -EFAULT;
964 
965 	return 0;
966 }
967 #endif /* CONFIG_PPC64 */
968 
969 /*
970  * Set up a signal frame for a "real-time" signal handler
971  * (one which gets siginfo).
972  */
973 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
974 		       struct pt_regs *regs)
975 {
976 	struct rt_sigframe __user *rt_sf;
977 	struct mcontext __user *frame;
978 	struct mcontext __user *tm_frame = NULL;
979 	void __user *addr;
980 	unsigned long newsp = 0;
981 	int sigret;
982 	unsigned long tramp;
983 
984 	/* Set up Signal Frame */
985 	/* Put a Real Time Context onto stack */
986 	rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
987 	addr = rt_sf;
988 	if (unlikely(rt_sf == NULL))
989 		goto badframe;
990 
991 	/* Put the siginfo & fill in most of the ucontext */
992 	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
993 	    || __put_user(0, &rt_sf->uc.uc_flags)
994 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
995 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
996 		    &rt_sf->uc.uc_regs)
997 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
998 		goto badframe;
999 
1000 	/* Save user registers on the stack */
1001 	frame = &rt_sf->uc.uc_mcontext;
1002 	addr = frame;
1003 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1004 		sigret = 0;
1005 		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1006 	} else {
1007 		sigret = __NR_rt_sigreturn;
1008 		tramp = (unsigned long) frame->tramp;
1009 	}
1010 
1011 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1012 	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1013 	if (MSR_TM_ACTIVE(regs->msr)) {
1014 		if (__put_user((unsigned long)&rt_sf->uc_transact,
1015 			       &rt_sf->uc.uc_link) ||
1016 		    __put_user((unsigned long)tm_frame,
1017 			       &rt_sf->uc_transact.uc_regs))
1018 			goto badframe;
1019 		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1020 			goto badframe;
1021 	}
1022 	else
1023 #endif
1024 	{
1025 		if (__put_user(0, &rt_sf->uc.uc_link))
1026 			goto badframe;
1027 		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1028 			goto badframe;
1029 	}
1030 	regs->link = tramp;
1031 
1032 	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1033 
1034 	/* create a stack frame for the caller of the handler */
1035 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1036 	addr = (void __user *)regs->gpr[1];
1037 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1038 		goto badframe;
1039 
1040 	/* Fill registers for signal handler */
1041 	regs->gpr[1] = newsp;
1042 	regs->gpr[3] = ksig->sig;
1043 	regs->gpr[4] = (unsigned long) &rt_sf->info;
1044 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1045 	regs->gpr[6] = (unsigned long) rt_sf;
1046 	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1047 	/* enter the signal handler in native-endian mode */
1048 	regs->msr &= ~MSR_LE;
1049 	regs->msr |= (MSR_KERNEL & MSR_LE);
1050 	return 0;
1051 
1052 badframe:
1053 	if (show_unhandled_signals)
1054 		printk_ratelimited(KERN_INFO
1055 				   "%s[%d]: bad frame in handle_rt_signal32: "
1056 				   "%p nip %08lx lr %08lx\n",
1057 				   current->comm, current->pid,
1058 				   addr, regs->nip, regs->link);
1059 
1060 	return 1;
1061 }
1062 
1063 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1064 {
1065 	sigset_t set;
1066 	struct mcontext __user *mcp;
1067 
1068 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1069 		return -EFAULT;
1070 #ifdef CONFIG_PPC64
1071 	{
1072 		u32 cmcp;
1073 
1074 		if (__get_user(cmcp, &ucp->uc_regs))
1075 			return -EFAULT;
1076 		mcp = (struct mcontext __user *)(u64)cmcp;
1077 		/* no need to check access_ok(mcp), since mcp < 4GB */
1078 	}
1079 #else
1080 	if (__get_user(mcp, &ucp->uc_regs))
1081 		return -EFAULT;
1082 	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1083 		return -EFAULT;
1084 #endif
1085 	set_current_blocked(&set);
1086 	if (restore_user_regs(regs, mcp, sig))
1087 		return -EFAULT;
1088 
1089 	return 0;
1090 }
1091 
1092 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1093 static int do_setcontext_tm(struct ucontext __user *ucp,
1094 			    struct ucontext __user *tm_ucp,
1095 			    struct pt_regs *regs)
1096 {
1097 	sigset_t set;
1098 	struct mcontext __user *mcp;
1099 	struct mcontext __user *tm_mcp;
1100 	u32 cmcp;
1101 	u32 tm_cmcp;
1102 
1103 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1104 		return -EFAULT;
1105 
1106 	if (__get_user(cmcp, &ucp->uc_regs) ||
1107 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1108 		return -EFAULT;
1109 	mcp = (struct mcontext __user *)(u64)cmcp;
1110 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1111 	/* no need to check access_ok(mcp), since mcp < 4GB */
1112 
1113 	set_current_blocked(&set);
1114 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1115 		return -EFAULT;
1116 
1117 	return 0;
1118 }
1119 #endif
1120 
1121 long sys_swapcontext(struct ucontext __user *old_ctx,
1122 		     struct ucontext __user *new_ctx,
1123 		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1124 {
1125 	unsigned char tmp;
1126 	int ctx_has_vsx_region = 0;
1127 
1128 #ifdef CONFIG_PPC64
1129 	unsigned long new_msr = 0;
1130 
1131 	if (new_ctx) {
1132 		struct mcontext __user *mcp;
1133 		u32 cmcp;
1134 
1135 		/*
1136 		 * Get pointer to the real mcontext.  No need for
1137 		 * access_ok since we are dealing with compat
1138 		 * pointers.
1139 		 */
1140 		if (__get_user(cmcp, &new_ctx->uc_regs))
1141 			return -EFAULT;
1142 		mcp = (struct mcontext __user *)(u64)cmcp;
1143 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1144 			return -EFAULT;
1145 	}
1146 	/*
1147 	 * Check that the context is not smaller than the original
1148 	 * size (with VMX but without VSX)
1149 	 */
1150 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1151 		return -EINVAL;
1152 	/*
1153 	 * If the new context state sets the MSR VSX bits but
1154 	 * it doesn't provide VSX state.
1155 	 */
1156 	if ((ctx_size < sizeof(struct ucontext)) &&
1157 	    (new_msr & MSR_VSX))
1158 		return -EINVAL;
1159 	/* Does the context have enough room to store VSX data? */
1160 	if (ctx_size >= sizeof(struct ucontext))
1161 		ctx_has_vsx_region = 1;
1162 #else
1163 	/* Context size is for future use. Right now, we only make sure
1164 	 * we are passed something we understand
1165 	 */
1166 	if (ctx_size < sizeof(struct ucontext))
1167 		return -EINVAL;
1168 #endif
1169 	if (old_ctx != NULL) {
1170 		struct mcontext __user *mctx;
1171 
1172 		/*
1173 		 * old_ctx might not be 16-byte aligned, in which
1174 		 * case old_ctx->uc_mcontext won't be either.
1175 		 * Because we have the old_ctx->uc_pad2 field
1176 		 * before old_ctx->uc_mcontext, we need to round down
1177 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1178 		 */
1179 		mctx = (struct mcontext __user *)
1180 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1181 		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1182 		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1183 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1184 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1185 			return -EFAULT;
1186 	}
1187 	if (new_ctx == NULL)
1188 		return 0;
1189 	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1190 	    || __get_user(tmp, (u8 __user *) new_ctx)
1191 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1192 		return -EFAULT;
1193 
1194 	/*
1195 	 * If we get a fault copying the context into the kernel's
1196 	 * image of the user's registers, we can't just return -EFAULT
1197 	 * because the user's registers will be corrupted.  For instance
1198 	 * the NIP value may have been updated but not some of the
1199 	 * other registers.  Given that we have done the access_ok
1200 	 * and successfully read the first and last bytes of the region
1201 	 * above, this should only happen in an out-of-memory situation
1202 	 * or if another thread unmaps the region containing the context.
1203 	 * We kill the task with a SIGSEGV in this situation.
1204 	 */
1205 	if (do_setcontext(new_ctx, regs, 0))
1206 		do_exit(SIGSEGV);
1207 
1208 	set_thread_flag(TIF_RESTOREALL);
1209 	return 0;
1210 }
1211 
1212 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1213 		     struct pt_regs *regs)
1214 {
1215 	struct rt_sigframe __user *rt_sf;
1216 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1217 	struct ucontext __user *uc_transact;
1218 	unsigned long msr_hi;
1219 	unsigned long tmp;
1220 	int tm_restore = 0;
1221 #endif
1222 	/* Always make any pending restarted system calls return -EINTR */
1223 	current->restart_block.fn = do_no_restart_syscall;
1224 
1225 	rt_sf = (struct rt_sigframe __user *)
1226 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1227 	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1228 		goto bad;
1229 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1230 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1231 		goto bad;
1232 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1233 	if (uc_transact) {
1234 		u32 cmcp;
1235 		struct mcontext __user *mcp;
1236 
1237 		if (__get_user(cmcp, &uc_transact->uc_regs))
1238 			return -EFAULT;
1239 		mcp = (struct mcontext __user *)(u64)cmcp;
1240 		/* The top 32 bits of the MSR are stashed in the transactional
1241 		 * ucontext. */
1242 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1243 			goto bad;
1244 
1245 		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1246 			/* We only recheckpoint on return if we're
1247 			 * transaction.
1248 			 */
1249 			tm_restore = 1;
1250 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1251 				goto bad;
1252 		}
1253 	}
1254 	if (!tm_restore)
1255 		/* Fall through, for non-TM restore */
1256 #endif
1257 	if (do_setcontext(&rt_sf->uc, regs, 1))
1258 		goto bad;
1259 
1260 	/*
1261 	 * It's not clear whether or why it is desirable to save the
1262 	 * sigaltstack setting on signal delivery and restore it on
1263 	 * signal return.  But other architectures do this and we have
1264 	 * always done it up until now so it is probably better not to
1265 	 * change it.  -- paulus
1266 	 */
1267 #ifdef CONFIG_PPC64
1268 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1269 		goto bad;
1270 #else
1271 	if (restore_altstack(&rt_sf->uc.uc_stack))
1272 		goto bad;
1273 #endif
1274 	set_thread_flag(TIF_RESTOREALL);
1275 	return 0;
1276 
1277  bad:
1278 	if (show_unhandled_signals)
1279 		printk_ratelimited(KERN_INFO
1280 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1281 				   "%p nip %08lx lr %08lx\n",
1282 				   current->comm, current->pid,
1283 				   rt_sf, regs->nip, regs->link);
1284 
1285 	force_sig(SIGSEGV, current);
1286 	return 0;
1287 }
1288 
1289 #ifdef CONFIG_PPC32
1290 int sys_debug_setcontext(struct ucontext __user *ctx,
1291 			 int ndbg, struct sig_dbg_op __user *dbg,
1292 			 int r6, int r7, int r8,
1293 			 struct pt_regs *regs)
1294 {
1295 	struct sig_dbg_op op;
1296 	int i;
1297 	unsigned char tmp;
1298 	unsigned long new_msr = regs->msr;
1299 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1300 	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1301 #endif
1302 
1303 	for (i=0; i<ndbg; i++) {
1304 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1305 			return -EFAULT;
1306 		switch (op.dbg_type) {
1307 		case SIG_DBG_SINGLE_STEPPING:
1308 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1309 			if (op.dbg_value) {
1310 				new_msr |= MSR_DE;
1311 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1312 			} else {
1313 				new_dbcr0 &= ~DBCR0_IC;
1314 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1315 						current->thread.debug.dbcr1)) {
1316 					new_msr &= ~MSR_DE;
1317 					new_dbcr0 &= ~DBCR0_IDM;
1318 				}
1319 			}
1320 #else
1321 			if (op.dbg_value)
1322 				new_msr |= MSR_SE;
1323 			else
1324 				new_msr &= ~MSR_SE;
1325 #endif
1326 			break;
1327 		case SIG_DBG_BRANCH_TRACING:
1328 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1329 			return -EINVAL;
1330 #else
1331 			if (op.dbg_value)
1332 				new_msr |= MSR_BE;
1333 			else
1334 				new_msr &= ~MSR_BE;
1335 #endif
1336 			break;
1337 
1338 		default:
1339 			return -EINVAL;
1340 		}
1341 	}
1342 
1343 	/* We wait until here to actually install the values in the
1344 	   registers so if we fail in the above loop, it will not
1345 	   affect the contents of these registers.  After this point,
1346 	   failure is a problem, anyway, and it's very unlikely unless
1347 	   the user is really doing something wrong. */
1348 	regs->msr = new_msr;
1349 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1350 	current->thread.debug.dbcr0 = new_dbcr0;
1351 #endif
1352 
1353 	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1354 	    || __get_user(tmp, (u8 __user *) ctx)
1355 	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1356 		return -EFAULT;
1357 
1358 	/*
1359 	 * If we get a fault copying the context into the kernel's
1360 	 * image of the user's registers, we can't just return -EFAULT
1361 	 * because the user's registers will be corrupted.  For instance
1362 	 * the NIP value may have been updated but not some of the
1363 	 * other registers.  Given that we have done the access_ok
1364 	 * and successfully read the first and last bytes of the region
1365 	 * above, this should only happen in an out-of-memory situation
1366 	 * or if another thread unmaps the region containing the context.
1367 	 * We kill the task with a SIGSEGV in this situation.
1368 	 */
1369 	if (do_setcontext(ctx, regs, 1)) {
1370 		if (show_unhandled_signals)
1371 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1372 					   "sys_debug_setcontext: %p nip %08lx "
1373 					   "lr %08lx\n",
1374 					   current->comm, current->pid,
1375 					   ctx, regs->nip, regs->link);
1376 
1377 		force_sig(SIGSEGV, current);
1378 		goto out;
1379 	}
1380 
1381 	/*
1382 	 * It's not clear whether or why it is desirable to save the
1383 	 * sigaltstack setting on signal delivery and restore it on
1384 	 * signal return.  But other architectures do this and we have
1385 	 * always done it up until now so it is probably better not to
1386 	 * change it.  -- paulus
1387 	 */
1388 	restore_altstack(&ctx->uc_stack);
1389 
1390 	set_thread_flag(TIF_RESTOREALL);
1391  out:
1392 	return 0;
1393 }
1394 #endif
1395 
1396 /*
1397  * OK, we're invoking a handler
1398  */
1399 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs)
1400 {
1401 	struct sigcontext __user *sc;
1402 	struct sigframe __user *frame;
1403 	struct mcontext __user *tm_mctx = NULL;
1404 	unsigned long newsp = 0;
1405 	int sigret;
1406 	unsigned long tramp;
1407 
1408 	/* Set up Signal Frame */
1409 	frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1);
1410 	if (unlikely(frame == NULL))
1411 		goto badframe;
1412 	sc = (struct sigcontext __user *) &frame->sctx;
1413 
1414 #if _NSIG != 64
1415 #error "Please adjust handle_signal()"
1416 #endif
1417 	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1418 	    || __put_user(oldset->sig[0], &sc->oldmask)
1419 #ifdef CONFIG_PPC64
1420 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1421 #else
1422 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1423 #endif
1424 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1425 	    || __put_user(ksig->sig, &sc->signal))
1426 		goto badframe;
1427 
1428 	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1429 		sigret = 0;
1430 		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1431 	} else {
1432 		sigret = __NR_sigreturn;
1433 		tramp = (unsigned long) frame->mctx.tramp;
1434 	}
1435 
1436 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1437 	tm_mctx = &frame->mctx_transact;
1438 	if (MSR_TM_ACTIVE(regs->msr)) {
1439 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1440 				      sigret))
1441 			goto badframe;
1442 	}
1443 	else
1444 #endif
1445 	{
1446 		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1447 			goto badframe;
1448 	}
1449 
1450 	regs->link = tramp;
1451 
1452 	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1453 
1454 	/* create a stack frame for the caller of the handler */
1455 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1456 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1457 		goto badframe;
1458 
1459 	regs->gpr[1] = newsp;
1460 	regs->gpr[3] = ksig->sig;
1461 	regs->gpr[4] = (unsigned long) sc;
1462 	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1463 	/* enter the signal handler in big-endian mode */
1464 	regs->msr &= ~MSR_LE;
1465 	return 0;
1466 
1467 badframe:
1468 	if (show_unhandled_signals)
1469 		printk_ratelimited(KERN_INFO
1470 				   "%s[%d]: bad frame in handle_signal32: "
1471 				   "%p nip %08lx lr %08lx\n",
1472 				   current->comm, current->pid,
1473 				   frame, regs->nip, regs->link);
1474 
1475 	return 1;
1476 }
1477 
1478 /*
1479  * Do a signal return; undo the signal stack.
1480  */
1481 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1482 		       struct pt_regs *regs)
1483 {
1484 	struct sigframe __user *sf;
1485 	struct sigcontext __user *sc;
1486 	struct sigcontext sigctx;
1487 	struct mcontext __user *sr;
1488 	void __user *addr;
1489 	sigset_t set;
1490 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1491 	struct mcontext __user *mcp, *tm_mcp;
1492 	unsigned long msr_hi;
1493 #endif
1494 
1495 	/* Always make any pending restarted system calls return -EINTR */
1496 	current->restart_block.fn = do_no_restart_syscall;
1497 
1498 	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1499 	sc = &sf->sctx;
1500 	addr = sc;
1501 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1502 		goto badframe;
1503 
1504 #ifdef CONFIG_PPC64
1505 	/*
1506 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1507 	 * unused part of the signal stackframe
1508 	 */
1509 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1510 #else
1511 	set.sig[0] = sigctx.oldmask;
1512 	set.sig[1] = sigctx._unused[3];
1513 #endif
1514 	set_current_blocked(&set);
1515 
1516 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1517 	mcp = (struct mcontext __user *)&sf->mctx;
1518 	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1519 	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1520 		goto badframe;
1521 	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1522 		if (!cpu_has_feature(CPU_FTR_TM))
1523 			goto badframe;
1524 		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1525 			goto badframe;
1526 	} else
1527 #endif
1528 	{
1529 		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1530 		addr = sr;
1531 		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1532 		    || restore_user_regs(regs, sr, 1))
1533 			goto badframe;
1534 	}
1535 
1536 	set_thread_flag(TIF_RESTOREALL);
1537 	return 0;
1538 
1539 badframe:
1540 	if (show_unhandled_signals)
1541 		printk_ratelimited(KERN_INFO
1542 				   "%s[%d]: bad frame in sys_sigreturn: "
1543 				   "%p nip %08lx lr %08lx\n",
1544 				   current->comm, current->pid,
1545 				   addr, regs->nip, regs->link);
1546 
1547 	force_sig(SIGSEGV, current);
1548 	return 0;
1549 }
1550