xref: /linux/arch/powerpc/kernel/setup_64.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #undef DEBUG
14 
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/lmb.h>
38 #include <asm/io.h>
39 #include <asm/kdump.h>
40 #include <asm/prom.h>
41 #include <asm/processor.h>
42 #include <asm/pgtable.h>
43 #include <asm/smp.h>
44 #include <asm/elf.h>
45 #include <asm/machdep.h>
46 #include <asm/paca.h>
47 #include <asm/time.h>
48 #include <asm/cputable.h>
49 #include <asm/sections.h>
50 #include <asm/btext.h>
51 #include <asm/nvram.h>
52 #include <asm/setup.h>
53 #include <asm/system.h>
54 #include <asm/rtas.h>
55 #include <asm/iommu.h>
56 #include <asm/serial.h>
57 #include <asm/cache.h>
58 #include <asm/page.h>
59 #include <asm/mmu.h>
60 #include <asm/firmware.h>
61 #include <asm/xmon.h>
62 #include <asm/udbg.h>
63 #include <asm/kexec.h>
64 
65 #include "setup.h"
66 
67 #ifdef DEBUG
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72 
73 int have_of = 1;
74 int boot_cpuid = 0;
75 u64 ppc64_pft_size;
76 
77 /* Pick defaults since we might want to patch instructions
78  * before we've read this from the device tree.
79  */
80 struct ppc64_caches ppc64_caches = {
81 	.dline_size = 0x40,
82 	.log_dline_size = 6,
83 	.iline_size = 0x40,
84 	.log_iline_size = 6
85 };
86 EXPORT_SYMBOL_GPL(ppc64_caches);
87 
88 /*
89  * These are used in binfmt_elf.c to put aux entries on the stack
90  * for each elf executable being started.
91  */
92 int dcache_bsize;
93 int icache_bsize;
94 int ucache_bsize;
95 
96 #ifdef CONFIG_SMP
97 
98 static int smt_enabled_cmdline;
99 
100 /* Look for ibm,smt-enabled OF option */
101 static void check_smt_enabled(void)
102 {
103 	struct device_node *dn;
104 	const char *smt_option;
105 
106 	/* Allow the command line to overrule the OF option */
107 	if (smt_enabled_cmdline)
108 		return;
109 
110 	dn = of_find_node_by_path("/options");
111 
112 	if (dn) {
113 		smt_option = of_get_property(dn, "ibm,smt-enabled", NULL);
114 
115                 if (smt_option) {
116 			if (!strcmp(smt_option, "on"))
117 				smt_enabled_at_boot = 1;
118 			else if (!strcmp(smt_option, "off"))
119 				smt_enabled_at_boot = 0;
120                 }
121         }
122 }
123 
124 /* Look for smt-enabled= cmdline option */
125 static int __init early_smt_enabled(char *p)
126 {
127 	smt_enabled_cmdline = 1;
128 
129 	if (!p)
130 		return 0;
131 
132 	if (!strcmp(p, "on") || !strcmp(p, "1"))
133 		smt_enabled_at_boot = 1;
134 	else if (!strcmp(p, "off") || !strcmp(p, "0"))
135 		smt_enabled_at_boot = 0;
136 
137 	return 0;
138 }
139 early_param("smt-enabled", early_smt_enabled);
140 
141 #else
142 #define check_smt_enabled()
143 #endif /* CONFIG_SMP */
144 
145 /* Put the paca pointer into r13 and SPRG3 */
146 void __init setup_paca(int cpu)
147 {
148 	local_paca = &paca[cpu];
149 	mtspr(SPRN_SPRG3, local_paca);
150 }
151 
152 /*
153  * Early initialization entry point. This is called by head.S
154  * with MMU translation disabled. We rely on the "feature" of
155  * the CPU that ignores the top 2 bits of the address in real
156  * mode so we can access kernel globals normally provided we
157  * only toy with things in the RMO region. From here, we do
158  * some early parsing of the device-tree to setup out LMB
159  * data structures, and allocate & initialize the hash table
160  * and segment tables so we can start running with translation
161  * enabled.
162  *
163  * It is this function which will call the probe() callback of
164  * the various platform types and copy the matching one to the
165  * global ppc_md structure. Your platform can eventually do
166  * some very early initializations from the probe() routine, but
167  * this is not recommended, be very careful as, for example, the
168  * device-tree is not accessible via normal means at this point.
169  */
170 
171 void __init early_setup(unsigned long dt_ptr)
172 {
173 	/* Fill in any unititialised pacas */
174 	initialise_pacas();
175 
176 	/* Identify CPU type */
177 	identify_cpu(0, mfspr(SPRN_PVR));
178 
179 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
180 	setup_paca(0);
181 
182 	/* Enable early debugging if any specified (see udbg.h) */
183 	udbg_early_init();
184 
185 	/* Initialize lockdep early or else spinlocks will blow */
186 	lockdep_init();
187 
188  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
189 
190 	/*
191 	 * Do early initialization using the flattened device
192 	 * tree, such as retrieving the physical memory map or
193 	 * calculating/retrieving the hash table size.
194 	 */
195 	early_init_devtree(__va(dt_ptr));
196 
197 	/* Now we know the logical id of our boot cpu, setup the paca. */
198 	setup_paca(boot_cpuid);
199 
200 	/* Fix up paca fields required for the boot cpu */
201 	get_paca()->cpu_start = 1;
202 	get_paca()->stab_real = __pa((u64)&initial_stab);
203 	get_paca()->stab_addr = (u64)&initial_stab;
204 
205 	/* Probe the machine type */
206 	probe_machine();
207 
208 	setup_kdump_trampoline();
209 
210 	DBG("Found, Initializing memory management...\n");
211 
212 	/*
213 	 * Initialize the MMU Hash table and create the linear mapping
214 	 * of memory. Has to be done before stab/slb initialization as
215 	 * this is currently where the page size encoding is obtained
216 	 */
217 	htab_initialize();
218 
219 	/*
220 	 * Initialize stab / SLB management except on iSeries
221 	 */
222 	if (cpu_has_feature(CPU_FTR_SLB))
223 		slb_initialize();
224 	else if (!firmware_has_feature(FW_FEATURE_ISERIES))
225 		stab_initialize(get_paca()->stab_real);
226 
227 	DBG(" <- early_setup()\n");
228 }
229 
230 #ifdef CONFIG_SMP
231 void early_setup_secondary(void)
232 {
233 	struct paca_struct *lpaca = get_paca();
234 
235 	/* Mark interrupts enabled in PACA */
236 	lpaca->soft_enabled = 0;
237 
238 	/* Initialize hash table for that CPU */
239 	htab_initialize_secondary();
240 
241 	/* Initialize STAB/SLB. We use a virtual address as it works
242 	 * in real mode on pSeries and we want a virutal address on
243 	 * iSeries anyway
244 	 */
245 	if (cpu_has_feature(CPU_FTR_SLB))
246 		slb_initialize();
247 	else
248 		stab_initialize(lpaca->stab_addr);
249 }
250 
251 #endif /* CONFIG_SMP */
252 
253 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
254 void smp_release_cpus(void)
255 {
256 	extern unsigned long __secondary_hold_spinloop;
257 	unsigned long *ptr;
258 
259 	DBG(" -> smp_release_cpus()\n");
260 
261 	/* All secondary cpus are spinning on a common spinloop, release them
262 	 * all now so they can start to spin on their individual paca
263 	 * spinloops. For non SMP kernels, the secondary cpus never get out
264 	 * of the common spinloop.
265 	 * This is useless but harmless on iSeries, secondaries are already
266 	 * waiting on their paca spinloops. */
267 
268 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
269 			- PHYSICAL_START);
270 	*ptr = 1;
271 	mb();
272 
273 	DBG(" <- smp_release_cpus()\n");
274 }
275 #endif /* CONFIG_SMP || CONFIG_KEXEC */
276 
277 /*
278  * Initialize some remaining members of the ppc64_caches and systemcfg
279  * structures
280  * (at least until we get rid of them completely). This is mostly some
281  * cache informations about the CPU that will be used by cache flush
282  * routines and/or provided to userland
283  */
284 static void __init initialize_cache_info(void)
285 {
286 	struct device_node *np;
287 	unsigned long num_cpus = 0;
288 
289 	DBG(" -> initialize_cache_info()\n");
290 
291 	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
292 		num_cpus += 1;
293 
294 		/* We're assuming *all* of the CPUs have the same
295 		 * d-cache and i-cache sizes... -Peter
296 		 */
297 
298 		if ( num_cpus == 1 ) {
299 			const u32 *sizep, *lsizep;
300 			u32 size, lsize;
301 
302 			size = 0;
303 			lsize = cur_cpu_spec->dcache_bsize;
304 			sizep = of_get_property(np, "d-cache-size", NULL);
305 			if (sizep != NULL)
306 				size = *sizep;
307 			lsizep = of_get_property(np, "d-cache-block-size", NULL);
308 			/* fallback if block size missing */
309 			if (lsizep == NULL)
310 				lsizep = of_get_property(np, "d-cache-line-size", NULL);
311 			if (lsizep != NULL)
312 				lsize = *lsizep;
313 			if (sizep == 0 || lsizep == 0)
314 				DBG("Argh, can't find dcache properties ! "
315 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
316 
317 			ppc64_caches.dsize = size;
318 			ppc64_caches.dline_size = lsize;
319 			ppc64_caches.log_dline_size = __ilog2(lsize);
320 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
321 
322 			size = 0;
323 			lsize = cur_cpu_spec->icache_bsize;
324 			sizep = of_get_property(np, "i-cache-size", NULL);
325 			if (sizep != NULL)
326 				size = *sizep;
327 			lsizep = of_get_property(np, "i-cache-block-size", NULL);
328 			if (lsizep == NULL)
329 				lsizep = of_get_property(np, "i-cache-line-size", NULL);
330 			if (lsizep != NULL)
331 				lsize = *lsizep;
332 			if (sizep == 0 || lsizep == 0)
333 				DBG("Argh, can't find icache properties ! "
334 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
335 
336 			ppc64_caches.isize = size;
337 			ppc64_caches.iline_size = lsize;
338 			ppc64_caches.log_iline_size = __ilog2(lsize);
339 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
340 		}
341 	}
342 
343 	DBG(" <- initialize_cache_info()\n");
344 }
345 
346 
347 /*
348  * Do some initial setup of the system.  The parameters are those which
349  * were passed in from the bootloader.
350  */
351 void __init setup_system(void)
352 {
353 	DBG(" -> setup_system()\n");
354 
355 	/* Apply the CPUs-specific and firmware specific fixups to kernel
356 	 * text (nop out sections not relevant to this CPU or this firmware)
357 	 */
358 	do_feature_fixups(cur_cpu_spec->cpu_features,
359 			  &__start___ftr_fixup, &__stop___ftr_fixup);
360 	do_feature_fixups(powerpc_firmware_features,
361 			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
362 
363 	/*
364 	 * Unflatten the device-tree passed by prom_init or kexec
365 	 */
366 	unflatten_device_tree();
367 
368 	/*
369 	 * Fill the ppc64_caches & systemcfg structures with informations
370  	 * retrieved from the device-tree.
371 	 */
372 	initialize_cache_info();
373 
374 	/*
375 	 * Initialize irq remapping subsystem
376 	 */
377 	irq_early_init();
378 
379 #ifdef CONFIG_PPC_RTAS
380 	/*
381 	 * Initialize RTAS if available
382 	 */
383 	rtas_initialize();
384 #endif /* CONFIG_PPC_RTAS */
385 
386 	/*
387 	 * Check if we have an initrd provided via the device-tree
388 	 */
389 	check_for_initrd();
390 
391 	/*
392 	 * Do some platform specific early initializations, that includes
393 	 * setting up the hash table pointers. It also sets up some interrupt-mapping
394 	 * related options that will be used by finish_device_tree()
395 	 */
396 	if (ppc_md.init_early)
397 		ppc_md.init_early();
398 
399  	/*
400 	 * We can discover serial ports now since the above did setup the
401 	 * hash table management for us, thus ioremap works. We do that early
402 	 * so that further code can be debugged
403 	 */
404 	find_legacy_serial_ports();
405 
406 	/*
407 	 * Register early console
408 	 */
409 	register_early_udbg_console();
410 
411 	/*
412 	 * Initialize xmon
413 	 */
414 	xmon_setup();
415 
416 	check_smt_enabled();
417 	smp_setup_cpu_maps();
418 
419 #ifdef CONFIG_SMP
420 	/* Release secondary cpus out of their spinloops at 0x60 now that
421 	 * we can map physical -> logical CPU ids
422 	 */
423 	smp_release_cpus();
424 #endif
425 
426 	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
427 
428 	printk("-----------------------------------------------------\n");
429 	printk("ppc64_pft_size                = 0x%lx\n", ppc64_pft_size);
430 	printk("physicalMemorySize            = 0x%lx\n", lmb_phys_mem_size());
431 	if (ppc64_caches.dline_size != 0x80)
432 		printk("ppc64_caches.dcache_line_size = 0x%x\n",
433 		       ppc64_caches.dline_size);
434 	if (ppc64_caches.iline_size != 0x80)
435 		printk("ppc64_caches.icache_line_size = 0x%x\n",
436 		       ppc64_caches.iline_size);
437 	if (htab_address)
438 		printk("htab_address                  = 0x%p\n", htab_address);
439 	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
440 #if PHYSICAL_START > 0
441 	printk("physical_start                = 0x%lx\n", PHYSICAL_START);
442 #endif
443 	printk("-----------------------------------------------------\n");
444 
445 	DBG(" <- setup_system()\n");
446 }
447 
448 #ifdef CONFIG_IRQSTACKS
449 static void __init irqstack_early_init(void)
450 {
451 	unsigned int i;
452 
453 	/*
454 	 * interrupt stacks must be under 256MB, we cannot afford to take
455 	 * SLB misses on them.
456 	 */
457 	for_each_possible_cpu(i) {
458 		softirq_ctx[i] = (struct thread_info *)
459 			__va(lmb_alloc_base(THREAD_SIZE,
460 					    THREAD_SIZE, 0x10000000));
461 		hardirq_ctx[i] = (struct thread_info *)
462 			__va(lmb_alloc_base(THREAD_SIZE,
463 					    THREAD_SIZE, 0x10000000));
464 	}
465 }
466 #else
467 #define irqstack_early_init()
468 #endif
469 
470 /*
471  * Stack space used when we detect a bad kernel stack pointer, and
472  * early in SMP boots before relocation is enabled.
473  */
474 static void __init emergency_stack_init(void)
475 {
476 	unsigned long limit;
477 	unsigned int i;
478 
479 	/*
480 	 * Emergency stacks must be under 256MB, we cannot afford to take
481 	 * SLB misses on them. The ABI also requires them to be 128-byte
482 	 * aligned.
483 	 *
484 	 * Since we use these as temporary stacks during secondary CPU
485 	 * bringup, we need to get at them in real mode. This means they
486 	 * must also be within the RMO region.
487 	 */
488 	limit = min(0x10000000UL, lmb.rmo_size);
489 
490 	for_each_possible_cpu(i)
491 		paca[i].emergency_sp =
492 		__va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
493 }
494 
495 /*
496  * Called into from start_kernel, after lock_kernel has been called.
497  * Initializes bootmem, which is unsed to manage page allocation until
498  * mem_init is called.
499  */
500 void __init setup_arch(char **cmdline_p)
501 {
502 	ppc64_boot_msg(0x12, "Setup Arch");
503 
504 	*cmdline_p = cmd_line;
505 
506 	/*
507 	 * Set cache line size based on type of cpu as a default.
508 	 * Systems with OF can look in the properties on the cpu node(s)
509 	 * for a possibly more accurate value.
510 	 */
511 	dcache_bsize = ppc64_caches.dline_size;
512 	icache_bsize = ppc64_caches.iline_size;
513 
514 	/* reboot on panic */
515 	panic_timeout = 180;
516 
517 	if (ppc_md.panic)
518 		setup_panic();
519 
520 	init_mm.start_code = (unsigned long)_stext;
521 	init_mm.end_code = (unsigned long) _etext;
522 	init_mm.end_data = (unsigned long) _edata;
523 	init_mm.brk = klimit;
524 
525 	irqstack_early_init();
526 	emergency_stack_init();
527 
528 	stabs_alloc();
529 
530 	/* set up the bootmem stuff with available memory */
531 	do_init_bootmem();
532 	sparse_init();
533 
534 #ifdef CONFIG_DUMMY_CONSOLE
535 	conswitchp = &dummy_con;
536 #endif
537 
538 	if (ppc_md.setup_arch)
539 		ppc_md.setup_arch();
540 
541 	paging_init();
542 	ppc64_boot_msg(0x15, "Setup Done");
543 }
544 
545 
546 /* ToDo: do something useful if ppc_md is not yet setup. */
547 #define PPC64_LINUX_FUNCTION 0x0f000000
548 #define PPC64_IPL_MESSAGE 0xc0000000
549 #define PPC64_TERM_MESSAGE 0xb0000000
550 
551 static void ppc64_do_msg(unsigned int src, const char *msg)
552 {
553 	if (ppc_md.progress) {
554 		char buf[128];
555 
556 		sprintf(buf, "%08X\n", src);
557 		ppc_md.progress(buf, 0);
558 		snprintf(buf, 128, "%s", msg);
559 		ppc_md.progress(buf, 0);
560 	}
561 }
562 
563 /* Print a boot progress message. */
564 void ppc64_boot_msg(unsigned int src, const char *msg)
565 {
566 	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
567 	printk("[boot]%04x %s\n", src, msg);
568 }
569 
570 /* Print a termination message (print only -- does not stop the kernel) */
571 void ppc64_terminate_msg(unsigned int src, const char *msg)
572 {
573 	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
574 	printk("[terminate]%04x %s\n", src, msg);
575 }
576 
577 void cpu_die(void)
578 {
579 	if (ppc_md.cpu_die)
580 		ppc_md.cpu_die();
581 }
582 
583 #ifdef CONFIG_SMP
584 void __init setup_per_cpu_areas(void)
585 {
586 	int i;
587 	unsigned long size;
588 	char *ptr;
589 
590 	/* Copy section for each CPU (we discard the original) */
591 	size = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
592 #ifdef CONFIG_MODULES
593 	if (size < PERCPU_ENOUGH_ROOM)
594 		size = PERCPU_ENOUGH_ROOM;
595 #endif
596 
597 	for_each_possible_cpu(i) {
598 		ptr = alloc_bootmem_pages_node(NODE_DATA(cpu_to_node(i)), size);
599 		if (!ptr)
600 			panic("Cannot allocate cpu data for CPU %d\n", i);
601 
602 		paca[i].data_offset = ptr - __per_cpu_start;
603 		memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
604 	}
605 
606 	/* Now that per_cpu is setup, initialize cpu_sibling_map */
607 	smp_setup_cpu_sibling_map();
608 }
609 #endif
610 
611 
612 #ifdef CONFIG_PPC_INDIRECT_IO
613 struct ppc_pci_io ppc_pci_io;
614 EXPORT_SYMBOL(ppc_pci_io);
615 #endif /* CONFIG_PPC_INDIRECT_IO */
616 
617