xref: /linux/arch/powerpc/kernel/setup_64.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #undef DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <asm/io.h>
39 #include <asm/kdump.h>
40 #include <asm/prom.h>
41 #include <asm/processor.h>
42 #include <asm/pgtable.h>
43 #include <asm/smp.h>
44 #include <asm/elf.h>
45 #include <asm/machdep.h>
46 #include <asm/paca.h>
47 #include <asm/time.h>
48 #include <asm/cputable.h>
49 #include <asm/sections.h>
50 #include <asm/btext.h>
51 #include <asm/nvram.h>
52 #include <asm/setup.h>
53 #include <asm/system.h>
54 #include <asm/rtas.h>
55 #include <asm/iommu.h>
56 #include <asm/serial.h>
57 #include <asm/cache.h>
58 #include <asm/page.h>
59 #include <asm/mmu.h>
60 #include <asm/firmware.h>
61 #include <asm/xmon.h>
62 #include <asm/udbg.h>
63 #include <asm/kexec.h>
64 #include <asm/mmu_context.h>
65 #include <asm/code-patching.h>
66 #include <asm/kvm_ppc.h>
67 
68 #include "setup.h"
69 
70 #ifdef DEBUG
71 #define DBG(fmt...) udbg_printf(fmt)
72 #else
73 #define DBG(fmt...)
74 #endif
75 
76 int boot_cpuid = 0;
77 int __initdata spinning_secondaries;
78 u64 ppc64_pft_size;
79 
80 /* Pick defaults since we might want to patch instructions
81  * before we've read this from the device tree.
82  */
83 struct ppc64_caches ppc64_caches = {
84 	.dline_size = 0x40,
85 	.log_dline_size = 6,
86 	.iline_size = 0x40,
87 	.log_iline_size = 6
88 };
89 EXPORT_SYMBOL_GPL(ppc64_caches);
90 
91 /*
92  * These are used in binfmt_elf.c to put aux entries on the stack
93  * for each elf executable being started.
94  */
95 int dcache_bsize;
96 int icache_bsize;
97 int ucache_bsize;
98 
99 #ifdef CONFIG_SMP
100 
101 static char *smt_enabled_cmdline;
102 
103 /* Look for ibm,smt-enabled OF option */
104 static void check_smt_enabled(void)
105 {
106 	struct device_node *dn;
107 	const char *smt_option;
108 
109 	/* Default to enabling all threads */
110 	smt_enabled_at_boot = threads_per_core;
111 
112 	/* Allow the command line to overrule the OF option */
113 	if (smt_enabled_cmdline) {
114 		if (!strcmp(smt_enabled_cmdline, "on"))
115 			smt_enabled_at_boot = threads_per_core;
116 		else if (!strcmp(smt_enabled_cmdline, "off"))
117 			smt_enabled_at_boot = 0;
118 		else {
119 			long smt;
120 			int rc;
121 
122 			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
123 			if (!rc)
124 				smt_enabled_at_boot =
125 					min(threads_per_core, (int)smt);
126 		}
127 	} else {
128 		dn = of_find_node_by_path("/options");
129 		if (dn) {
130 			smt_option = of_get_property(dn, "ibm,smt-enabled",
131 						     NULL);
132 
133 			if (smt_option) {
134 				if (!strcmp(smt_option, "on"))
135 					smt_enabled_at_boot = threads_per_core;
136 				else if (!strcmp(smt_option, "off"))
137 					smt_enabled_at_boot = 0;
138 			}
139 
140 			of_node_put(dn);
141 		}
142 	}
143 }
144 
145 /* Look for smt-enabled= cmdline option */
146 static int __init early_smt_enabled(char *p)
147 {
148 	smt_enabled_cmdline = p;
149 	return 0;
150 }
151 early_param("smt-enabled", early_smt_enabled);
152 
153 #else
154 #define check_smt_enabled()
155 #endif /* CONFIG_SMP */
156 
157 /*
158  * Early initialization entry point. This is called by head.S
159  * with MMU translation disabled. We rely on the "feature" of
160  * the CPU that ignores the top 2 bits of the address in real
161  * mode so we can access kernel globals normally provided we
162  * only toy with things in the RMO region. From here, we do
163  * some early parsing of the device-tree to setup out MEMBLOCK
164  * data structures, and allocate & initialize the hash table
165  * and segment tables so we can start running with translation
166  * enabled.
167  *
168  * It is this function which will call the probe() callback of
169  * the various platform types and copy the matching one to the
170  * global ppc_md structure. Your platform can eventually do
171  * some very early initializations from the probe() routine, but
172  * this is not recommended, be very careful as, for example, the
173  * device-tree is not accessible via normal means at this point.
174  */
175 
176 void __init early_setup(unsigned long dt_ptr)
177 {
178 	/* -------- printk is _NOT_ safe to use here ! ------- */
179 
180 	/* Identify CPU type */
181 	identify_cpu(0, mfspr(SPRN_PVR));
182 
183 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
184 	initialise_paca(&boot_paca, 0);
185 	setup_paca(&boot_paca);
186 
187 	/* Initialize lockdep early or else spinlocks will blow */
188 	lockdep_init();
189 
190 	/* -------- printk is now safe to use ------- */
191 
192 	/* Enable early debugging if any specified (see udbg.h) */
193 	udbg_early_init();
194 
195  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
196 
197 	/*
198 	 * Do early initialization using the flattened device
199 	 * tree, such as retrieving the physical memory map or
200 	 * calculating/retrieving the hash table size.
201 	 */
202 	early_init_devtree(__va(dt_ptr));
203 
204 	/* Now we know the logical id of our boot cpu, setup the paca. */
205 	setup_paca(&paca[boot_cpuid]);
206 
207 	/* Fix up paca fields required for the boot cpu */
208 	get_paca()->cpu_start = 1;
209 
210 	/* Probe the machine type */
211 	probe_machine();
212 
213 	setup_kdump_trampoline();
214 
215 	DBG("Found, Initializing memory management...\n");
216 
217 	/* Initialize the hash table or TLB handling */
218 	early_init_mmu();
219 
220 	DBG(" <- early_setup()\n");
221 }
222 
223 #ifdef CONFIG_SMP
224 void early_setup_secondary(void)
225 {
226 	/* Mark interrupts enabled in PACA */
227 	get_paca()->soft_enabled = 0;
228 
229 	/* Initialize the hash table or TLB handling */
230 	early_init_mmu_secondary();
231 }
232 
233 #endif /* CONFIG_SMP */
234 
235 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
236 void smp_release_cpus(void)
237 {
238 	unsigned long *ptr;
239 	int i;
240 
241 	DBG(" -> smp_release_cpus()\n");
242 
243 	/* All secondary cpus are spinning on a common spinloop, release them
244 	 * all now so they can start to spin on their individual paca
245 	 * spinloops. For non SMP kernels, the secondary cpus never get out
246 	 * of the common spinloop.
247 	 */
248 
249 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
250 			- PHYSICAL_START);
251 	*ptr = __pa(generic_secondary_smp_init);
252 
253 	/* And wait a bit for them to catch up */
254 	for (i = 0; i < 100000; i++) {
255 		mb();
256 		HMT_low();
257 		if (spinning_secondaries == 0)
258 			break;
259 		udelay(1);
260 	}
261 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
262 
263 	DBG(" <- smp_release_cpus()\n");
264 }
265 #endif /* CONFIG_SMP || CONFIG_KEXEC */
266 
267 /*
268  * Initialize some remaining members of the ppc64_caches and systemcfg
269  * structures
270  * (at least until we get rid of them completely). This is mostly some
271  * cache informations about the CPU that will be used by cache flush
272  * routines and/or provided to userland
273  */
274 static void __init initialize_cache_info(void)
275 {
276 	struct device_node *np;
277 	unsigned long num_cpus = 0;
278 
279 	DBG(" -> initialize_cache_info()\n");
280 
281 	for_each_node_by_type(np, "cpu") {
282 		num_cpus += 1;
283 
284 		/*
285 		 * We're assuming *all* of the CPUs have the same
286 		 * d-cache and i-cache sizes... -Peter
287 		 */
288 		if (num_cpus == 1) {
289 			const u32 *sizep, *lsizep;
290 			u32 size, lsize;
291 
292 			size = 0;
293 			lsize = cur_cpu_spec->dcache_bsize;
294 			sizep = of_get_property(np, "d-cache-size", NULL);
295 			if (sizep != NULL)
296 				size = *sizep;
297 			lsizep = of_get_property(np, "d-cache-block-size",
298 						 NULL);
299 			/* fallback if block size missing */
300 			if (lsizep == NULL)
301 				lsizep = of_get_property(np,
302 							 "d-cache-line-size",
303 							 NULL);
304 			if (lsizep != NULL)
305 				lsize = *lsizep;
306 			if (sizep == 0 || lsizep == 0)
307 				DBG("Argh, can't find dcache properties ! "
308 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
309 
310 			ppc64_caches.dsize = size;
311 			ppc64_caches.dline_size = lsize;
312 			ppc64_caches.log_dline_size = __ilog2(lsize);
313 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
314 
315 			size = 0;
316 			lsize = cur_cpu_spec->icache_bsize;
317 			sizep = of_get_property(np, "i-cache-size", NULL);
318 			if (sizep != NULL)
319 				size = *sizep;
320 			lsizep = of_get_property(np, "i-cache-block-size",
321 						 NULL);
322 			if (lsizep == NULL)
323 				lsizep = of_get_property(np,
324 							 "i-cache-line-size",
325 							 NULL);
326 			if (lsizep != NULL)
327 				lsize = *lsizep;
328 			if (sizep == 0 || lsizep == 0)
329 				DBG("Argh, can't find icache properties ! "
330 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
331 
332 			ppc64_caches.isize = size;
333 			ppc64_caches.iline_size = lsize;
334 			ppc64_caches.log_iline_size = __ilog2(lsize);
335 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
336 		}
337 	}
338 
339 	DBG(" <- initialize_cache_info()\n");
340 }
341 
342 
343 /*
344  * Do some initial setup of the system.  The parameters are those which
345  * were passed in from the bootloader.
346  */
347 void __init setup_system(void)
348 {
349 	DBG(" -> setup_system()\n");
350 
351 	/* Apply the CPUs-specific and firmware specific fixups to kernel
352 	 * text (nop out sections not relevant to this CPU or this firmware)
353 	 */
354 	do_feature_fixups(cur_cpu_spec->cpu_features,
355 			  &__start___ftr_fixup, &__stop___ftr_fixup);
356 	do_feature_fixups(cur_cpu_spec->mmu_features,
357 			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
358 	do_feature_fixups(powerpc_firmware_features,
359 			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
360 	do_lwsync_fixups(cur_cpu_spec->cpu_features,
361 			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
362 
363 	/*
364 	 * Unflatten the device-tree passed by prom_init or kexec
365 	 */
366 	unflatten_device_tree();
367 
368 	/*
369 	 * Fill the ppc64_caches & systemcfg structures with informations
370  	 * retrieved from the device-tree.
371 	 */
372 	initialize_cache_info();
373 
374 #ifdef CONFIG_PPC_RTAS
375 	/*
376 	 * Initialize RTAS if available
377 	 */
378 	rtas_initialize();
379 #endif /* CONFIG_PPC_RTAS */
380 
381 	/*
382 	 * Check if we have an initrd provided via the device-tree
383 	 */
384 	check_for_initrd();
385 
386 	/*
387 	 * Do some platform specific early initializations, that includes
388 	 * setting up the hash table pointers. It also sets up some interrupt-mapping
389 	 * related options that will be used by finish_device_tree()
390 	 */
391 	if (ppc_md.init_early)
392 		ppc_md.init_early();
393 
394  	/*
395 	 * We can discover serial ports now since the above did setup the
396 	 * hash table management for us, thus ioremap works. We do that early
397 	 * so that further code can be debugged
398 	 */
399 	find_legacy_serial_ports();
400 
401 	/*
402 	 * Register early console
403 	 */
404 	register_early_udbg_console();
405 
406 	/*
407 	 * Initialize xmon
408 	 */
409 	xmon_setup();
410 
411 	smp_setup_cpu_maps();
412 	check_smt_enabled();
413 
414 #ifdef CONFIG_SMP
415 	/* Release secondary cpus out of their spinloops at 0x60 now that
416 	 * we can map physical -> logical CPU ids
417 	 */
418 	smp_release_cpus();
419 #endif
420 
421 	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
422 
423 	printk("-----------------------------------------------------\n");
424 	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
425 	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
426 	if (ppc64_caches.dline_size != 0x80)
427 		printk("ppc64_caches.dcache_line_size = 0x%x\n",
428 		       ppc64_caches.dline_size);
429 	if (ppc64_caches.iline_size != 0x80)
430 		printk("ppc64_caches.icache_line_size = 0x%x\n",
431 		       ppc64_caches.iline_size);
432 #ifdef CONFIG_PPC_STD_MMU_64
433 	if (htab_address)
434 		printk("htab_address                  = 0x%p\n", htab_address);
435 	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
436 #endif /* CONFIG_PPC_STD_MMU_64 */
437 	if (PHYSICAL_START > 0)
438 		printk("physical_start                = 0x%llx\n",
439 		       (unsigned long long)PHYSICAL_START);
440 	printk("-----------------------------------------------------\n");
441 
442 	DBG(" <- setup_system()\n");
443 }
444 
445 /* This returns the limit below which memory accesses to the linear
446  * mapping are guarnateed not to cause a TLB or SLB miss. This is
447  * used to allocate interrupt or emergency stacks for which our
448  * exception entry path doesn't deal with being interrupted.
449  */
450 static u64 safe_stack_limit(void)
451 {
452 #ifdef CONFIG_PPC_BOOK3E
453 	/* Freescale BookE bolts the entire linear mapping */
454 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
455 		return linear_map_top;
456 	/* Other BookE, we assume the first GB is bolted */
457 	return 1ul << 30;
458 #else
459 	/* BookS, the first segment is bolted */
460 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
461 		return 1UL << SID_SHIFT_1T;
462 	return 1UL << SID_SHIFT;
463 #endif
464 }
465 
466 static void __init irqstack_early_init(void)
467 {
468 	u64 limit = safe_stack_limit();
469 	unsigned int i;
470 
471 	/*
472 	 * Interrupt stacks must be in the first segment since we
473 	 * cannot afford to take SLB misses on them.
474 	 */
475 	for_each_possible_cpu(i) {
476 		softirq_ctx[i] = (struct thread_info *)
477 			__va(memblock_alloc_base(THREAD_SIZE,
478 					    THREAD_SIZE, limit));
479 		hardirq_ctx[i] = (struct thread_info *)
480 			__va(memblock_alloc_base(THREAD_SIZE,
481 					    THREAD_SIZE, limit));
482 	}
483 }
484 
485 #ifdef CONFIG_PPC_BOOK3E
486 static void __init exc_lvl_early_init(void)
487 {
488 	extern unsigned int interrupt_base_book3e;
489 	extern unsigned int exc_debug_debug_book3e;
490 
491 	unsigned int i;
492 
493 	for_each_possible_cpu(i) {
494 		critirq_ctx[i] = (struct thread_info *)
495 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
496 		dbgirq_ctx[i] = (struct thread_info *)
497 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
498 		mcheckirq_ctx[i] = (struct thread_info *)
499 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
500 	}
501 
502 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
503 		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
504 			     (unsigned long)&exc_debug_debug_book3e, 0);
505 }
506 #else
507 #define exc_lvl_early_init()
508 #endif
509 
510 /*
511  * Stack space used when we detect a bad kernel stack pointer, and
512  * early in SMP boots before relocation is enabled.
513  */
514 static void __init emergency_stack_init(void)
515 {
516 	u64 limit;
517 	unsigned int i;
518 
519 	/*
520 	 * Emergency stacks must be under 256MB, we cannot afford to take
521 	 * SLB misses on them. The ABI also requires them to be 128-byte
522 	 * aligned.
523 	 *
524 	 * Since we use these as temporary stacks during secondary CPU
525 	 * bringup, we need to get at them in real mode. This means they
526 	 * must also be within the RMO region.
527 	 */
528 	limit = min(safe_stack_limit(), ppc64_rma_size);
529 
530 	for_each_possible_cpu(i) {
531 		unsigned long sp;
532 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
533 		sp += THREAD_SIZE;
534 		paca[i].emergency_sp = __va(sp);
535 	}
536 }
537 
538 /*
539  * Called into from start_kernel this initializes bootmem, which is used
540  * to manage page allocation until mem_init is called.
541  */
542 void __init setup_arch(char **cmdline_p)
543 {
544 	ppc64_boot_msg(0x12, "Setup Arch");
545 
546 	*cmdline_p = cmd_line;
547 
548 	/*
549 	 * Set cache line size based on type of cpu as a default.
550 	 * Systems with OF can look in the properties on the cpu node(s)
551 	 * for a possibly more accurate value.
552 	 */
553 	dcache_bsize = ppc64_caches.dline_size;
554 	icache_bsize = ppc64_caches.iline_size;
555 
556 	/* reboot on panic */
557 	panic_timeout = 180;
558 
559 	if (ppc_md.panic)
560 		setup_panic();
561 
562 	init_mm.start_code = (unsigned long)_stext;
563 	init_mm.end_code = (unsigned long) _etext;
564 	init_mm.end_data = (unsigned long) _edata;
565 	init_mm.brk = klimit;
566 
567 	irqstack_early_init();
568 	exc_lvl_early_init();
569 	emergency_stack_init();
570 
571 #ifdef CONFIG_PPC_STD_MMU_64
572 	stabs_alloc();
573 #endif
574 	/* set up the bootmem stuff with available memory */
575 	do_init_bootmem();
576 	sparse_init();
577 
578 #ifdef CONFIG_DUMMY_CONSOLE
579 	conswitchp = &dummy_con;
580 #endif
581 
582 	if (ppc_md.setup_arch)
583 		ppc_md.setup_arch();
584 
585 	paging_init();
586 
587 	/* Initialize the MMU context management stuff */
588 	mmu_context_init();
589 
590 	kvm_rma_init();
591 
592 	ppc64_boot_msg(0x15, "Setup Done");
593 }
594 
595 
596 /* ToDo: do something useful if ppc_md is not yet setup. */
597 #define PPC64_LINUX_FUNCTION 0x0f000000
598 #define PPC64_IPL_MESSAGE 0xc0000000
599 #define PPC64_TERM_MESSAGE 0xb0000000
600 
601 static void ppc64_do_msg(unsigned int src, const char *msg)
602 {
603 	if (ppc_md.progress) {
604 		char buf[128];
605 
606 		sprintf(buf, "%08X\n", src);
607 		ppc_md.progress(buf, 0);
608 		snprintf(buf, 128, "%s", msg);
609 		ppc_md.progress(buf, 0);
610 	}
611 }
612 
613 /* Print a boot progress message. */
614 void ppc64_boot_msg(unsigned int src, const char *msg)
615 {
616 	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
617 	printk("[boot]%04x %s\n", src, msg);
618 }
619 
620 #ifdef CONFIG_SMP
621 #define PCPU_DYN_SIZE		()
622 
623 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
624 {
625 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
626 				    __pa(MAX_DMA_ADDRESS));
627 }
628 
629 static void __init pcpu_fc_free(void *ptr, size_t size)
630 {
631 	free_bootmem(__pa(ptr), size);
632 }
633 
634 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
635 {
636 	if (cpu_to_node(from) == cpu_to_node(to))
637 		return LOCAL_DISTANCE;
638 	else
639 		return REMOTE_DISTANCE;
640 }
641 
642 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
643 EXPORT_SYMBOL(__per_cpu_offset);
644 
645 void __init setup_per_cpu_areas(void)
646 {
647 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
648 	size_t atom_size;
649 	unsigned long delta;
650 	unsigned int cpu;
651 	int rc;
652 
653 	/*
654 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
655 	 * to group units.  For larger mappings, use 1M atom which
656 	 * should be large enough to contain a number of units.
657 	 */
658 	if (mmu_linear_psize == MMU_PAGE_4K)
659 		atom_size = PAGE_SIZE;
660 	else
661 		atom_size = 1 << 20;
662 
663 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
664 				    pcpu_fc_alloc, pcpu_fc_free);
665 	if (rc < 0)
666 		panic("cannot initialize percpu area (err=%d)", rc);
667 
668 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
669 	for_each_possible_cpu(cpu) {
670                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
671 		paca[cpu].data_offset = __per_cpu_offset[cpu];
672 	}
673 }
674 #endif
675 
676 
677 #ifdef CONFIG_PPC_INDIRECT_IO
678 struct ppc_pci_io ppc_pci_io;
679 EXPORT_SYMBOL(ppc_pci_io);
680 #endif /* CONFIG_PPC_INDIRECT_IO */
681 
682