xref: /linux/arch/powerpc/kernel/setup_64.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/initrd.h>
21 #include <linux/seq_file.h>
22 #include <linux/ioport.h>
23 #include <linux/console.h>
24 #include <linux/utsname.h>
25 #include <linux/tty.h>
26 #include <linux/root_dev.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/unistd.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/bootmem.h>
33 #include <linux/pci.h>
34 #include <linux/lockdep.h>
35 #include <linux/memblock.h>
36 #include <linux/memory.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/dt_cpu_ftrs.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 #include <asm/hw_irq.h>
71 #include <asm/feature-fixups.h>
72 
73 #include "setup.h"
74 
75 #ifdef DEBUG
76 #define DBG(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG(fmt...)
79 #endif
80 
81 int spinning_secondaries;
82 u64 ppc64_pft_size;
83 
84 struct ppc64_caches ppc64_caches = {
85 	.l1d = {
86 		.block_size = 0x40,
87 		.log_block_size = 6,
88 	},
89 	.l1i = {
90 		.block_size = 0x40,
91 		.log_block_size = 6
92 	},
93 };
94 EXPORT_SYMBOL_GPL(ppc64_caches);
95 
96 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
97 void __init setup_tlb_core_data(void)
98 {
99 	int cpu;
100 
101 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
102 
103 	for_each_possible_cpu(cpu) {
104 		int first = cpu_first_thread_sibling(cpu);
105 
106 		/*
107 		 * If we boot via kdump on a non-primary thread,
108 		 * make sure we point at the thread that actually
109 		 * set up this TLB.
110 		 */
111 		if (cpu_first_thread_sibling(boot_cpuid) == first)
112 			first = boot_cpuid;
113 
114 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
115 
116 		/*
117 		 * If we have threads, we need either tlbsrx.
118 		 * or e6500 tablewalk mode, or else TLB handlers
119 		 * will be racy and could produce duplicate entries.
120 		 * Should we panic instead?
121 		 */
122 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
123 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
124 			  book3e_htw_mode != PPC_HTW_E6500,
125 			  "%s: unsupported MMU configuration\n", __func__);
126 	}
127 }
128 #endif
129 
130 #ifdef CONFIG_SMP
131 
132 static char *smt_enabled_cmdline;
133 
134 /* Look for ibm,smt-enabled OF option */
135 void __init check_smt_enabled(void)
136 {
137 	struct device_node *dn;
138 	const char *smt_option;
139 
140 	/* Default to enabling all threads */
141 	smt_enabled_at_boot = threads_per_core;
142 
143 	/* Allow the command line to overrule the OF option */
144 	if (smt_enabled_cmdline) {
145 		if (!strcmp(smt_enabled_cmdline, "on"))
146 			smt_enabled_at_boot = threads_per_core;
147 		else if (!strcmp(smt_enabled_cmdline, "off"))
148 			smt_enabled_at_boot = 0;
149 		else {
150 			int smt;
151 			int rc;
152 
153 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
154 			if (!rc)
155 				smt_enabled_at_boot =
156 					min(threads_per_core, smt);
157 		}
158 	} else {
159 		dn = of_find_node_by_path("/options");
160 		if (dn) {
161 			smt_option = of_get_property(dn, "ibm,smt-enabled",
162 						     NULL);
163 
164 			if (smt_option) {
165 				if (!strcmp(smt_option, "on"))
166 					smt_enabled_at_boot = threads_per_core;
167 				else if (!strcmp(smt_option, "off"))
168 					smt_enabled_at_boot = 0;
169 			}
170 
171 			of_node_put(dn);
172 		}
173 	}
174 }
175 
176 /* Look for smt-enabled= cmdline option */
177 static int __init early_smt_enabled(char *p)
178 {
179 	smt_enabled_cmdline = p;
180 	return 0;
181 }
182 early_param("smt-enabled", early_smt_enabled);
183 
184 #endif /* CONFIG_SMP */
185 
186 /** Fix up paca fields required for the boot cpu */
187 static void __init fixup_boot_paca(void)
188 {
189 	/* The boot cpu is started */
190 	get_paca()->cpu_start = 1;
191 	/* Allow percpu accesses to work until we setup percpu data */
192 	get_paca()->data_offset = 0;
193 	/* Mark interrupts disabled in PACA */
194 	irq_soft_mask_set(IRQS_DISABLED);
195 }
196 
197 static void __init configure_exceptions(void)
198 {
199 	/*
200 	 * Setup the trampolines from the lowmem exception vectors
201 	 * to the kdump kernel when not using a relocatable kernel.
202 	 */
203 	setup_kdump_trampoline();
204 
205 	/* Under a PAPR hypervisor, we need hypercalls */
206 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
207 		/* Enable AIL if possible */
208 		pseries_enable_reloc_on_exc();
209 
210 		/*
211 		 * Tell the hypervisor that we want our exceptions to
212 		 * be taken in little endian mode.
213 		 *
214 		 * We don't call this for big endian as our calling convention
215 		 * makes us always enter in BE, and the call may fail under
216 		 * some circumstances with kdump.
217 		 */
218 #ifdef __LITTLE_ENDIAN__
219 		pseries_little_endian_exceptions();
220 #endif
221 	} else {
222 		/* Set endian mode using OPAL */
223 		if (firmware_has_feature(FW_FEATURE_OPAL))
224 			opal_configure_cores();
225 
226 		/* AIL on native is done in cpu_ready_for_interrupts() */
227 	}
228 }
229 
230 static void cpu_ready_for_interrupts(void)
231 {
232 	/*
233 	 * Enable AIL if supported, and we are in hypervisor mode. This
234 	 * is called once for every processor.
235 	 *
236 	 * If we are not in hypervisor mode the job is done once for
237 	 * the whole partition in configure_exceptions().
238 	 */
239 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
240 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
241 		unsigned long lpcr = mfspr(SPRN_LPCR);
242 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
243 	}
244 
245 	/*
246 	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
247 	 * early asm init because at that point we haven't updated our
248 	 * CPU features from firmware and device-tree. Here we have,
249 	 * so let's do it.
250 	 */
251 	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
252 		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
253 
254 	/* Set IR and DR in PACA MSR */
255 	get_paca()->kernel_msr = MSR_KERNEL;
256 }
257 
258 unsigned long spr_default_dscr = 0;
259 
260 void __init record_spr_defaults(void)
261 {
262 	if (early_cpu_has_feature(CPU_FTR_DSCR))
263 		spr_default_dscr = mfspr(SPRN_DSCR);
264 }
265 
266 /*
267  * Early initialization entry point. This is called by head.S
268  * with MMU translation disabled. We rely on the "feature" of
269  * the CPU that ignores the top 2 bits of the address in real
270  * mode so we can access kernel globals normally provided we
271  * only toy with things in the RMO region. From here, we do
272  * some early parsing of the device-tree to setup out MEMBLOCK
273  * data structures, and allocate & initialize the hash table
274  * and segment tables so we can start running with translation
275  * enabled.
276  *
277  * It is this function which will call the probe() callback of
278  * the various platform types and copy the matching one to the
279  * global ppc_md structure. Your platform can eventually do
280  * some very early initializations from the probe() routine, but
281  * this is not recommended, be very careful as, for example, the
282  * device-tree is not accessible via normal means at this point.
283  */
284 
285 void __init early_setup(unsigned long dt_ptr)
286 {
287 	static __initdata struct paca_struct boot_paca;
288 
289 	/* -------- printk is _NOT_ safe to use here ! ------- */
290 
291 	/* Try new device tree based feature discovery ... */
292 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
293 		/* Otherwise use the old style CPU table */
294 		identify_cpu(0, mfspr(SPRN_PVR));
295 
296 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
297 	initialise_paca(&boot_paca, 0);
298 	setup_paca(&boot_paca);
299 	fixup_boot_paca();
300 
301 	/* -------- printk is now safe to use ------- */
302 
303 	/* Enable early debugging if any specified (see udbg.h) */
304 	udbg_early_init();
305 
306  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
307 
308 	/*
309 	 * Do early initialization using the flattened device
310 	 * tree, such as retrieving the physical memory map or
311 	 * calculating/retrieving the hash table size.
312 	 */
313 	early_init_devtree(__va(dt_ptr));
314 
315 	/* Now we know the logical id of our boot cpu, setup the paca. */
316 	if (boot_cpuid != 0) {
317 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
318 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
319 	}
320 	setup_paca(paca_ptrs[boot_cpuid]);
321 	fixup_boot_paca();
322 
323 	/*
324 	 * Configure exception handlers. This include setting up trampolines
325 	 * if needed, setting exception endian mode, etc...
326 	 */
327 	configure_exceptions();
328 
329 	/* Apply all the dynamic patching */
330 	apply_feature_fixups();
331 	setup_feature_keys();
332 
333 	/* Initialize the hash table or TLB handling */
334 	early_init_mmu();
335 
336 	/*
337 	 * After firmware and early platform setup code has set things up,
338 	 * we note the SPR values for configurable control/performance
339 	 * registers, and use those as initial defaults.
340 	 */
341 	record_spr_defaults();
342 
343 	/*
344 	 * At this point, we can let interrupts switch to virtual mode
345 	 * (the MMU has been setup), so adjust the MSR in the PACA to
346 	 * have IR and DR set and enable AIL if it exists
347 	 */
348 	cpu_ready_for_interrupts();
349 
350 	/*
351 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
352 	 * will only actually get enabled on the boot cpu much later once
353 	 * ftrace itself has been initialized.
354 	 */
355 	this_cpu_enable_ftrace();
356 
357 	DBG(" <- early_setup()\n");
358 
359 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
360 	/*
361 	 * This needs to be done *last* (after the above DBG() even)
362 	 *
363 	 * Right after we return from this function, we turn on the MMU
364 	 * which means the real-mode access trick that btext does will
365 	 * no longer work, it needs to switch to using a real MMU
366 	 * mapping. This call will ensure that it does
367 	 */
368 	btext_map();
369 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
370 }
371 
372 #ifdef CONFIG_SMP
373 void early_setup_secondary(void)
374 {
375 	/* Mark interrupts disabled in PACA */
376 	irq_soft_mask_set(IRQS_DISABLED);
377 
378 	/* Initialize the hash table or TLB handling */
379 	early_init_mmu_secondary();
380 
381 	/*
382 	 * At this point, we can let interrupts switch to virtual mode
383 	 * (the MMU has been setup), so adjust the MSR in the PACA to
384 	 * have IR and DR set.
385 	 */
386 	cpu_ready_for_interrupts();
387 }
388 
389 #endif /* CONFIG_SMP */
390 
391 void panic_smp_self_stop(void)
392 {
393 	hard_irq_disable();
394 	spin_begin();
395 	while (1)
396 		spin_cpu_relax();
397 }
398 
399 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
400 static bool use_spinloop(void)
401 {
402 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
403 		/*
404 		 * See comments in head_64.S -- not all platforms insert
405 		 * secondaries at __secondary_hold and wait at the spin
406 		 * loop.
407 		 */
408 		if (firmware_has_feature(FW_FEATURE_OPAL))
409 			return false;
410 		return true;
411 	}
412 
413 	/*
414 	 * When book3e boots from kexec, the ePAPR spin table does
415 	 * not get used.
416 	 */
417 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
418 }
419 
420 void smp_release_cpus(void)
421 {
422 	unsigned long *ptr;
423 	int i;
424 
425 	if (!use_spinloop())
426 		return;
427 
428 	DBG(" -> smp_release_cpus()\n");
429 
430 	/* All secondary cpus are spinning on a common spinloop, release them
431 	 * all now so they can start to spin on their individual paca
432 	 * spinloops. For non SMP kernels, the secondary cpus never get out
433 	 * of the common spinloop.
434 	 */
435 
436 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
437 			- PHYSICAL_START);
438 	*ptr = ppc_function_entry(generic_secondary_smp_init);
439 
440 	/* And wait a bit for them to catch up */
441 	for (i = 0; i < 100000; i++) {
442 		mb();
443 		HMT_low();
444 		if (spinning_secondaries == 0)
445 			break;
446 		udelay(1);
447 	}
448 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
449 
450 	DBG(" <- smp_release_cpus()\n");
451 }
452 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
453 
454 /*
455  * Initialize some remaining members of the ppc64_caches and systemcfg
456  * structures
457  * (at least until we get rid of them completely). This is mostly some
458  * cache informations about the CPU that will be used by cache flush
459  * routines and/or provided to userland
460  */
461 
462 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
463 			    u32 bsize, u32 sets)
464 {
465 	info->size = size;
466 	info->sets = sets;
467 	info->line_size = lsize;
468 	info->block_size = bsize;
469 	info->log_block_size = __ilog2(bsize);
470 	if (bsize)
471 		info->blocks_per_page = PAGE_SIZE / bsize;
472 	else
473 		info->blocks_per_page = 0;
474 
475 	if (sets == 0)
476 		info->assoc = 0xffff;
477 	else
478 		info->assoc = size / (sets * lsize);
479 }
480 
481 static bool __init parse_cache_info(struct device_node *np,
482 				    bool icache,
483 				    struct ppc_cache_info *info)
484 {
485 	static const char *ipropnames[] __initdata = {
486 		"i-cache-size",
487 		"i-cache-sets",
488 		"i-cache-block-size",
489 		"i-cache-line-size",
490 	};
491 	static const char *dpropnames[] __initdata = {
492 		"d-cache-size",
493 		"d-cache-sets",
494 		"d-cache-block-size",
495 		"d-cache-line-size",
496 	};
497 	const char **propnames = icache ? ipropnames : dpropnames;
498 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
499 	u32 size, lsize, bsize, sets;
500 	bool success = true;
501 
502 	size = 0;
503 	sets = -1u;
504 	lsize = bsize = cur_cpu_spec->dcache_bsize;
505 	sizep = of_get_property(np, propnames[0], NULL);
506 	if (sizep != NULL)
507 		size = be32_to_cpu(*sizep);
508 	setsp = of_get_property(np, propnames[1], NULL);
509 	if (setsp != NULL)
510 		sets = be32_to_cpu(*setsp);
511 	bsizep = of_get_property(np, propnames[2], NULL);
512 	lsizep = of_get_property(np, propnames[3], NULL);
513 	if (bsizep == NULL)
514 		bsizep = lsizep;
515 	if (lsizep != NULL)
516 		lsize = be32_to_cpu(*lsizep);
517 	if (bsizep != NULL)
518 		bsize = be32_to_cpu(*bsizep);
519 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
520 		success = false;
521 
522 	/*
523 	 * OF is weird .. it represents fully associative caches
524 	 * as "1 way" which doesn't make much sense and doesn't
525 	 * leave room for direct mapped. We'll assume that 0
526 	 * in OF means direct mapped for that reason.
527 	 */
528 	if (sets == 1)
529 		sets = 0;
530 	else if (sets == 0)
531 		sets = 1;
532 
533 	init_cache_info(info, size, lsize, bsize, sets);
534 
535 	return success;
536 }
537 
538 void __init initialize_cache_info(void)
539 {
540 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
541 	u32 pvr;
542 
543 	DBG(" -> initialize_cache_info()\n");
544 
545 	/*
546 	 * All shipping POWER8 machines have a firmware bug that
547 	 * puts incorrect information in the device-tree. This will
548 	 * be (hopefully) fixed for future chips but for now hard
549 	 * code the values if we are running on one of these
550 	 */
551 	pvr = PVR_VER(mfspr(SPRN_PVR));
552 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
553 	    pvr == PVR_POWER8NVL) {
554 						/* size    lsize   blk  sets */
555 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
556 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
557 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
558 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
559 	} else
560 		cpu = of_find_node_by_type(NULL, "cpu");
561 
562 	/*
563 	 * We're assuming *all* of the CPUs have the same
564 	 * d-cache and i-cache sizes... -Peter
565 	 */
566 	if (cpu) {
567 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
568 			DBG("Argh, can't find dcache properties !\n");
569 
570 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
571 			DBG("Argh, can't find icache properties !\n");
572 
573 		/*
574 		 * Try to find the L2 and L3 if any. Assume they are
575 		 * unified and use the D-side properties.
576 		 */
577 		l2 = of_find_next_cache_node(cpu);
578 		of_node_put(cpu);
579 		if (l2) {
580 			parse_cache_info(l2, false, &ppc64_caches.l2);
581 			l3 = of_find_next_cache_node(l2);
582 			of_node_put(l2);
583 		}
584 		if (l3) {
585 			parse_cache_info(l3, false, &ppc64_caches.l3);
586 			of_node_put(l3);
587 		}
588 	}
589 
590 	/* For use by binfmt_elf */
591 	dcache_bsize = ppc64_caches.l1d.block_size;
592 	icache_bsize = ppc64_caches.l1i.block_size;
593 
594 	cur_cpu_spec->dcache_bsize = dcache_bsize;
595 	cur_cpu_spec->icache_bsize = icache_bsize;
596 
597 	DBG(" <- initialize_cache_info()\n");
598 }
599 
600 /*
601  * This returns the limit below which memory accesses to the linear
602  * mapping are guarnateed not to cause an architectural exception (e.g.,
603  * TLB or SLB miss fault).
604  *
605  * This is used to allocate PACAs and various interrupt stacks that
606  * that are accessed early in interrupt handlers that must not cause
607  * re-entrant interrupts.
608  */
609 __init u64 ppc64_bolted_size(void)
610 {
611 #ifdef CONFIG_PPC_BOOK3E
612 	/* Freescale BookE bolts the entire linear mapping */
613 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
614 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
615 		return linear_map_top;
616 	/* Other BookE, we assume the first GB is bolted */
617 	return 1ul << 30;
618 #else
619 	/* BookS radix, does not take faults on linear mapping */
620 	if (early_radix_enabled())
621 		return ULONG_MAX;
622 
623 	/* BookS hash, the first segment is bolted */
624 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
625 		return 1UL << SID_SHIFT_1T;
626 	return 1UL << SID_SHIFT;
627 #endif
628 }
629 
630 static void *__init alloc_stack(unsigned long limit, int cpu)
631 {
632 	unsigned long pa;
633 
634 	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
635 					early_cpu_to_node(cpu), MEMBLOCK_NONE);
636 	if (!pa) {
637 		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
638 		if (!pa)
639 			panic("cannot allocate stacks");
640 	}
641 
642 	return __va(pa);
643 }
644 
645 void __init irqstack_early_init(void)
646 {
647 	u64 limit = ppc64_bolted_size();
648 	unsigned int i;
649 
650 	/*
651 	 * Interrupt stacks must be in the first segment since we
652 	 * cannot afford to take SLB misses on them. They are not
653 	 * accessed in realmode.
654 	 */
655 	for_each_possible_cpu(i) {
656 		softirq_ctx[i] = alloc_stack(limit, i);
657 		hardirq_ctx[i] = alloc_stack(limit, i);
658 	}
659 }
660 
661 #ifdef CONFIG_PPC_BOOK3E
662 void __init exc_lvl_early_init(void)
663 {
664 	unsigned int i;
665 
666 	for_each_possible_cpu(i) {
667 		void *sp;
668 
669 		sp = alloc_stack(ULONG_MAX, i);
670 		critirq_ctx[i] = sp;
671 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
672 
673 		sp = alloc_stack(ULONG_MAX, i);
674 		dbgirq_ctx[i] = sp;
675 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
676 
677 		sp = alloc_stack(ULONG_MAX, i);
678 		mcheckirq_ctx[i] = sp;
679 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
680 	}
681 
682 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
683 		patch_exception(0x040, exc_debug_debug_book3e);
684 }
685 #endif
686 
687 /*
688  * Emergency stacks are used for a range of things, from asynchronous
689  * NMIs (system reset, machine check) to synchronous, process context.
690  * We set preempt_count to zero, even though that isn't necessarily correct. To
691  * get the right value we'd need to copy it from the previous thread_info, but
692  * doing that might fault causing more problems.
693  * TODO: what to do with accounting?
694  */
695 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
696 {
697 	ti->task = NULL;
698 	ti->cpu = cpu;
699 	ti->preempt_count = 0;
700 	ti->local_flags = 0;
701 	ti->flags = 0;
702 	klp_init_thread_info(ti);
703 }
704 
705 /*
706  * Stack space used when we detect a bad kernel stack pointer, and
707  * early in SMP boots before relocation is enabled. Exclusive emergency
708  * stack for machine checks.
709  */
710 void __init emergency_stack_init(void)
711 {
712 	u64 limit;
713 	unsigned int i;
714 
715 	/*
716 	 * Emergency stacks must be under 256MB, we cannot afford to take
717 	 * SLB misses on them. The ABI also requires them to be 128-byte
718 	 * aligned.
719 	 *
720 	 * Since we use these as temporary stacks during secondary CPU
721 	 * bringup, machine check, system reset, and HMI, we need to get
722 	 * at them in real mode. This means they must also be within the RMO
723 	 * region.
724 	 *
725 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
726 	 * initialized in kernel/irq.c. These are initialized here in order
727 	 * to have emergency stacks available as early as possible.
728 	 */
729 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
730 
731 	for_each_possible_cpu(i) {
732 		struct thread_info *ti;
733 
734 		ti = alloc_stack(limit, i);
735 		memset(ti, 0, THREAD_SIZE);
736 		emerg_stack_init_thread_info(ti, i);
737 		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
738 
739 #ifdef CONFIG_PPC_BOOK3S_64
740 		/* emergency stack for NMI exception handling. */
741 		ti = alloc_stack(limit, i);
742 		memset(ti, 0, THREAD_SIZE);
743 		emerg_stack_init_thread_info(ti, i);
744 		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
745 
746 		/* emergency stack for machine check exception handling. */
747 		ti = alloc_stack(limit, i);
748 		memset(ti, 0, THREAD_SIZE);
749 		emerg_stack_init_thread_info(ti, i);
750 		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
751 #endif
752 	}
753 }
754 
755 #ifdef CONFIG_SMP
756 #define PCPU_DYN_SIZE		()
757 
758 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
759 {
760 	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
761 				    __pa(MAX_DMA_ADDRESS));
762 }
763 
764 static void __init pcpu_fc_free(void *ptr, size_t size)
765 {
766 	free_bootmem(__pa(ptr), size);
767 }
768 
769 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
770 {
771 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
772 		return LOCAL_DISTANCE;
773 	else
774 		return REMOTE_DISTANCE;
775 }
776 
777 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
778 EXPORT_SYMBOL(__per_cpu_offset);
779 
780 void __init setup_per_cpu_areas(void)
781 {
782 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
783 	size_t atom_size;
784 	unsigned long delta;
785 	unsigned int cpu;
786 	int rc;
787 
788 	/*
789 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
790 	 * to group units.  For larger mappings, use 1M atom which
791 	 * should be large enough to contain a number of units.
792 	 */
793 	if (mmu_linear_psize == MMU_PAGE_4K)
794 		atom_size = PAGE_SIZE;
795 	else
796 		atom_size = 1 << 20;
797 
798 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
799 				    pcpu_fc_alloc, pcpu_fc_free);
800 	if (rc < 0)
801 		panic("cannot initialize percpu area (err=%d)", rc);
802 
803 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
804 	for_each_possible_cpu(cpu) {
805                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
806 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
807 	}
808 }
809 #endif
810 
811 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
812 unsigned long memory_block_size_bytes(void)
813 {
814 	if (ppc_md.memory_block_size)
815 		return ppc_md.memory_block_size();
816 
817 	return MIN_MEMORY_BLOCK_SIZE;
818 }
819 #endif
820 
821 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
822 struct ppc_pci_io ppc_pci_io;
823 EXPORT_SYMBOL(ppc_pci_io);
824 #endif
825 
826 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
827 u64 hw_nmi_get_sample_period(int watchdog_thresh)
828 {
829 	return ppc_proc_freq * watchdog_thresh;
830 }
831 #endif
832 
833 /*
834  * The perf based hardlockup detector breaks PMU event based branches, so
835  * disable it by default. Book3S has a soft-nmi hardlockup detector based
836  * on the decrementer interrupt, so it does not suffer from this problem.
837  *
838  * It is likely to get false positives in VM guests, so disable it there
839  * by default too.
840  */
841 static int __init disable_hardlockup_detector(void)
842 {
843 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
844 	hardlockup_detector_disable();
845 #else
846 	if (firmware_has_feature(FW_FEATURE_LPAR))
847 		hardlockup_detector_disable();
848 #endif
849 
850 	return 0;
851 }
852 early_initcall(disable_hardlockup_detector);
853 
854 #ifdef CONFIG_PPC_BOOK3S_64
855 static enum l1d_flush_type enabled_flush_types;
856 static void *l1d_flush_fallback_area;
857 static bool no_rfi_flush;
858 bool rfi_flush;
859 
860 static int __init handle_no_rfi_flush(char *p)
861 {
862 	pr_info("rfi-flush: disabled on command line.");
863 	no_rfi_flush = true;
864 	return 0;
865 }
866 early_param("no_rfi_flush", handle_no_rfi_flush);
867 
868 /*
869  * The RFI flush is not KPTI, but because users will see doco that says to use
870  * nopti we hijack that option here to also disable the RFI flush.
871  */
872 static int __init handle_no_pti(char *p)
873 {
874 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
875 	handle_no_rfi_flush(NULL);
876 	return 0;
877 }
878 early_param("nopti", handle_no_pti);
879 
880 static void do_nothing(void *unused)
881 {
882 	/*
883 	 * We don't need to do the flush explicitly, just enter+exit kernel is
884 	 * sufficient, the RFI exit handlers will do the right thing.
885 	 */
886 }
887 
888 void rfi_flush_enable(bool enable)
889 {
890 	if (enable) {
891 		do_rfi_flush_fixups(enabled_flush_types);
892 		on_each_cpu(do_nothing, NULL, 1);
893 	} else
894 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
895 
896 	rfi_flush = enable;
897 }
898 
899 static void __ref init_fallback_flush(void)
900 {
901 	u64 l1d_size, limit;
902 	int cpu;
903 
904 	/* Only allocate the fallback flush area once (at boot time). */
905 	if (l1d_flush_fallback_area)
906 		return;
907 
908 	l1d_size = ppc64_caches.l1d.size;
909 
910 	/*
911 	 * If there is no d-cache-size property in the device tree, l1d_size
912 	 * could be zero. That leads to the loop in the asm wrapping around to
913 	 * 2^64-1, and then walking off the end of the fallback area and
914 	 * eventually causing a page fault which is fatal. Just default to
915 	 * something vaguely sane.
916 	 */
917 	if (!l1d_size)
918 		l1d_size = (64 * 1024);
919 
920 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
921 
922 	/*
923 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
924 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
925 	 * reliably avoid the prefetcher.
926 	 */
927 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
928 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
929 
930 	for_each_possible_cpu(cpu) {
931 		struct paca_struct *paca = paca_ptrs[cpu];
932 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
933 		paca->l1d_flush_size = l1d_size;
934 	}
935 }
936 
937 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
938 {
939 	if (types & L1D_FLUSH_FALLBACK) {
940 		pr_info("rfi-flush: fallback displacement flush available\n");
941 		init_fallback_flush();
942 	}
943 
944 	if (types & L1D_FLUSH_ORI)
945 		pr_info("rfi-flush: ori type flush available\n");
946 
947 	if (types & L1D_FLUSH_MTTRIG)
948 		pr_info("rfi-flush: mttrig type flush available\n");
949 
950 	enabled_flush_types = types;
951 
952 	if (!no_rfi_flush)
953 		rfi_flush_enable(enable);
954 }
955 
956 #ifdef CONFIG_DEBUG_FS
957 static int rfi_flush_set(void *data, u64 val)
958 {
959 	bool enable;
960 
961 	if (val == 1)
962 		enable = true;
963 	else if (val == 0)
964 		enable = false;
965 	else
966 		return -EINVAL;
967 
968 	/* Only do anything if we're changing state */
969 	if (enable != rfi_flush)
970 		rfi_flush_enable(enable);
971 
972 	return 0;
973 }
974 
975 static int rfi_flush_get(void *data, u64 *val)
976 {
977 	*val = rfi_flush ? 1 : 0;
978 	return 0;
979 }
980 
981 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
982 
983 static __init int rfi_flush_debugfs_init(void)
984 {
985 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
986 	return 0;
987 }
988 device_initcall(rfi_flush_debugfs_init);
989 #endif
990 #endif /* CONFIG_PPC_BOOK3S_64 */
991