1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/export.h> 14 #include <linux/string.h> 15 #include <linux/sched.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/reboot.h> 19 #include <linux/delay.h> 20 #include <linux/initrd.h> 21 #include <linux/seq_file.h> 22 #include <linux/ioport.h> 23 #include <linux/console.h> 24 #include <linux/utsname.h> 25 #include <linux/tty.h> 26 #include <linux/root_dev.h> 27 #include <linux/notifier.h> 28 #include <linux/cpu.h> 29 #include <linux/unistd.h> 30 #include <linux/serial.h> 31 #include <linux/serial_8250.h> 32 #include <linux/bootmem.h> 33 #include <linux/pci.h> 34 #include <linux/lockdep.h> 35 #include <linux/memblock.h> 36 #include <linux/memory.h> 37 #include <linux/nmi.h> 38 39 #include <asm/debugfs.h> 40 #include <asm/io.h> 41 #include <asm/kdump.h> 42 #include <asm/prom.h> 43 #include <asm/processor.h> 44 #include <asm/pgtable.h> 45 #include <asm/smp.h> 46 #include <asm/elf.h> 47 #include <asm/machdep.h> 48 #include <asm/paca.h> 49 #include <asm/time.h> 50 #include <asm/cputable.h> 51 #include <asm/dt_cpu_ftrs.h> 52 #include <asm/sections.h> 53 #include <asm/btext.h> 54 #include <asm/nvram.h> 55 #include <asm/setup.h> 56 #include <asm/rtas.h> 57 #include <asm/iommu.h> 58 #include <asm/serial.h> 59 #include <asm/cache.h> 60 #include <asm/page.h> 61 #include <asm/mmu.h> 62 #include <asm/firmware.h> 63 #include <asm/xmon.h> 64 #include <asm/udbg.h> 65 #include <asm/kexec.h> 66 #include <asm/code-patching.h> 67 #include <asm/livepatch.h> 68 #include <asm/opal.h> 69 #include <asm/cputhreads.h> 70 #include <asm/hw_irq.h> 71 #include <asm/feature-fixups.h> 72 73 #include "setup.h" 74 75 #ifdef DEBUG 76 #define DBG(fmt...) udbg_printf(fmt) 77 #else 78 #define DBG(fmt...) 79 #endif 80 81 int spinning_secondaries; 82 u64 ppc64_pft_size; 83 84 struct ppc64_caches ppc64_caches = { 85 .l1d = { 86 .block_size = 0x40, 87 .log_block_size = 6, 88 }, 89 .l1i = { 90 .block_size = 0x40, 91 .log_block_size = 6 92 }, 93 }; 94 EXPORT_SYMBOL_GPL(ppc64_caches); 95 96 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 97 void __init setup_tlb_core_data(void) 98 { 99 int cpu; 100 101 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 102 103 for_each_possible_cpu(cpu) { 104 int first = cpu_first_thread_sibling(cpu); 105 106 /* 107 * If we boot via kdump on a non-primary thread, 108 * make sure we point at the thread that actually 109 * set up this TLB. 110 */ 111 if (cpu_first_thread_sibling(boot_cpuid) == first) 112 first = boot_cpuid; 113 114 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; 115 116 /* 117 * If we have threads, we need either tlbsrx. 118 * or e6500 tablewalk mode, or else TLB handlers 119 * will be racy and could produce duplicate entries. 120 * Should we panic instead? 121 */ 122 WARN_ONCE(smt_enabled_at_boot >= 2 && 123 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 124 book3e_htw_mode != PPC_HTW_E6500, 125 "%s: unsupported MMU configuration\n", __func__); 126 } 127 } 128 #endif 129 130 #ifdef CONFIG_SMP 131 132 static char *smt_enabled_cmdline; 133 134 /* Look for ibm,smt-enabled OF option */ 135 void __init check_smt_enabled(void) 136 { 137 struct device_node *dn; 138 const char *smt_option; 139 140 /* Default to enabling all threads */ 141 smt_enabled_at_boot = threads_per_core; 142 143 /* Allow the command line to overrule the OF option */ 144 if (smt_enabled_cmdline) { 145 if (!strcmp(smt_enabled_cmdline, "on")) 146 smt_enabled_at_boot = threads_per_core; 147 else if (!strcmp(smt_enabled_cmdline, "off")) 148 smt_enabled_at_boot = 0; 149 else { 150 int smt; 151 int rc; 152 153 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 154 if (!rc) 155 smt_enabled_at_boot = 156 min(threads_per_core, smt); 157 } 158 } else { 159 dn = of_find_node_by_path("/options"); 160 if (dn) { 161 smt_option = of_get_property(dn, "ibm,smt-enabled", 162 NULL); 163 164 if (smt_option) { 165 if (!strcmp(smt_option, "on")) 166 smt_enabled_at_boot = threads_per_core; 167 else if (!strcmp(smt_option, "off")) 168 smt_enabled_at_boot = 0; 169 } 170 171 of_node_put(dn); 172 } 173 } 174 } 175 176 /* Look for smt-enabled= cmdline option */ 177 static int __init early_smt_enabled(char *p) 178 { 179 smt_enabled_cmdline = p; 180 return 0; 181 } 182 early_param("smt-enabled", early_smt_enabled); 183 184 #endif /* CONFIG_SMP */ 185 186 /** Fix up paca fields required for the boot cpu */ 187 static void __init fixup_boot_paca(void) 188 { 189 /* The boot cpu is started */ 190 get_paca()->cpu_start = 1; 191 /* Allow percpu accesses to work until we setup percpu data */ 192 get_paca()->data_offset = 0; 193 /* Mark interrupts disabled in PACA */ 194 irq_soft_mask_set(IRQS_DISABLED); 195 } 196 197 static void __init configure_exceptions(void) 198 { 199 /* 200 * Setup the trampolines from the lowmem exception vectors 201 * to the kdump kernel when not using a relocatable kernel. 202 */ 203 setup_kdump_trampoline(); 204 205 /* Under a PAPR hypervisor, we need hypercalls */ 206 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 207 /* Enable AIL if possible */ 208 pseries_enable_reloc_on_exc(); 209 210 /* 211 * Tell the hypervisor that we want our exceptions to 212 * be taken in little endian mode. 213 * 214 * We don't call this for big endian as our calling convention 215 * makes us always enter in BE, and the call may fail under 216 * some circumstances with kdump. 217 */ 218 #ifdef __LITTLE_ENDIAN__ 219 pseries_little_endian_exceptions(); 220 #endif 221 } else { 222 /* Set endian mode using OPAL */ 223 if (firmware_has_feature(FW_FEATURE_OPAL)) 224 opal_configure_cores(); 225 226 /* AIL on native is done in cpu_ready_for_interrupts() */ 227 } 228 } 229 230 static void cpu_ready_for_interrupts(void) 231 { 232 /* 233 * Enable AIL if supported, and we are in hypervisor mode. This 234 * is called once for every processor. 235 * 236 * If we are not in hypervisor mode the job is done once for 237 * the whole partition in configure_exceptions(). 238 */ 239 if (cpu_has_feature(CPU_FTR_HVMODE) && 240 cpu_has_feature(CPU_FTR_ARCH_207S)) { 241 unsigned long lpcr = mfspr(SPRN_LPCR); 242 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 243 } 244 245 /* 246 * Fixup HFSCR:TM based on CPU features. The bit is set by our 247 * early asm init because at that point we haven't updated our 248 * CPU features from firmware and device-tree. Here we have, 249 * so let's do it. 250 */ 251 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP)) 252 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 253 254 /* Set IR and DR in PACA MSR */ 255 get_paca()->kernel_msr = MSR_KERNEL; 256 } 257 258 unsigned long spr_default_dscr = 0; 259 260 void __init record_spr_defaults(void) 261 { 262 if (early_cpu_has_feature(CPU_FTR_DSCR)) 263 spr_default_dscr = mfspr(SPRN_DSCR); 264 } 265 266 /* 267 * Early initialization entry point. This is called by head.S 268 * with MMU translation disabled. We rely on the "feature" of 269 * the CPU that ignores the top 2 bits of the address in real 270 * mode so we can access kernel globals normally provided we 271 * only toy with things in the RMO region. From here, we do 272 * some early parsing of the device-tree to setup out MEMBLOCK 273 * data structures, and allocate & initialize the hash table 274 * and segment tables so we can start running with translation 275 * enabled. 276 * 277 * It is this function which will call the probe() callback of 278 * the various platform types and copy the matching one to the 279 * global ppc_md structure. Your platform can eventually do 280 * some very early initializations from the probe() routine, but 281 * this is not recommended, be very careful as, for example, the 282 * device-tree is not accessible via normal means at this point. 283 */ 284 285 void __init early_setup(unsigned long dt_ptr) 286 { 287 static __initdata struct paca_struct boot_paca; 288 289 /* -------- printk is _NOT_ safe to use here ! ------- */ 290 291 /* Try new device tree based feature discovery ... */ 292 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 293 /* Otherwise use the old style CPU table */ 294 identify_cpu(0, mfspr(SPRN_PVR)); 295 296 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 297 initialise_paca(&boot_paca, 0); 298 setup_paca(&boot_paca); 299 fixup_boot_paca(); 300 301 /* -------- printk is now safe to use ------- */ 302 303 /* Enable early debugging if any specified (see udbg.h) */ 304 udbg_early_init(); 305 306 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 307 308 /* 309 * Do early initialization using the flattened device 310 * tree, such as retrieving the physical memory map or 311 * calculating/retrieving the hash table size. 312 */ 313 early_init_devtree(__va(dt_ptr)); 314 315 /* Now we know the logical id of our boot cpu, setup the paca. */ 316 if (boot_cpuid != 0) { 317 /* Poison paca_ptrs[0] again if it's not the boot cpu */ 318 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); 319 } 320 setup_paca(paca_ptrs[boot_cpuid]); 321 fixup_boot_paca(); 322 323 /* 324 * Configure exception handlers. This include setting up trampolines 325 * if needed, setting exception endian mode, etc... 326 */ 327 configure_exceptions(); 328 329 /* Apply all the dynamic patching */ 330 apply_feature_fixups(); 331 setup_feature_keys(); 332 333 /* Initialize the hash table or TLB handling */ 334 early_init_mmu(); 335 336 /* 337 * After firmware and early platform setup code has set things up, 338 * we note the SPR values for configurable control/performance 339 * registers, and use those as initial defaults. 340 */ 341 record_spr_defaults(); 342 343 /* 344 * At this point, we can let interrupts switch to virtual mode 345 * (the MMU has been setup), so adjust the MSR in the PACA to 346 * have IR and DR set and enable AIL if it exists 347 */ 348 cpu_ready_for_interrupts(); 349 350 /* 351 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it 352 * will only actually get enabled on the boot cpu much later once 353 * ftrace itself has been initialized. 354 */ 355 this_cpu_enable_ftrace(); 356 357 DBG(" <- early_setup()\n"); 358 359 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 360 /* 361 * This needs to be done *last* (after the above DBG() even) 362 * 363 * Right after we return from this function, we turn on the MMU 364 * which means the real-mode access trick that btext does will 365 * no longer work, it needs to switch to using a real MMU 366 * mapping. This call will ensure that it does 367 */ 368 btext_map(); 369 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 370 } 371 372 #ifdef CONFIG_SMP 373 void early_setup_secondary(void) 374 { 375 /* Mark interrupts disabled in PACA */ 376 irq_soft_mask_set(IRQS_DISABLED); 377 378 /* Initialize the hash table or TLB handling */ 379 early_init_mmu_secondary(); 380 381 /* 382 * At this point, we can let interrupts switch to virtual mode 383 * (the MMU has been setup), so adjust the MSR in the PACA to 384 * have IR and DR set. 385 */ 386 cpu_ready_for_interrupts(); 387 } 388 389 #endif /* CONFIG_SMP */ 390 391 void panic_smp_self_stop(void) 392 { 393 hard_irq_disable(); 394 spin_begin(); 395 while (1) 396 spin_cpu_relax(); 397 } 398 399 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 400 static bool use_spinloop(void) 401 { 402 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 403 /* 404 * See comments in head_64.S -- not all platforms insert 405 * secondaries at __secondary_hold and wait at the spin 406 * loop. 407 */ 408 if (firmware_has_feature(FW_FEATURE_OPAL)) 409 return false; 410 return true; 411 } 412 413 /* 414 * When book3e boots from kexec, the ePAPR spin table does 415 * not get used. 416 */ 417 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 418 } 419 420 void smp_release_cpus(void) 421 { 422 unsigned long *ptr; 423 int i; 424 425 if (!use_spinloop()) 426 return; 427 428 DBG(" -> smp_release_cpus()\n"); 429 430 /* All secondary cpus are spinning on a common spinloop, release them 431 * all now so they can start to spin on their individual paca 432 * spinloops. For non SMP kernels, the secondary cpus never get out 433 * of the common spinloop. 434 */ 435 436 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 437 - PHYSICAL_START); 438 *ptr = ppc_function_entry(generic_secondary_smp_init); 439 440 /* And wait a bit for them to catch up */ 441 for (i = 0; i < 100000; i++) { 442 mb(); 443 HMT_low(); 444 if (spinning_secondaries == 0) 445 break; 446 udelay(1); 447 } 448 DBG("spinning_secondaries = %d\n", spinning_secondaries); 449 450 DBG(" <- smp_release_cpus()\n"); 451 } 452 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 453 454 /* 455 * Initialize some remaining members of the ppc64_caches and systemcfg 456 * structures 457 * (at least until we get rid of them completely). This is mostly some 458 * cache informations about the CPU that will be used by cache flush 459 * routines and/or provided to userland 460 */ 461 462 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 463 u32 bsize, u32 sets) 464 { 465 info->size = size; 466 info->sets = sets; 467 info->line_size = lsize; 468 info->block_size = bsize; 469 info->log_block_size = __ilog2(bsize); 470 if (bsize) 471 info->blocks_per_page = PAGE_SIZE / bsize; 472 else 473 info->blocks_per_page = 0; 474 475 if (sets == 0) 476 info->assoc = 0xffff; 477 else 478 info->assoc = size / (sets * lsize); 479 } 480 481 static bool __init parse_cache_info(struct device_node *np, 482 bool icache, 483 struct ppc_cache_info *info) 484 { 485 static const char *ipropnames[] __initdata = { 486 "i-cache-size", 487 "i-cache-sets", 488 "i-cache-block-size", 489 "i-cache-line-size", 490 }; 491 static const char *dpropnames[] __initdata = { 492 "d-cache-size", 493 "d-cache-sets", 494 "d-cache-block-size", 495 "d-cache-line-size", 496 }; 497 const char **propnames = icache ? ipropnames : dpropnames; 498 const __be32 *sizep, *lsizep, *bsizep, *setsp; 499 u32 size, lsize, bsize, sets; 500 bool success = true; 501 502 size = 0; 503 sets = -1u; 504 lsize = bsize = cur_cpu_spec->dcache_bsize; 505 sizep = of_get_property(np, propnames[0], NULL); 506 if (sizep != NULL) 507 size = be32_to_cpu(*sizep); 508 setsp = of_get_property(np, propnames[1], NULL); 509 if (setsp != NULL) 510 sets = be32_to_cpu(*setsp); 511 bsizep = of_get_property(np, propnames[2], NULL); 512 lsizep = of_get_property(np, propnames[3], NULL); 513 if (bsizep == NULL) 514 bsizep = lsizep; 515 if (lsizep != NULL) 516 lsize = be32_to_cpu(*lsizep); 517 if (bsizep != NULL) 518 bsize = be32_to_cpu(*bsizep); 519 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 520 success = false; 521 522 /* 523 * OF is weird .. it represents fully associative caches 524 * as "1 way" which doesn't make much sense and doesn't 525 * leave room for direct mapped. We'll assume that 0 526 * in OF means direct mapped for that reason. 527 */ 528 if (sets == 1) 529 sets = 0; 530 else if (sets == 0) 531 sets = 1; 532 533 init_cache_info(info, size, lsize, bsize, sets); 534 535 return success; 536 } 537 538 void __init initialize_cache_info(void) 539 { 540 struct device_node *cpu = NULL, *l2, *l3 = NULL; 541 u32 pvr; 542 543 DBG(" -> initialize_cache_info()\n"); 544 545 /* 546 * All shipping POWER8 machines have a firmware bug that 547 * puts incorrect information in the device-tree. This will 548 * be (hopefully) fixed for future chips but for now hard 549 * code the values if we are running on one of these 550 */ 551 pvr = PVR_VER(mfspr(SPRN_PVR)); 552 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 553 pvr == PVR_POWER8NVL) { 554 /* size lsize blk sets */ 555 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 556 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 557 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 558 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 559 } else 560 cpu = of_find_node_by_type(NULL, "cpu"); 561 562 /* 563 * We're assuming *all* of the CPUs have the same 564 * d-cache and i-cache sizes... -Peter 565 */ 566 if (cpu) { 567 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 568 DBG("Argh, can't find dcache properties !\n"); 569 570 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 571 DBG("Argh, can't find icache properties !\n"); 572 573 /* 574 * Try to find the L2 and L3 if any. Assume they are 575 * unified and use the D-side properties. 576 */ 577 l2 = of_find_next_cache_node(cpu); 578 of_node_put(cpu); 579 if (l2) { 580 parse_cache_info(l2, false, &ppc64_caches.l2); 581 l3 = of_find_next_cache_node(l2); 582 of_node_put(l2); 583 } 584 if (l3) { 585 parse_cache_info(l3, false, &ppc64_caches.l3); 586 of_node_put(l3); 587 } 588 } 589 590 /* For use by binfmt_elf */ 591 dcache_bsize = ppc64_caches.l1d.block_size; 592 icache_bsize = ppc64_caches.l1i.block_size; 593 594 cur_cpu_spec->dcache_bsize = dcache_bsize; 595 cur_cpu_spec->icache_bsize = icache_bsize; 596 597 DBG(" <- initialize_cache_info()\n"); 598 } 599 600 /* 601 * This returns the limit below which memory accesses to the linear 602 * mapping are guarnateed not to cause an architectural exception (e.g., 603 * TLB or SLB miss fault). 604 * 605 * This is used to allocate PACAs and various interrupt stacks that 606 * that are accessed early in interrupt handlers that must not cause 607 * re-entrant interrupts. 608 */ 609 __init u64 ppc64_bolted_size(void) 610 { 611 #ifdef CONFIG_PPC_BOOK3E 612 /* Freescale BookE bolts the entire linear mapping */ 613 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ 614 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 615 return linear_map_top; 616 /* Other BookE, we assume the first GB is bolted */ 617 return 1ul << 30; 618 #else 619 /* BookS radix, does not take faults on linear mapping */ 620 if (early_radix_enabled()) 621 return ULONG_MAX; 622 623 /* BookS hash, the first segment is bolted */ 624 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) 625 return 1UL << SID_SHIFT_1T; 626 return 1UL << SID_SHIFT; 627 #endif 628 } 629 630 static void *__init alloc_stack(unsigned long limit, int cpu) 631 { 632 unsigned long pa; 633 634 pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit, 635 early_cpu_to_node(cpu), MEMBLOCK_NONE); 636 if (!pa) { 637 pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 638 if (!pa) 639 panic("cannot allocate stacks"); 640 } 641 642 return __va(pa); 643 } 644 645 void __init irqstack_early_init(void) 646 { 647 u64 limit = ppc64_bolted_size(); 648 unsigned int i; 649 650 /* 651 * Interrupt stacks must be in the first segment since we 652 * cannot afford to take SLB misses on them. They are not 653 * accessed in realmode. 654 */ 655 for_each_possible_cpu(i) { 656 softirq_ctx[i] = alloc_stack(limit, i); 657 hardirq_ctx[i] = alloc_stack(limit, i); 658 } 659 } 660 661 #ifdef CONFIG_PPC_BOOK3E 662 void __init exc_lvl_early_init(void) 663 { 664 unsigned int i; 665 666 for_each_possible_cpu(i) { 667 void *sp; 668 669 sp = alloc_stack(ULONG_MAX, i); 670 critirq_ctx[i] = sp; 671 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; 672 673 sp = alloc_stack(ULONG_MAX, i); 674 dbgirq_ctx[i] = sp; 675 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; 676 677 sp = alloc_stack(ULONG_MAX, i); 678 mcheckirq_ctx[i] = sp; 679 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; 680 } 681 682 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 683 patch_exception(0x040, exc_debug_debug_book3e); 684 } 685 #endif 686 687 /* 688 * Emergency stacks are used for a range of things, from asynchronous 689 * NMIs (system reset, machine check) to synchronous, process context. 690 * We set preempt_count to zero, even though that isn't necessarily correct. To 691 * get the right value we'd need to copy it from the previous thread_info, but 692 * doing that might fault causing more problems. 693 * TODO: what to do with accounting? 694 */ 695 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu) 696 { 697 ti->task = NULL; 698 ti->cpu = cpu; 699 ti->preempt_count = 0; 700 ti->local_flags = 0; 701 ti->flags = 0; 702 klp_init_thread_info(ti); 703 } 704 705 /* 706 * Stack space used when we detect a bad kernel stack pointer, and 707 * early in SMP boots before relocation is enabled. Exclusive emergency 708 * stack for machine checks. 709 */ 710 void __init emergency_stack_init(void) 711 { 712 u64 limit; 713 unsigned int i; 714 715 /* 716 * Emergency stacks must be under 256MB, we cannot afford to take 717 * SLB misses on them. The ABI also requires them to be 128-byte 718 * aligned. 719 * 720 * Since we use these as temporary stacks during secondary CPU 721 * bringup, machine check, system reset, and HMI, we need to get 722 * at them in real mode. This means they must also be within the RMO 723 * region. 724 * 725 * The IRQ stacks allocated elsewhere in this file are zeroed and 726 * initialized in kernel/irq.c. These are initialized here in order 727 * to have emergency stacks available as early as possible. 728 */ 729 limit = min(ppc64_bolted_size(), ppc64_rma_size); 730 731 for_each_possible_cpu(i) { 732 struct thread_info *ti; 733 734 ti = alloc_stack(limit, i); 735 memset(ti, 0, THREAD_SIZE); 736 emerg_stack_init_thread_info(ti, i); 737 paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE; 738 739 #ifdef CONFIG_PPC_BOOK3S_64 740 /* emergency stack for NMI exception handling. */ 741 ti = alloc_stack(limit, i); 742 memset(ti, 0, THREAD_SIZE); 743 emerg_stack_init_thread_info(ti, i); 744 paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE; 745 746 /* emergency stack for machine check exception handling. */ 747 ti = alloc_stack(limit, i); 748 memset(ti, 0, THREAD_SIZE); 749 emerg_stack_init_thread_info(ti, i); 750 paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE; 751 #endif 752 } 753 } 754 755 #ifdef CONFIG_SMP 756 #define PCPU_DYN_SIZE () 757 758 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 759 { 760 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align, 761 __pa(MAX_DMA_ADDRESS)); 762 } 763 764 static void __init pcpu_fc_free(void *ptr, size_t size) 765 { 766 free_bootmem(__pa(ptr), size); 767 } 768 769 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 770 { 771 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 772 return LOCAL_DISTANCE; 773 else 774 return REMOTE_DISTANCE; 775 } 776 777 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 778 EXPORT_SYMBOL(__per_cpu_offset); 779 780 void __init setup_per_cpu_areas(void) 781 { 782 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 783 size_t atom_size; 784 unsigned long delta; 785 unsigned int cpu; 786 int rc; 787 788 /* 789 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 790 * to group units. For larger mappings, use 1M atom which 791 * should be large enough to contain a number of units. 792 */ 793 if (mmu_linear_psize == MMU_PAGE_4K) 794 atom_size = PAGE_SIZE; 795 else 796 atom_size = 1 << 20; 797 798 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 799 pcpu_fc_alloc, pcpu_fc_free); 800 if (rc < 0) 801 panic("cannot initialize percpu area (err=%d)", rc); 802 803 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 804 for_each_possible_cpu(cpu) { 805 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 806 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; 807 } 808 } 809 #endif 810 811 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 812 unsigned long memory_block_size_bytes(void) 813 { 814 if (ppc_md.memory_block_size) 815 return ppc_md.memory_block_size(); 816 817 return MIN_MEMORY_BLOCK_SIZE; 818 } 819 #endif 820 821 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 822 struct ppc_pci_io ppc_pci_io; 823 EXPORT_SYMBOL(ppc_pci_io); 824 #endif 825 826 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 827 u64 hw_nmi_get_sample_period(int watchdog_thresh) 828 { 829 return ppc_proc_freq * watchdog_thresh; 830 } 831 #endif 832 833 /* 834 * The perf based hardlockup detector breaks PMU event based branches, so 835 * disable it by default. Book3S has a soft-nmi hardlockup detector based 836 * on the decrementer interrupt, so it does not suffer from this problem. 837 * 838 * It is likely to get false positives in VM guests, so disable it there 839 * by default too. 840 */ 841 static int __init disable_hardlockup_detector(void) 842 { 843 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 844 hardlockup_detector_disable(); 845 #else 846 if (firmware_has_feature(FW_FEATURE_LPAR)) 847 hardlockup_detector_disable(); 848 #endif 849 850 return 0; 851 } 852 early_initcall(disable_hardlockup_detector); 853 854 #ifdef CONFIG_PPC_BOOK3S_64 855 static enum l1d_flush_type enabled_flush_types; 856 static void *l1d_flush_fallback_area; 857 static bool no_rfi_flush; 858 bool rfi_flush; 859 860 static int __init handle_no_rfi_flush(char *p) 861 { 862 pr_info("rfi-flush: disabled on command line."); 863 no_rfi_flush = true; 864 return 0; 865 } 866 early_param("no_rfi_flush", handle_no_rfi_flush); 867 868 /* 869 * The RFI flush is not KPTI, but because users will see doco that says to use 870 * nopti we hijack that option here to also disable the RFI flush. 871 */ 872 static int __init handle_no_pti(char *p) 873 { 874 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); 875 handle_no_rfi_flush(NULL); 876 return 0; 877 } 878 early_param("nopti", handle_no_pti); 879 880 static void do_nothing(void *unused) 881 { 882 /* 883 * We don't need to do the flush explicitly, just enter+exit kernel is 884 * sufficient, the RFI exit handlers will do the right thing. 885 */ 886 } 887 888 void rfi_flush_enable(bool enable) 889 { 890 if (enable) { 891 do_rfi_flush_fixups(enabled_flush_types); 892 on_each_cpu(do_nothing, NULL, 1); 893 } else 894 do_rfi_flush_fixups(L1D_FLUSH_NONE); 895 896 rfi_flush = enable; 897 } 898 899 static void __ref init_fallback_flush(void) 900 { 901 u64 l1d_size, limit; 902 int cpu; 903 904 /* Only allocate the fallback flush area once (at boot time). */ 905 if (l1d_flush_fallback_area) 906 return; 907 908 l1d_size = ppc64_caches.l1d.size; 909 910 /* 911 * If there is no d-cache-size property in the device tree, l1d_size 912 * could be zero. That leads to the loop in the asm wrapping around to 913 * 2^64-1, and then walking off the end of the fallback area and 914 * eventually causing a page fault which is fatal. Just default to 915 * something vaguely sane. 916 */ 917 if (!l1d_size) 918 l1d_size = (64 * 1024); 919 920 limit = min(ppc64_bolted_size(), ppc64_rma_size); 921 922 /* 923 * Align to L1d size, and size it at 2x L1d size, to catch possible 924 * hardware prefetch runoff. We don't have a recipe for load patterns to 925 * reliably avoid the prefetcher. 926 */ 927 l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit)); 928 memset(l1d_flush_fallback_area, 0, l1d_size * 2); 929 930 for_each_possible_cpu(cpu) { 931 struct paca_struct *paca = paca_ptrs[cpu]; 932 paca->rfi_flush_fallback_area = l1d_flush_fallback_area; 933 paca->l1d_flush_size = l1d_size; 934 } 935 } 936 937 void setup_rfi_flush(enum l1d_flush_type types, bool enable) 938 { 939 if (types & L1D_FLUSH_FALLBACK) { 940 pr_info("rfi-flush: fallback displacement flush available\n"); 941 init_fallback_flush(); 942 } 943 944 if (types & L1D_FLUSH_ORI) 945 pr_info("rfi-flush: ori type flush available\n"); 946 947 if (types & L1D_FLUSH_MTTRIG) 948 pr_info("rfi-flush: mttrig type flush available\n"); 949 950 enabled_flush_types = types; 951 952 if (!no_rfi_flush) 953 rfi_flush_enable(enable); 954 } 955 956 #ifdef CONFIG_DEBUG_FS 957 static int rfi_flush_set(void *data, u64 val) 958 { 959 bool enable; 960 961 if (val == 1) 962 enable = true; 963 else if (val == 0) 964 enable = false; 965 else 966 return -EINVAL; 967 968 /* Only do anything if we're changing state */ 969 if (enable != rfi_flush) 970 rfi_flush_enable(enable); 971 972 return 0; 973 } 974 975 static int rfi_flush_get(void *data, u64 *val) 976 { 977 *val = rfi_flush ? 1 : 0; 978 return 0; 979 } 980 981 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); 982 983 static __init int rfi_flush_debugfs_init(void) 984 { 985 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); 986 return 0; 987 } 988 device_initcall(rfi_flush_debugfs_init); 989 #endif 990 #endif /* CONFIG_PPC_BOOK3S_64 */ 991