1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #undef DEBUG 14 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/ide.h> 24 #include <linux/seq_file.h> 25 #include <linux/ioport.h> 26 #include <linux/console.h> 27 #include <linux/utsname.h> 28 #include <linux/tty.h> 29 #include <linux/root_dev.h> 30 #include <linux/notifier.h> 31 #include <linux/cpu.h> 32 #include <linux/unistd.h> 33 #include <linux/serial.h> 34 #include <linux/serial_8250.h> 35 #include <linux/bootmem.h> 36 #include <linux/pci.h> 37 #include <asm/io.h> 38 #include <asm/kdump.h> 39 #include <asm/prom.h> 40 #include <asm/processor.h> 41 #include <asm/pgtable.h> 42 #include <asm/smp.h> 43 #include <asm/elf.h> 44 #include <asm/machdep.h> 45 #include <asm/paca.h> 46 #include <asm/time.h> 47 #include <asm/cputable.h> 48 #include <asm/sections.h> 49 #include <asm/btext.h> 50 #include <asm/nvram.h> 51 #include <asm/setup.h> 52 #include <asm/system.h> 53 #include <asm/rtas.h> 54 #include <asm/iommu.h> 55 #include <asm/serial.h> 56 #include <asm/cache.h> 57 #include <asm/page.h> 58 #include <asm/mmu.h> 59 #include <asm/lmb.h> 60 #include <asm/firmware.h> 61 #include <asm/xmon.h> 62 #include <asm/udbg.h> 63 #include <asm/kexec.h> 64 65 #include "setup.h" 66 67 #ifdef DEBUG 68 #define DBG(fmt...) udbg_printf(fmt) 69 #else 70 #define DBG(fmt...) 71 #endif 72 73 int have_of = 1; 74 int boot_cpuid = 0; 75 u64 ppc64_pft_size; 76 77 /* Pick defaults since we might want to patch instructions 78 * before we've read this from the device tree. 79 */ 80 struct ppc64_caches ppc64_caches = { 81 .dline_size = 0x40, 82 .log_dline_size = 6, 83 .iline_size = 0x40, 84 .log_iline_size = 6 85 }; 86 EXPORT_SYMBOL_GPL(ppc64_caches); 87 88 /* 89 * These are used in binfmt_elf.c to put aux entries on the stack 90 * for each elf executable being started. 91 */ 92 int dcache_bsize; 93 int icache_bsize; 94 int ucache_bsize; 95 96 #ifdef CONFIG_SMP 97 98 static int smt_enabled_cmdline; 99 100 /* Look for ibm,smt-enabled OF option */ 101 static void check_smt_enabled(void) 102 { 103 struct device_node *dn; 104 const char *smt_option; 105 106 /* Allow the command line to overrule the OF option */ 107 if (smt_enabled_cmdline) 108 return; 109 110 dn = of_find_node_by_path("/options"); 111 112 if (dn) { 113 smt_option = get_property(dn, "ibm,smt-enabled", NULL); 114 115 if (smt_option) { 116 if (!strcmp(smt_option, "on")) 117 smt_enabled_at_boot = 1; 118 else if (!strcmp(smt_option, "off")) 119 smt_enabled_at_boot = 0; 120 } 121 } 122 } 123 124 /* Look for smt-enabled= cmdline option */ 125 static int __init early_smt_enabled(char *p) 126 { 127 smt_enabled_cmdline = 1; 128 129 if (!p) 130 return 0; 131 132 if (!strcmp(p, "on") || !strcmp(p, "1")) 133 smt_enabled_at_boot = 1; 134 else if (!strcmp(p, "off") || !strcmp(p, "0")) 135 smt_enabled_at_boot = 0; 136 137 return 0; 138 } 139 early_param("smt-enabled", early_smt_enabled); 140 141 #else 142 #define check_smt_enabled() 143 #endif /* CONFIG_SMP */ 144 145 /* Put the paca pointer into r13 and SPRG3 */ 146 void __init setup_paca(int cpu) 147 { 148 local_paca = &paca[cpu]; 149 mtspr(SPRN_SPRG3, local_paca); 150 } 151 152 /* 153 * Early initialization entry point. This is called by head.S 154 * with MMU translation disabled. We rely on the "feature" of 155 * the CPU that ignores the top 2 bits of the address in real 156 * mode so we can access kernel globals normally provided we 157 * only toy with things in the RMO region. From here, we do 158 * some early parsing of the device-tree to setup out LMB 159 * data structures, and allocate & initialize the hash table 160 * and segment tables so we can start running with translation 161 * enabled. 162 * 163 * It is this function which will call the probe() callback of 164 * the various platform types and copy the matching one to the 165 * global ppc_md structure. Your platform can eventually do 166 * some very early initializations from the probe() routine, but 167 * this is not recommended, be very careful as, for example, the 168 * device-tree is not accessible via normal means at this point. 169 */ 170 171 void __init early_setup(unsigned long dt_ptr) 172 { 173 /* Identify CPU type */ 174 identify_cpu(0, mfspr(SPRN_PVR)); 175 176 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 177 setup_paca(0); 178 179 /* Enable early debugging if any specified (see udbg.h) */ 180 udbg_early_init(); 181 182 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 183 184 /* 185 * Do early initializations using the flattened device 186 * tree, like retreiving the physical memory map or 187 * calculating/retreiving the hash table size 188 */ 189 early_init_devtree(__va(dt_ptr)); 190 191 /* Now we know the logical id of our boot cpu, setup the paca. */ 192 setup_paca(boot_cpuid); 193 194 /* Fix up paca fields required for the boot cpu */ 195 get_paca()->cpu_start = 1; 196 get_paca()->stab_real = __pa((u64)&initial_stab); 197 get_paca()->stab_addr = (u64)&initial_stab; 198 199 /* Probe the machine type */ 200 probe_machine(); 201 202 setup_kdump_trampoline(); 203 204 DBG("Found, Initializing memory management...\n"); 205 206 /* 207 * Initialize the MMU Hash table and create the linear mapping 208 * of memory. Has to be done before stab/slb initialization as 209 * this is currently where the page size encoding is obtained 210 */ 211 htab_initialize(); 212 213 /* 214 * Initialize stab / SLB management except on iSeries 215 */ 216 if (cpu_has_feature(CPU_FTR_SLB)) 217 slb_initialize(); 218 else if (!firmware_has_feature(FW_FEATURE_ISERIES)) 219 stab_initialize(get_paca()->stab_real); 220 221 DBG(" <- early_setup()\n"); 222 } 223 224 #ifdef CONFIG_SMP 225 void early_setup_secondary(void) 226 { 227 struct paca_struct *lpaca = get_paca(); 228 229 /* Mark interrupts enabled in PACA */ 230 lpaca->soft_enabled = 0; 231 232 /* Initialize hash table for that CPU */ 233 htab_initialize_secondary(); 234 235 /* Initialize STAB/SLB. We use a virtual address as it works 236 * in real mode on pSeries and we want a virutal address on 237 * iSeries anyway 238 */ 239 if (cpu_has_feature(CPU_FTR_SLB)) 240 slb_initialize(); 241 else 242 stab_initialize(lpaca->stab_addr); 243 } 244 245 #endif /* CONFIG_SMP */ 246 247 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC) 248 void smp_release_cpus(void) 249 { 250 extern unsigned long __secondary_hold_spinloop; 251 unsigned long *ptr; 252 253 DBG(" -> smp_release_cpus()\n"); 254 255 /* All secondary cpus are spinning on a common spinloop, release them 256 * all now so they can start to spin on their individual paca 257 * spinloops. For non SMP kernels, the secondary cpus never get out 258 * of the common spinloop. 259 * This is useless but harmless on iSeries, secondaries are already 260 * waiting on their paca spinloops. */ 261 262 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 263 - PHYSICAL_START); 264 *ptr = 1; 265 mb(); 266 267 DBG(" <- smp_release_cpus()\n"); 268 } 269 #endif /* CONFIG_SMP || CONFIG_KEXEC */ 270 271 /* 272 * Initialize some remaining members of the ppc64_caches and systemcfg 273 * structures 274 * (at least until we get rid of them completely). This is mostly some 275 * cache informations about the CPU that will be used by cache flush 276 * routines and/or provided to userland 277 */ 278 static void __init initialize_cache_info(void) 279 { 280 struct device_node *np; 281 unsigned long num_cpus = 0; 282 283 DBG(" -> initialize_cache_info()\n"); 284 285 for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) { 286 num_cpus += 1; 287 288 /* We're assuming *all* of the CPUs have the same 289 * d-cache and i-cache sizes... -Peter 290 */ 291 292 if ( num_cpus == 1 ) { 293 const u32 *sizep, *lsizep; 294 u32 size, lsize; 295 const char *dc, *ic; 296 297 /* Then read cache informations */ 298 if (machine_is(powermac)) { 299 dc = "d-cache-block-size"; 300 ic = "i-cache-block-size"; 301 } else { 302 dc = "d-cache-line-size"; 303 ic = "i-cache-line-size"; 304 } 305 306 size = 0; 307 lsize = cur_cpu_spec->dcache_bsize; 308 sizep = get_property(np, "d-cache-size", NULL); 309 if (sizep != NULL) 310 size = *sizep; 311 lsizep = get_property(np, dc, NULL); 312 if (lsizep != NULL) 313 lsize = *lsizep; 314 if (sizep == 0 || lsizep == 0) 315 DBG("Argh, can't find dcache properties ! " 316 "sizep: %p, lsizep: %p\n", sizep, lsizep); 317 318 ppc64_caches.dsize = size; 319 ppc64_caches.dline_size = lsize; 320 ppc64_caches.log_dline_size = __ilog2(lsize); 321 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; 322 323 size = 0; 324 lsize = cur_cpu_spec->icache_bsize; 325 sizep = get_property(np, "i-cache-size", NULL); 326 if (sizep != NULL) 327 size = *sizep; 328 lsizep = get_property(np, ic, NULL); 329 if (lsizep != NULL) 330 lsize = *lsizep; 331 if (sizep == 0 || lsizep == 0) 332 DBG("Argh, can't find icache properties ! " 333 "sizep: %p, lsizep: %p\n", sizep, lsizep); 334 335 ppc64_caches.isize = size; 336 ppc64_caches.iline_size = lsize; 337 ppc64_caches.log_iline_size = __ilog2(lsize); 338 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; 339 } 340 } 341 342 DBG(" <- initialize_cache_info()\n"); 343 } 344 345 346 /* 347 * Do some initial setup of the system. The parameters are those which 348 * were passed in from the bootloader. 349 */ 350 void __init setup_system(void) 351 { 352 DBG(" -> setup_system()\n"); 353 354 /* Apply the CPUs-specific and firmware specific fixups to kernel 355 * text (nop out sections not relevant to this CPU or this firmware) 356 */ 357 do_feature_fixups(cur_cpu_spec->cpu_features, 358 &__start___ftr_fixup, &__stop___ftr_fixup); 359 do_feature_fixups(powerpc_firmware_features, 360 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup); 361 362 /* 363 * Unflatten the device-tree passed by prom_init or kexec 364 */ 365 unflatten_device_tree(); 366 367 /* 368 * Fill the ppc64_caches & systemcfg structures with informations 369 * retrieved from the device-tree. 370 */ 371 initialize_cache_info(); 372 373 /* 374 * Initialize irq remapping subsystem 375 */ 376 irq_early_init(); 377 378 #ifdef CONFIG_PPC_RTAS 379 /* 380 * Initialize RTAS if available 381 */ 382 rtas_initialize(); 383 #endif /* CONFIG_PPC_RTAS */ 384 385 /* 386 * Check if we have an initrd provided via the device-tree 387 */ 388 check_for_initrd(); 389 390 /* 391 * Do some platform specific early initializations, that includes 392 * setting up the hash table pointers. It also sets up some interrupt-mapping 393 * related options that will be used by finish_device_tree() 394 */ 395 if (ppc_md.init_early) 396 ppc_md.init_early(); 397 398 /* 399 * We can discover serial ports now since the above did setup the 400 * hash table management for us, thus ioremap works. We do that early 401 * so that further code can be debugged 402 */ 403 find_legacy_serial_ports(); 404 405 /* 406 * Register early console 407 */ 408 register_early_udbg_console(); 409 410 /* 411 * Initialize xmon 412 */ 413 xmon_setup(); 414 415 check_smt_enabled(); 416 smp_setup_cpu_maps(); 417 418 #ifdef CONFIG_SMP 419 /* Release secondary cpus out of their spinloops at 0x60 now that 420 * we can map physical -> logical CPU ids 421 */ 422 smp_release_cpus(); 423 #endif 424 425 printk("Starting Linux PPC64 %s\n", init_utsname()->version); 426 427 printk("-----------------------------------------------------\n"); 428 printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size); 429 printk("physicalMemorySize = 0x%lx\n", lmb_phys_mem_size()); 430 printk("ppc64_caches.dcache_line_size = 0x%x\n", 431 ppc64_caches.dline_size); 432 printk("ppc64_caches.icache_line_size = 0x%x\n", 433 ppc64_caches.iline_size); 434 printk("htab_address = 0x%p\n", htab_address); 435 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); 436 #if PHYSICAL_START > 0 437 printk("physical_start = 0x%x\n", PHYSICAL_START); 438 #endif 439 printk("-----------------------------------------------------\n"); 440 441 DBG(" <- setup_system()\n"); 442 } 443 444 #ifdef CONFIG_IRQSTACKS 445 static void __init irqstack_early_init(void) 446 { 447 unsigned int i; 448 449 /* 450 * interrupt stacks must be under 256MB, we cannot afford to take 451 * SLB misses on them. 452 */ 453 for_each_possible_cpu(i) { 454 softirq_ctx[i] = (struct thread_info *) 455 __va(lmb_alloc_base(THREAD_SIZE, 456 THREAD_SIZE, 0x10000000)); 457 hardirq_ctx[i] = (struct thread_info *) 458 __va(lmb_alloc_base(THREAD_SIZE, 459 THREAD_SIZE, 0x10000000)); 460 } 461 } 462 #else 463 #define irqstack_early_init() 464 #endif 465 466 /* 467 * Stack space used when we detect a bad kernel stack pointer, and 468 * early in SMP boots before relocation is enabled. 469 */ 470 static void __init emergency_stack_init(void) 471 { 472 unsigned long limit; 473 unsigned int i; 474 475 /* 476 * Emergency stacks must be under 256MB, we cannot afford to take 477 * SLB misses on them. The ABI also requires them to be 128-byte 478 * aligned. 479 * 480 * Since we use these as temporary stacks during secondary CPU 481 * bringup, we need to get at them in real mode. This means they 482 * must also be within the RMO region. 483 */ 484 limit = min(0x10000000UL, lmb.rmo_size); 485 486 for_each_possible_cpu(i) 487 paca[i].emergency_sp = 488 __va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE; 489 } 490 491 /* 492 * Called into from start_kernel, after lock_kernel has been called. 493 * Initializes bootmem, which is unsed to manage page allocation until 494 * mem_init is called. 495 */ 496 void __init setup_arch(char **cmdline_p) 497 { 498 ppc64_boot_msg(0x12, "Setup Arch"); 499 500 *cmdline_p = cmd_line; 501 502 /* 503 * Set cache line size based on type of cpu as a default. 504 * Systems with OF can look in the properties on the cpu node(s) 505 * for a possibly more accurate value. 506 */ 507 dcache_bsize = ppc64_caches.dline_size; 508 icache_bsize = ppc64_caches.iline_size; 509 510 /* reboot on panic */ 511 panic_timeout = 180; 512 513 if (ppc_md.panic) 514 setup_panic(); 515 516 init_mm.start_code = PAGE_OFFSET; 517 init_mm.end_code = (unsigned long) _etext; 518 init_mm.end_data = (unsigned long) _edata; 519 init_mm.brk = klimit; 520 521 irqstack_early_init(); 522 emergency_stack_init(); 523 524 stabs_alloc(); 525 526 /* set up the bootmem stuff with available memory */ 527 do_init_bootmem(); 528 sparse_init(); 529 530 #ifdef CONFIG_DUMMY_CONSOLE 531 conswitchp = &dummy_con; 532 #endif 533 534 ppc_md.setup_arch(); 535 536 paging_init(); 537 ppc64_boot_msg(0x15, "Setup Done"); 538 } 539 540 541 /* ToDo: do something useful if ppc_md is not yet setup. */ 542 #define PPC64_LINUX_FUNCTION 0x0f000000 543 #define PPC64_IPL_MESSAGE 0xc0000000 544 #define PPC64_TERM_MESSAGE 0xb0000000 545 546 static void ppc64_do_msg(unsigned int src, const char *msg) 547 { 548 if (ppc_md.progress) { 549 char buf[128]; 550 551 sprintf(buf, "%08X\n", src); 552 ppc_md.progress(buf, 0); 553 snprintf(buf, 128, "%s", msg); 554 ppc_md.progress(buf, 0); 555 } 556 } 557 558 /* Print a boot progress message. */ 559 void ppc64_boot_msg(unsigned int src, const char *msg) 560 { 561 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); 562 printk("[boot]%04x %s\n", src, msg); 563 } 564 565 /* Print a termination message (print only -- does not stop the kernel) */ 566 void ppc64_terminate_msg(unsigned int src, const char *msg) 567 { 568 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg); 569 printk("[terminate]%04x %s\n", src, msg); 570 } 571 572 void cpu_die(void) 573 { 574 if (ppc_md.cpu_die) 575 ppc_md.cpu_die(); 576 } 577 578 #ifdef CONFIG_SMP 579 void __init setup_per_cpu_areas(void) 580 { 581 int i; 582 unsigned long size; 583 char *ptr; 584 585 /* Copy section for each CPU (we discard the original) */ 586 size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES); 587 #ifdef CONFIG_MODULES 588 if (size < PERCPU_ENOUGH_ROOM) 589 size = PERCPU_ENOUGH_ROOM; 590 #endif 591 592 for_each_possible_cpu(i) { 593 ptr = alloc_bootmem_node(NODE_DATA(cpu_to_node(i)), size); 594 if (!ptr) 595 panic("Cannot allocate cpu data for CPU %d\n", i); 596 597 paca[i].data_offset = ptr - __per_cpu_start; 598 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); 599 } 600 } 601 #endif 602 603 604 #ifdef CONFIG_PPC_INDIRECT_IO 605 struct ppc_pci_io ppc_pci_io; 606 EXPORT_SYMBOL(ppc_pci_io); 607 #endif /* CONFIG_PPC_INDIRECT_IO */ 608 609