xref: /linux/arch/powerpc/kernel/setup_64.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #define DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/sections.h>
52 #include <asm/btext.h>
53 #include <asm/nvram.h>
54 #include <asm/setup.h>
55 #include <asm/rtas.h>
56 #include <asm/iommu.h>
57 #include <asm/serial.h>
58 #include <asm/cache.h>
59 #include <asm/page.h>
60 #include <asm/mmu.h>
61 #include <asm/firmware.h>
62 #include <asm/xmon.h>
63 #include <asm/udbg.h>
64 #include <asm/kexec.h>
65 #include <asm/mmu_context.h>
66 #include <asm/code-patching.h>
67 #include <asm/kvm_ppc.h>
68 #include <asm/hugetlb.h>
69 #include <asm/epapr_hcalls.h>
70 
71 #ifdef DEBUG
72 #define DBG(fmt...) udbg_printf(fmt)
73 #else
74 #define DBG(fmt...)
75 #endif
76 
77 int boot_cpuid = 0;
78 int spinning_secondaries;
79 u64 ppc64_pft_size;
80 
81 /* Pick defaults since we might want to patch instructions
82  * before we've read this from the device tree.
83  */
84 struct ppc64_caches ppc64_caches = {
85 	.dline_size = 0x40,
86 	.log_dline_size = 6,
87 	.iline_size = 0x40,
88 	.log_iline_size = 6
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91 
92 /*
93  * These are used in binfmt_elf.c to put aux entries on the stack
94  * for each elf executable being started.
95  */
96 int dcache_bsize;
97 int icache_bsize;
98 int ucache_bsize;
99 
100 #ifdef CONFIG_SMP
101 
102 static char *smt_enabled_cmdline;
103 
104 /* Look for ibm,smt-enabled OF option */
105 static void check_smt_enabled(void)
106 {
107 	struct device_node *dn;
108 	const char *smt_option;
109 
110 	/* Default to enabling all threads */
111 	smt_enabled_at_boot = threads_per_core;
112 
113 	/* Allow the command line to overrule the OF option */
114 	if (smt_enabled_cmdline) {
115 		if (!strcmp(smt_enabled_cmdline, "on"))
116 			smt_enabled_at_boot = threads_per_core;
117 		else if (!strcmp(smt_enabled_cmdline, "off"))
118 			smt_enabled_at_boot = 0;
119 		else {
120 			long smt;
121 			int rc;
122 
123 			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
124 			if (!rc)
125 				smt_enabled_at_boot =
126 					min(threads_per_core, (int)smt);
127 		}
128 	} else {
129 		dn = of_find_node_by_path("/options");
130 		if (dn) {
131 			smt_option = of_get_property(dn, "ibm,smt-enabled",
132 						     NULL);
133 
134 			if (smt_option) {
135 				if (!strcmp(smt_option, "on"))
136 					smt_enabled_at_boot = threads_per_core;
137 				else if (!strcmp(smt_option, "off"))
138 					smt_enabled_at_boot = 0;
139 			}
140 
141 			of_node_put(dn);
142 		}
143 	}
144 }
145 
146 /* Look for smt-enabled= cmdline option */
147 static int __init early_smt_enabled(char *p)
148 {
149 	smt_enabled_cmdline = p;
150 	return 0;
151 }
152 early_param("smt-enabled", early_smt_enabled);
153 
154 #else
155 #define check_smt_enabled()
156 #endif /* CONFIG_SMP */
157 
158 /** Fix up paca fields required for the boot cpu */
159 static void fixup_boot_paca(void)
160 {
161 	/* The boot cpu is started */
162 	get_paca()->cpu_start = 1;
163 	/* Allow percpu accesses to work until we setup percpu data */
164 	get_paca()->data_offset = 0;
165 }
166 
167 /*
168  * Early initialization entry point. This is called by head.S
169  * with MMU translation disabled. We rely on the "feature" of
170  * the CPU that ignores the top 2 bits of the address in real
171  * mode so we can access kernel globals normally provided we
172  * only toy with things in the RMO region. From here, we do
173  * some early parsing of the device-tree to setup out MEMBLOCK
174  * data structures, and allocate & initialize the hash table
175  * and segment tables so we can start running with translation
176  * enabled.
177  *
178  * It is this function which will call the probe() callback of
179  * the various platform types and copy the matching one to the
180  * global ppc_md structure. Your platform can eventually do
181  * some very early initializations from the probe() routine, but
182  * this is not recommended, be very careful as, for example, the
183  * device-tree is not accessible via normal means at this point.
184  */
185 
186 void __init early_setup(unsigned long dt_ptr)
187 {
188 	static __initdata struct paca_struct boot_paca;
189 
190 	/* -------- printk is _NOT_ safe to use here ! ------- */
191 
192 	/* Identify CPU type */
193 	identify_cpu(0, mfspr(SPRN_PVR));
194 
195 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
196 	initialise_paca(&boot_paca, 0);
197 	setup_paca(&boot_paca);
198 	fixup_boot_paca();
199 
200 	/* Initialize lockdep early or else spinlocks will blow */
201 	lockdep_init();
202 
203 	/* -------- printk is now safe to use ------- */
204 
205 	/* Enable early debugging if any specified (see udbg.h) */
206 	udbg_early_init();
207 
208  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
209 
210 	/*
211 	 * Do early initialization using the flattened device
212 	 * tree, such as retrieving the physical memory map or
213 	 * calculating/retrieving the hash table size.
214 	 */
215 	early_init_devtree(__va(dt_ptr));
216 
217 	epapr_paravirt_early_init();
218 
219 	/* Now we know the logical id of our boot cpu, setup the paca. */
220 	setup_paca(&paca[boot_cpuid]);
221 	fixup_boot_paca();
222 
223 	/* Probe the machine type */
224 	probe_machine();
225 
226 	setup_kdump_trampoline();
227 
228 	DBG("Found, Initializing memory management...\n");
229 
230 	/* Initialize the hash table or TLB handling */
231 	early_init_mmu();
232 
233 	kvm_cma_reserve();
234 
235 	/*
236 	 * Reserve any gigantic pages requested on the command line.
237 	 * memblock needs to have been initialized by the time this is
238 	 * called since this will reserve memory.
239 	 */
240 	reserve_hugetlb_gpages();
241 
242 	DBG(" <- early_setup()\n");
243 
244 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
245 	/*
246 	 * This needs to be done *last* (after the above DBG() even)
247 	 *
248 	 * Right after we return from this function, we turn on the MMU
249 	 * which means the real-mode access trick that btext does will
250 	 * no longer work, it needs to switch to using a real MMU
251 	 * mapping. This call will ensure that it does
252 	 */
253 	btext_map();
254 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
255 }
256 
257 #ifdef CONFIG_SMP
258 void early_setup_secondary(void)
259 {
260 	/* Mark interrupts enabled in PACA */
261 	get_paca()->soft_enabled = 0;
262 
263 	/* Initialize the hash table or TLB handling */
264 	early_init_mmu_secondary();
265 }
266 
267 #endif /* CONFIG_SMP */
268 
269 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
270 void smp_release_cpus(void)
271 {
272 	unsigned long *ptr;
273 	int i;
274 
275 	DBG(" -> smp_release_cpus()\n");
276 
277 	/* All secondary cpus are spinning on a common spinloop, release them
278 	 * all now so they can start to spin on their individual paca
279 	 * spinloops. For non SMP kernels, the secondary cpus never get out
280 	 * of the common spinloop.
281 	 */
282 
283 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
284 			- PHYSICAL_START);
285 	*ptr = __pa(generic_secondary_smp_init);
286 
287 	/* And wait a bit for them to catch up */
288 	for (i = 0; i < 100000; i++) {
289 		mb();
290 		HMT_low();
291 		if (spinning_secondaries == 0)
292 			break;
293 		udelay(1);
294 	}
295 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
296 
297 	DBG(" <- smp_release_cpus()\n");
298 }
299 #endif /* CONFIG_SMP || CONFIG_KEXEC */
300 
301 /*
302  * Initialize some remaining members of the ppc64_caches and systemcfg
303  * structures
304  * (at least until we get rid of them completely). This is mostly some
305  * cache informations about the CPU that will be used by cache flush
306  * routines and/or provided to userland
307  */
308 static void __init initialize_cache_info(void)
309 {
310 	struct device_node *np;
311 	unsigned long num_cpus = 0;
312 
313 	DBG(" -> initialize_cache_info()\n");
314 
315 	for_each_node_by_type(np, "cpu") {
316 		num_cpus += 1;
317 
318 		/*
319 		 * We're assuming *all* of the CPUs have the same
320 		 * d-cache and i-cache sizes... -Peter
321 		 */
322 		if (num_cpus == 1) {
323 			const __be32 *sizep, *lsizep;
324 			u32 size, lsize;
325 
326 			size = 0;
327 			lsize = cur_cpu_spec->dcache_bsize;
328 			sizep = of_get_property(np, "d-cache-size", NULL);
329 			if (sizep != NULL)
330 				size = be32_to_cpu(*sizep);
331 			lsizep = of_get_property(np, "d-cache-block-size",
332 						 NULL);
333 			/* fallback if block size missing */
334 			if (lsizep == NULL)
335 				lsizep = of_get_property(np,
336 							 "d-cache-line-size",
337 							 NULL);
338 			if (lsizep != NULL)
339 				lsize = be32_to_cpu(*lsizep);
340 			if (sizep == NULL || lsizep == NULL)
341 				DBG("Argh, can't find dcache properties ! "
342 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
343 
344 			ppc64_caches.dsize = size;
345 			ppc64_caches.dline_size = lsize;
346 			ppc64_caches.log_dline_size = __ilog2(lsize);
347 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
348 
349 			size = 0;
350 			lsize = cur_cpu_spec->icache_bsize;
351 			sizep = of_get_property(np, "i-cache-size", NULL);
352 			if (sizep != NULL)
353 				size = be32_to_cpu(*sizep);
354 			lsizep = of_get_property(np, "i-cache-block-size",
355 						 NULL);
356 			if (lsizep == NULL)
357 				lsizep = of_get_property(np,
358 							 "i-cache-line-size",
359 							 NULL);
360 			if (lsizep != NULL)
361 				lsize = be32_to_cpu(*lsizep);
362 			if (sizep == NULL || lsizep == NULL)
363 				DBG("Argh, can't find icache properties ! "
364 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
365 
366 			ppc64_caches.isize = size;
367 			ppc64_caches.iline_size = lsize;
368 			ppc64_caches.log_iline_size = __ilog2(lsize);
369 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
370 		}
371 	}
372 
373 	DBG(" <- initialize_cache_info()\n");
374 }
375 
376 
377 /*
378  * Do some initial setup of the system.  The parameters are those which
379  * were passed in from the bootloader.
380  */
381 void __init setup_system(void)
382 {
383 	DBG(" -> setup_system()\n");
384 
385 	/* Apply the CPUs-specific and firmware specific fixups to kernel
386 	 * text (nop out sections not relevant to this CPU or this firmware)
387 	 */
388 	do_feature_fixups(cur_cpu_spec->cpu_features,
389 			  &__start___ftr_fixup, &__stop___ftr_fixup);
390 	do_feature_fixups(cur_cpu_spec->mmu_features,
391 			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
392 	do_feature_fixups(powerpc_firmware_features,
393 			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
394 	do_lwsync_fixups(cur_cpu_spec->cpu_features,
395 			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
396 	do_final_fixups();
397 
398 	/*
399 	 * Unflatten the device-tree passed by prom_init or kexec
400 	 */
401 	unflatten_device_tree();
402 
403 	/*
404 	 * Fill the ppc64_caches & systemcfg structures with informations
405  	 * retrieved from the device-tree.
406 	 */
407 	initialize_cache_info();
408 
409 #ifdef CONFIG_PPC_RTAS
410 	/*
411 	 * Initialize RTAS if available
412 	 */
413 	rtas_initialize();
414 #endif /* CONFIG_PPC_RTAS */
415 
416 	/*
417 	 * Check if we have an initrd provided via the device-tree
418 	 */
419 	check_for_initrd();
420 
421 	/*
422 	 * Do some platform specific early initializations, that includes
423 	 * setting up the hash table pointers. It also sets up some interrupt-mapping
424 	 * related options that will be used by finish_device_tree()
425 	 */
426 	if (ppc_md.init_early)
427 		ppc_md.init_early();
428 
429  	/*
430 	 * We can discover serial ports now since the above did setup the
431 	 * hash table management for us, thus ioremap works. We do that early
432 	 * so that further code can be debugged
433 	 */
434 	find_legacy_serial_ports();
435 
436 	/*
437 	 * Register early console
438 	 */
439 	register_early_udbg_console();
440 
441 	/*
442 	 * Initialize xmon
443 	 */
444 	xmon_setup();
445 
446 	smp_setup_cpu_maps();
447 	check_smt_enabled();
448 
449 #ifdef CONFIG_SMP
450 	/* Release secondary cpus out of their spinloops at 0x60 now that
451 	 * we can map physical -> logical CPU ids
452 	 */
453 	smp_release_cpus();
454 #endif
455 
456 	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
457 
458 	printk("-----------------------------------------------------\n");
459 	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
460 	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
461 	if (ppc64_caches.dline_size != 0x80)
462 		printk("ppc64_caches.dcache_line_size = 0x%x\n",
463 		       ppc64_caches.dline_size);
464 	if (ppc64_caches.iline_size != 0x80)
465 		printk("ppc64_caches.icache_line_size = 0x%x\n",
466 		       ppc64_caches.iline_size);
467 #ifdef CONFIG_PPC_STD_MMU_64
468 	if (htab_address)
469 		printk("htab_address                  = 0x%p\n", htab_address);
470 	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
471 #endif /* CONFIG_PPC_STD_MMU_64 */
472 	if (PHYSICAL_START > 0)
473 		printk("physical_start                = 0x%llx\n",
474 		       (unsigned long long)PHYSICAL_START);
475 	printk("-----------------------------------------------------\n");
476 
477 	DBG(" <- setup_system()\n");
478 }
479 
480 /* This returns the limit below which memory accesses to the linear
481  * mapping are guarnateed not to cause a TLB or SLB miss. This is
482  * used to allocate interrupt or emergency stacks for which our
483  * exception entry path doesn't deal with being interrupted.
484  */
485 static u64 safe_stack_limit(void)
486 {
487 #ifdef CONFIG_PPC_BOOK3E
488 	/* Freescale BookE bolts the entire linear mapping */
489 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
490 		return linear_map_top;
491 	/* Other BookE, we assume the first GB is bolted */
492 	return 1ul << 30;
493 #else
494 	/* BookS, the first segment is bolted */
495 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
496 		return 1UL << SID_SHIFT_1T;
497 	return 1UL << SID_SHIFT;
498 #endif
499 }
500 
501 static void __init irqstack_early_init(void)
502 {
503 	u64 limit = safe_stack_limit();
504 	unsigned int i;
505 
506 	/*
507 	 * Interrupt stacks must be in the first segment since we
508 	 * cannot afford to take SLB misses on them.
509 	 */
510 	for_each_possible_cpu(i) {
511 		softirq_ctx[i] = (struct thread_info *)
512 			__va(memblock_alloc_base(THREAD_SIZE,
513 					    THREAD_SIZE, limit));
514 		hardirq_ctx[i] = (struct thread_info *)
515 			__va(memblock_alloc_base(THREAD_SIZE,
516 					    THREAD_SIZE, limit));
517 	}
518 }
519 
520 #ifdef CONFIG_PPC_BOOK3E
521 static void __init exc_lvl_early_init(void)
522 {
523 	extern unsigned int interrupt_base_book3e;
524 	extern unsigned int exc_debug_debug_book3e;
525 
526 	unsigned int i;
527 
528 	for_each_possible_cpu(i) {
529 		critirq_ctx[i] = (struct thread_info *)
530 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
531 		dbgirq_ctx[i] = (struct thread_info *)
532 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
533 		mcheckirq_ctx[i] = (struct thread_info *)
534 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
535 	}
536 
537 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
538 		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
539 			     (unsigned long)&exc_debug_debug_book3e, 0);
540 }
541 #else
542 #define exc_lvl_early_init()
543 #endif
544 
545 /*
546  * Stack space used when we detect a bad kernel stack pointer, and
547  * early in SMP boots before relocation is enabled.
548  */
549 static void __init emergency_stack_init(void)
550 {
551 	u64 limit;
552 	unsigned int i;
553 
554 	/*
555 	 * Emergency stacks must be under 256MB, we cannot afford to take
556 	 * SLB misses on them. The ABI also requires them to be 128-byte
557 	 * aligned.
558 	 *
559 	 * Since we use these as temporary stacks during secondary CPU
560 	 * bringup, we need to get at them in real mode. This means they
561 	 * must also be within the RMO region.
562 	 */
563 	limit = min(safe_stack_limit(), ppc64_rma_size);
564 
565 	for_each_possible_cpu(i) {
566 		unsigned long sp;
567 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
568 		sp += THREAD_SIZE;
569 		paca[i].emergency_sp = __va(sp);
570 	}
571 }
572 
573 /*
574  * Called into from start_kernel this initializes bootmem, which is used
575  * to manage page allocation until mem_init is called.
576  */
577 void __init setup_arch(char **cmdline_p)
578 {
579 	ppc64_boot_msg(0x12, "Setup Arch");
580 
581 	*cmdline_p = cmd_line;
582 
583 	/*
584 	 * Set cache line size based on type of cpu as a default.
585 	 * Systems with OF can look in the properties on the cpu node(s)
586 	 * for a possibly more accurate value.
587 	 */
588 	dcache_bsize = ppc64_caches.dline_size;
589 	icache_bsize = ppc64_caches.iline_size;
590 
591 	/* reboot on panic */
592 	panic_timeout = 180;
593 
594 	if (ppc_md.panic)
595 		setup_panic();
596 
597 	init_mm.start_code = (unsigned long)_stext;
598 	init_mm.end_code = (unsigned long) _etext;
599 	init_mm.end_data = (unsigned long) _edata;
600 	init_mm.brk = klimit;
601 #ifdef CONFIG_PPC_64K_PAGES
602 	init_mm.context.pte_frag = NULL;
603 #endif
604 	irqstack_early_init();
605 	exc_lvl_early_init();
606 	emergency_stack_init();
607 
608 #ifdef CONFIG_PPC_STD_MMU_64
609 	stabs_alloc();
610 #endif
611 	/* set up the bootmem stuff with available memory */
612 	do_init_bootmem();
613 	sparse_init();
614 
615 #ifdef CONFIG_DUMMY_CONSOLE
616 	conswitchp = &dummy_con;
617 #endif
618 
619 	if (ppc_md.setup_arch)
620 		ppc_md.setup_arch();
621 
622 	paging_init();
623 
624 	/* Initialize the MMU context management stuff */
625 	mmu_context_init();
626 
627 	/* Interrupt code needs to be 64K-aligned */
628 	if ((unsigned long)_stext & 0xffff)
629 		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
630 		      (unsigned long)_stext);
631 
632 	ppc64_boot_msg(0x15, "Setup Done");
633 }
634 
635 
636 /* ToDo: do something useful if ppc_md is not yet setup. */
637 #define PPC64_LINUX_FUNCTION 0x0f000000
638 #define PPC64_IPL_MESSAGE 0xc0000000
639 #define PPC64_TERM_MESSAGE 0xb0000000
640 
641 static void ppc64_do_msg(unsigned int src, const char *msg)
642 {
643 	if (ppc_md.progress) {
644 		char buf[128];
645 
646 		sprintf(buf, "%08X\n", src);
647 		ppc_md.progress(buf, 0);
648 		snprintf(buf, 128, "%s", msg);
649 		ppc_md.progress(buf, 0);
650 	}
651 }
652 
653 /* Print a boot progress message. */
654 void ppc64_boot_msg(unsigned int src, const char *msg)
655 {
656 	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
657 	printk("[boot]%04x %s\n", src, msg);
658 }
659 
660 #ifdef CONFIG_SMP
661 #define PCPU_DYN_SIZE		()
662 
663 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
664 {
665 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
666 				    __pa(MAX_DMA_ADDRESS));
667 }
668 
669 static void __init pcpu_fc_free(void *ptr, size_t size)
670 {
671 	free_bootmem(__pa(ptr), size);
672 }
673 
674 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
675 {
676 	if (cpu_to_node(from) == cpu_to_node(to))
677 		return LOCAL_DISTANCE;
678 	else
679 		return REMOTE_DISTANCE;
680 }
681 
682 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
683 EXPORT_SYMBOL(__per_cpu_offset);
684 
685 void __init setup_per_cpu_areas(void)
686 {
687 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
688 	size_t atom_size;
689 	unsigned long delta;
690 	unsigned int cpu;
691 	int rc;
692 
693 	/*
694 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
695 	 * to group units.  For larger mappings, use 1M atom which
696 	 * should be large enough to contain a number of units.
697 	 */
698 	if (mmu_linear_psize == MMU_PAGE_4K)
699 		atom_size = PAGE_SIZE;
700 	else
701 		atom_size = 1 << 20;
702 
703 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
704 				    pcpu_fc_alloc, pcpu_fc_free);
705 	if (rc < 0)
706 		panic("cannot initialize percpu area (err=%d)", rc);
707 
708 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
709 	for_each_possible_cpu(cpu) {
710                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
711 		paca[cpu].data_offset = __per_cpu_offset[cpu];
712 	}
713 }
714 #endif
715 
716 
717 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
718 struct ppc_pci_io ppc_pci_io;
719 EXPORT_SYMBOL(ppc_pci_io);
720 #endif
721