xref: /linux/arch/powerpc/kernel/setup_64.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Common boot and setup code.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 #include <linux/pgtable.h>
34 
35 #include <asm/debugfs.h>
36 #include <asm/io.h>
37 #include <asm/kdump.h>
38 #include <asm/prom.h>
39 #include <asm/processor.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 #include <asm/early_ioremap.h>
69 #include <asm/pgalloc.h>
70 
71 #include "setup.h"
72 
73 int spinning_secondaries;
74 u64 ppc64_pft_size;
75 
76 struct ppc64_caches ppc64_caches = {
77 	.l1d = {
78 		.block_size = 0x40,
79 		.log_block_size = 6,
80 	},
81 	.l1i = {
82 		.block_size = 0x40,
83 		.log_block_size = 6
84 	},
85 };
86 EXPORT_SYMBOL_GPL(ppc64_caches);
87 
88 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
89 void __init setup_tlb_core_data(void)
90 {
91 	int cpu;
92 
93 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
94 
95 	for_each_possible_cpu(cpu) {
96 		int first = cpu_first_thread_sibling(cpu);
97 
98 		/*
99 		 * If we boot via kdump on a non-primary thread,
100 		 * make sure we point at the thread that actually
101 		 * set up this TLB.
102 		 */
103 		if (cpu_first_thread_sibling(boot_cpuid) == first)
104 			first = boot_cpuid;
105 
106 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
107 
108 		/*
109 		 * If we have threads, we need either tlbsrx.
110 		 * or e6500 tablewalk mode, or else TLB handlers
111 		 * will be racy and could produce duplicate entries.
112 		 * Should we panic instead?
113 		 */
114 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
115 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
116 			  book3e_htw_mode != PPC_HTW_E6500,
117 			  "%s: unsupported MMU configuration\n", __func__);
118 	}
119 }
120 #endif
121 
122 #ifdef CONFIG_SMP
123 
124 static char *smt_enabled_cmdline;
125 
126 /* Look for ibm,smt-enabled OF option */
127 void __init check_smt_enabled(void)
128 {
129 	struct device_node *dn;
130 	const char *smt_option;
131 
132 	/* Default to enabling all threads */
133 	smt_enabled_at_boot = threads_per_core;
134 
135 	/* Allow the command line to overrule the OF option */
136 	if (smt_enabled_cmdline) {
137 		if (!strcmp(smt_enabled_cmdline, "on"))
138 			smt_enabled_at_boot = threads_per_core;
139 		else if (!strcmp(smt_enabled_cmdline, "off"))
140 			smt_enabled_at_boot = 0;
141 		else {
142 			int smt;
143 			int rc;
144 
145 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
146 			if (!rc)
147 				smt_enabled_at_boot =
148 					min(threads_per_core, smt);
149 		}
150 	} else {
151 		dn = of_find_node_by_path("/options");
152 		if (dn) {
153 			smt_option = of_get_property(dn, "ibm,smt-enabled",
154 						     NULL);
155 
156 			if (smt_option) {
157 				if (!strcmp(smt_option, "on"))
158 					smt_enabled_at_boot = threads_per_core;
159 				else if (!strcmp(smt_option, "off"))
160 					smt_enabled_at_boot = 0;
161 			}
162 
163 			of_node_put(dn);
164 		}
165 	}
166 }
167 
168 /* Look for smt-enabled= cmdline option */
169 static int __init early_smt_enabled(char *p)
170 {
171 	smt_enabled_cmdline = p;
172 	return 0;
173 }
174 early_param("smt-enabled", early_smt_enabled);
175 
176 #endif /* CONFIG_SMP */
177 
178 /** Fix up paca fields required for the boot cpu */
179 static void __init fixup_boot_paca(void)
180 {
181 	/* The boot cpu is started */
182 	get_paca()->cpu_start = 1;
183 	/* Allow percpu accesses to work until we setup percpu data */
184 	get_paca()->data_offset = 0;
185 	/* Mark interrupts disabled in PACA */
186 	irq_soft_mask_set(IRQS_DISABLED);
187 }
188 
189 static void __init configure_exceptions(void)
190 {
191 	/*
192 	 * Setup the trampolines from the lowmem exception vectors
193 	 * to the kdump kernel when not using a relocatable kernel.
194 	 */
195 	setup_kdump_trampoline();
196 
197 	/* Under a PAPR hypervisor, we need hypercalls */
198 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
199 		/* Enable AIL if possible */
200 		if (!pseries_enable_reloc_on_exc()) {
201 			init_task.thread.fscr &= ~FSCR_SCV;
202 			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
203 		}
204 
205 		/*
206 		 * Tell the hypervisor that we want our exceptions to
207 		 * be taken in little endian mode.
208 		 *
209 		 * We don't call this for big endian as our calling convention
210 		 * makes us always enter in BE, and the call may fail under
211 		 * some circumstances with kdump.
212 		 */
213 #ifdef __LITTLE_ENDIAN__
214 		pseries_little_endian_exceptions();
215 #endif
216 	} else {
217 		/* Set endian mode using OPAL */
218 		if (firmware_has_feature(FW_FEATURE_OPAL))
219 			opal_configure_cores();
220 
221 		/* AIL on native is done in cpu_ready_for_interrupts() */
222 	}
223 }
224 
225 static void cpu_ready_for_interrupts(void)
226 {
227 	/*
228 	 * Enable AIL if supported, and we are in hypervisor mode. This
229 	 * is called once for every processor.
230 	 *
231 	 * If we are not in hypervisor mode the job is done once for
232 	 * the whole partition in configure_exceptions().
233 	 */
234 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
235 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
236 		unsigned long lpcr = mfspr(SPRN_LPCR);
237 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
238 	}
239 
240 	/*
241 	 * Set HFSCR:TM based on CPU features:
242 	 * In the special case of TM no suspend (P9N DD2.1), Linux is
243 	 * told TM is off via the dt-ftrs but told to (partially) use
244 	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
245 	 * will be off from dt-ftrs but we need to turn it on for the
246 	 * no suspend case.
247 	 */
248 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
249 		if (cpu_has_feature(CPU_FTR_TM_COMP))
250 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
251 		else
252 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
253 	}
254 
255 	/* Set IR and DR in PACA MSR */
256 	get_paca()->kernel_msr = MSR_KERNEL;
257 }
258 
259 unsigned long spr_default_dscr = 0;
260 
261 void __init record_spr_defaults(void)
262 {
263 	if (early_cpu_has_feature(CPU_FTR_DSCR))
264 		spr_default_dscr = mfspr(SPRN_DSCR);
265 }
266 
267 /*
268  * Early initialization entry point. This is called by head.S
269  * with MMU translation disabled. We rely on the "feature" of
270  * the CPU that ignores the top 2 bits of the address in real
271  * mode so we can access kernel globals normally provided we
272  * only toy with things in the RMO region. From here, we do
273  * some early parsing of the device-tree to setup out MEMBLOCK
274  * data structures, and allocate & initialize the hash table
275  * and segment tables so we can start running with translation
276  * enabled.
277  *
278  * It is this function which will call the probe() callback of
279  * the various platform types and copy the matching one to the
280  * global ppc_md structure. Your platform can eventually do
281  * some very early initializations from the probe() routine, but
282  * this is not recommended, be very careful as, for example, the
283  * device-tree is not accessible via normal means at this point.
284  */
285 
286 void __init early_setup(unsigned long dt_ptr)
287 {
288 	static __initdata struct paca_struct boot_paca;
289 
290 	/* -------- printk is _NOT_ safe to use here ! ------- */
291 
292 	/*
293 	 * Assume we're on cpu 0 for now.
294 	 *
295 	 * We need to load a PACA very early for a few reasons.
296 	 *
297 	 * The stack protector canary is stored in the paca, so as soon as we
298 	 * call any stack protected code we need r13 pointing somewhere valid.
299 	 *
300 	 * If we are using kcov it will call in_task() in its instrumentation,
301 	 * which relies on the current task from the PACA.
302 	 *
303 	 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
304 	 * printk(), which can trigger both stack protector and kcov.
305 	 *
306 	 * percpu variables and spin locks also use the paca.
307 	 *
308 	 * So set up a temporary paca. It will be replaced below once we know
309 	 * what CPU we are on.
310 	 */
311 	initialise_paca(&boot_paca, 0);
312 	setup_paca(&boot_paca);
313 	fixup_boot_paca();
314 
315 	/* -------- printk is now safe to use ------- */
316 
317 	/* Try new device tree based feature discovery ... */
318 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
319 		/* Otherwise use the old style CPU table */
320 		identify_cpu(0, mfspr(SPRN_PVR));
321 
322 	/* Enable early debugging if any specified (see udbg.h) */
323 	udbg_early_init();
324 
325 	udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
326 
327 	/*
328 	 * Do early initialization using the flattened device
329 	 * tree, such as retrieving the physical memory map or
330 	 * calculating/retrieving the hash table size.
331 	 */
332 	early_init_devtree(__va(dt_ptr));
333 
334 	/* Now we know the logical id of our boot cpu, setup the paca. */
335 	if (boot_cpuid != 0) {
336 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
337 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
338 	}
339 	setup_paca(paca_ptrs[boot_cpuid]);
340 	fixup_boot_paca();
341 
342 	/*
343 	 * Configure exception handlers. This include setting up trampolines
344 	 * if needed, setting exception endian mode, etc...
345 	 */
346 	configure_exceptions();
347 
348 	/*
349 	 * Configure Kernel Userspace Protection. This needs to happen before
350 	 * feature fixups for platforms that implement this using features.
351 	 */
352 	setup_kup();
353 
354 	/* Apply all the dynamic patching */
355 	apply_feature_fixups();
356 	setup_feature_keys();
357 
358 	early_ioremap_setup();
359 
360 	/* Initialize the hash table or TLB handling */
361 	early_init_mmu();
362 
363 	/*
364 	 * After firmware and early platform setup code has set things up,
365 	 * we note the SPR values for configurable control/performance
366 	 * registers, and use those as initial defaults.
367 	 */
368 	record_spr_defaults();
369 
370 	/*
371 	 * At this point, we can let interrupts switch to virtual mode
372 	 * (the MMU has been setup), so adjust the MSR in the PACA to
373 	 * have IR and DR set and enable AIL if it exists
374 	 */
375 	cpu_ready_for_interrupts();
376 
377 	/*
378 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
379 	 * will only actually get enabled on the boot cpu much later once
380 	 * ftrace itself has been initialized.
381 	 */
382 	this_cpu_enable_ftrace();
383 
384 	udbg_printf(" <- %s()\n", __func__);
385 
386 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
387 	/*
388 	 * This needs to be done *last* (after the above udbg_printf() even)
389 	 *
390 	 * Right after we return from this function, we turn on the MMU
391 	 * which means the real-mode access trick that btext does will
392 	 * no longer work, it needs to switch to using a real MMU
393 	 * mapping. This call will ensure that it does
394 	 */
395 	btext_map();
396 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
397 }
398 
399 #ifdef CONFIG_SMP
400 void early_setup_secondary(void)
401 {
402 	/* Mark interrupts disabled in PACA */
403 	irq_soft_mask_set(IRQS_DISABLED);
404 
405 	/* Initialize the hash table or TLB handling */
406 	early_init_mmu_secondary();
407 
408 	/* Perform any KUP setup that is per-cpu */
409 	setup_kup();
410 
411 	/*
412 	 * At this point, we can let interrupts switch to virtual mode
413 	 * (the MMU has been setup), so adjust the MSR in the PACA to
414 	 * have IR and DR set.
415 	 */
416 	cpu_ready_for_interrupts();
417 }
418 
419 #endif /* CONFIG_SMP */
420 
421 void panic_smp_self_stop(void)
422 {
423 	hard_irq_disable();
424 	spin_begin();
425 	while (1)
426 		spin_cpu_relax();
427 }
428 
429 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
430 static bool use_spinloop(void)
431 {
432 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
433 		/*
434 		 * See comments in head_64.S -- not all platforms insert
435 		 * secondaries at __secondary_hold and wait at the spin
436 		 * loop.
437 		 */
438 		if (firmware_has_feature(FW_FEATURE_OPAL))
439 			return false;
440 		return true;
441 	}
442 
443 	/*
444 	 * When book3e boots from kexec, the ePAPR spin table does
445 	 * not get used.
446 	 */
447 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
448 }
449 
450 void smp_release_cpus(void)
451 {
452 	unsigned long *ptr;
453 	int i;
454 
455 	if (!use_spinloop())
456 		return;
457 
458 	/* All secondary cpus are spinning on a common spinloop, release them
459 	 * all now so they can start to spin on their individual paca
460 	 * spinloops. For non SMP kernels, the secondary cpus never get out
461 	 * of the common spinloop.
462 	 */
463 
464 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
465 			- PHYSICAL_START);
466 	*ptr = ppc_function_entry(generic_secondary_smp_init);
467 
468 	/* And wait a bit for them to catch up */
469 	for (i = 0; i < 100000; i++) {
470 		mb();
471 		HMT_low();
472 		if (spinning_secondaries == 0)
473 			break;
474 		udelay(1);
475 	}
476 	pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
477 }
478 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
479 
480 /*
481  * Initialize some remaining members of the ppc64_caches and systemcfg
482  * structures
483  * (at least until we get rid of them completely). This is mostly some
484  * cache informations about the CPU that will be used by cache flush
485  * routines and/or provided to userland
486  */
487 
488 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
489 			    u32 bsize, u32 sets)
490 {
491 	info->size = size;
492 	info->sets = sets;
493 	info->line_size = lsize;
494 	info->block_size = bsize;
495 	info->log_block_size = __ilog2(bsize);
496 	if (bsize)
497 		info->blocks_per_page = PAGE_SIZE / bsize;
498 	else
499 		info->blocks_per_page = 0;
500 
501 	if (sets == 0)
502 		info->assoc = 0xffff;
503 	else
504 		info->assoc = size / (sets * lsize);
505 }
506 
507 static bool __init parse_cache_info(struct device_node *np,
508 				    bool icache,
509 				    struct ppc_cache_info *info)
510 {
511 	static const char *ipropnames[] __initdata = {
512 		"i-cache-size",
513 		"i-cache-sets",
514 		"i-cache-block-size",
515 		"i-cache-line-size",
516 	};
517 	static const char *dpropnames[] __initdata = {
518 		"d-cache-size",
519 		"d-cache-sets",
520 		"d-cache-block-size",
521 		"d-cache-line-size",
522 	};
523 	const char **propnames = icache ? ipropnames : dpropnames;
524 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
525 	u32 size, lsize, bsize, sets;
526 	bool success = true;
527 
528 	size = 0;
529 	sets = -1u;
530 	lsize = bsize = cur_cpu_spec->dcache_bsize;
531 	sizep = of_get_property(np, propnames[0], NULL);
532 	if (sizep != NULL)
533 		size = be32_to_cpu(*sizep);
534 	setsp = of_get_property(np, propnames[1], NULL);
535 	if (setsp != NULL)
536 		sets = be32_to_cpu(*setsp);
537 	bsizep = of_get_property(np, propnames[2], NULL);
538 	lsizep = of_get_property(np, propnames[3], NULL);
539 	if (bsizep == NULL)
540 		bsizep = lsizep;
541 	if (lsizep == NULL)
542 		lsizep = bsizep;
543 	if (lsizep != NULL)
544 		lsize = be32_to_cpu(*lsizep);
545 	if (bsizep != NULL)
546 		bsize = be32_to_cpu(*bsizep);
547 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
548 		success = false;
549 
550 	/*
551 	 * OF is weird .. it represents fully associative caches
552 	 * as "1 way" which doesn't make much sense and doesn't
553 	 * leave room for direct mapped. We'll assume that 0
554 	 * in OF means direct mapped for that reason.
555 	 */
556 	if (sets == 1)
557 		sets = 0;
558 	else if (sets == 0)
559 		sets = 1;
560 
561 	init_cache_info(info, size, lsize, bsize, sets);
562 
563 	return success;
564 }
565 
566 void __init initialize_cache_info(void)
567 {
568 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
569 	u32 pvr;
570 
571 	/*
572 	 * All shipping POWER8 machines have a firmware bug that
573 	 * puts incorrect information in the device-tree. This will
574 	 * be (hopefully) fixed for future chips but for now hard
575 	 * code the values if we are running on one of these
576 	 */
577 	pvr = PVR_VER(mfspr(SPRN_PVR));
578 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
579 	    pvr == PVR_POWER8NVL) {
580 						/* size    lsize   blk  sets */
581 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
582 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
583 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
584 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
585 	} else
586 		cpu = of_find_node_by_type(NULL, "cpu");
587 
588 	/*
589 	 * We're assuming *all* of the CPUs have the same
590 	 * d-cache and i-cache sizes... -Peter
591 	 */
592 	if (cpu) {
593 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
594 			pr_warn("Argh, can't find dcache properties !\n");
595 
596 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
597 			pr_warn("Argh, can't find icache properties !\n");
598 
599 		/*
600 		 * Try to find the L2 and L3 if any. Assume they are
601 		 * unified and use the D-side properties.
602 		 */
603 		l2 = of_find_next_cache_node(cpu);
604 		of_node_put(cpu);
605 		if (l2) {
606 			parse_cache_info(l2, false, &ppc64_caches.l2);
607 			l3 = of_find_next_cache_node(l2);
608 			of_node_put(l2);
609 		}
610 		if (l3) {
611 			parse_cache_info(l3, false, &ppc64_caches.l3);
612 			of_node_put(l3);
613 		}
614 	}
615 
616 	/* For use by binfmt_elf */
617 	dcache_bsize = ppc64_caches.l1d.block_size;
618 	icache_bsize = ppc64_caches.l1i.block_size;
619 
620 	cur_cpu_spec->dcache_bsize = dcache_bsize;
621 	cur_cpu_spec->icache_bsize = icache_bsize;
622 }
623 
624 /*
625  * This returns the limit below which memory accesses to the linear
626  * mapping are guarnateed not to cause an architectural exception (e.g.,
627  * TLB or SLB miss fault).
628  *
629  * This is used to allocate PACAs and various interrupt stacks that
630  * that are accessed early in interrupt handlers that must not cause
631  * re-entrant interrupts.
632  */
633 __init u64 ppc64_bolted_size(void)
634 {
635 #ifdef CONFIG_PPC_BOOK3E
636 	/* Freescale BookE bolts the entire linear mapping */
637 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
638 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
639 		return linear_map_top;
640 	/* Other BookE, we assume the first GB is bolted */
641 	return 1ul << 30;
642 #else
643 	/* BookS radix, does not take faults on linear mapping */
644 	if (early_radix_enabled())
645 		return ULONG_MAX;
646 
647 	/* BookS hash, the first segment is bolted */
648 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
649 		return 1UL << SID_SHIFT_1T;
650 	return 1UL << SID_SHIFT;
651 #endif
652 }
653 
654 static void *__init alloc_stack(unsigned long limit, int cpu)
655 {
656 	void *ptr;
657 
658 	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
659 
660 	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
661 				     MEMBLOCK_LOW_LIMIT, limit,
662 				     early_cpu_to_node(cpu));
663 	if (!ptr)
664 		panic("cannot allocate stacks");
665 
666 	return ptr;
667 }
668 
669 void __init irqstack_early_init(void)
670 {
671 	u64 limit = ppc64_bolted_size();
672 	unsigned int i;
673 
674 	/*
675 	 * Interrupt stacks must be in the first segment since we
676 	 * cannot afford to take SLB misses on them. They are not
677 	 * accessed in realmode.
678 	 */
679 	for_each_possible_cpu(i) {
680 		softirq_ctx[i] = alloc_stack(limit, i);
681 		hardirq_ctx[i] = alloc_stack(limit, i);
682 	}
683 }
684 
685 #ifdef CONFIG_PPC_BOOK3E
686 void __init exc_lvl_early_init(void)
687 {
688 	unsigned int i;
689 
690 	for_each_possible_cpu(i) {
691 		void *sp;
692 
693 		sp = alloc_stack(ULONG_MAX, i);
694 		critirq_ctx[i] = sp;
695 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
696 
697 		sp = alloc_stack(ULONG_MAX, i);
698 		dbgirq_ctx[i] = sp;
699 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
700 
701 		sp = alloc_stack(ULONG_MAX, i);
702 		mcheckirq_ctx[i] = sp;
703 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
704 	}
705 
706 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
707 		patch_exception(0x040, exc_debug_debug_book3e);
708 }
709 #endif
710 
711 /*
712  * Stack space used when we detect a bad kernel stack pointer, and
713  * early in SMP boots before relocation is enabled. Exclusive emergency
714  * stack for machine checks.
715  */
716 void __init emergency_stack_init(void)
717 {
718 	u64 limit, mce_limit;
719 	unsigned int i;
720 
721 	/*
722 	 * Emergency stacks must be under 256MB, we cannot afford to take
723 	 * SLB misses on them. The ABI also requires them to be 128-byte
724 	 * aligned.
725 	 *
726 	 * Since we use these as temporary stacks during secondary CPU
727 	 * bringup, machine check, system reset, and HMI, we need to get
728 	 * at them in real mode. This means they must also be within the RMO
729 	 * region.
730 	 *
731 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
732 	 * initialized in kernel/irq.c. These are initialized here in order
733 	 * to have emergency stacks available as early as possible.
734 	 */
735 	limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
736 
737 	/*
738 	 * Machine check on pseries calls rtas, but can't use the static
739 	 * rtas_args due to a machine check hitting while the lock is held.
740 	 * rtas args have to be under 4GB, so the machine check stack is
741 	 * limited to 4GB so args can be put on stack.
742 	 */
743 	if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
744 		mce_limit = SZ_4G;
745 
746 	for_each_possible_cpu(i) {
747 		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
748 
749 #ifdef CONFIG_PPC_BOOK3S_64
750 		/* emergency stack for NMI exception handling. */
751 		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
752 
753 		/* emergency stack for machine check exception handling. */
754 		paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
755 #endif
756 	}
757 }
758 
759 #ifdef CONFIG_SMP
760 /**
761  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
762  * @cpu: cpu to allocate for
763  * @size: size allocation in bytes
764  * @align: alignment
765  *
766  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
767  * does the right thing for NUMA regardless of the current
768  * configuration.
769  *
770  * RETURNS:
771  * Pointer to the allocated area on success, NULL on failure.
772  */
773 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
774 					size_t align)
775 {
776 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
777 #ifdef CONFIG_NEED_MULTIPLE_NODES
778 	int node = early_cpu_to_node(cpu);
779 	void *ptr;
780 
781 	if (!node_online(node) || !NODE_DATA(node)) {
782 		ptr = memblock_alloc_from(size, align, goal);
783 		pr_info("cpu %d has no node %d or node-local memory\n",
784 			cpu, node);
785 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
786 			 cpu, size, __pa(ptr));
787 	} else {
788 		ptr = memblock_alloc_try_nid(size, align, goal,
789 					     MEMBLOCK_ALLOC_ACCESSIBLE, node);
790 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
791 			 "%016lx\n", cpu, size, node, __pa(ptr));
792 	}
793 	return ptr;
794 #else
795 	return memblock_alloc_from(size, align, goal);
796 #endif
797 }
798 
799 static void __init pcpu_free_bootmem(void *ptr, size_t size)
800 {
801 	memblock_free(__pa(ptr), size);
802 }
803 
804 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
805 {
806 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
807 		return LOCAL_DISTANCE;
808 	else
809 		return REMOTE_DISTANCE;
810 }
811 
812 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
813 EXPORT_SYMBOL(__per_cpu_offset);
814 
815 static void __init pcpu_populate_pte(unsigned long addr)
816 {
817 	pgd_t *pgd = pgd_offset_k(addr);
818 	p4d_t *p4d;
819 	pud_t *pud;
820 	pmd_t *pmd;
821 
822 	p4d = p4d_offset(pgd, addr);
823 	if (p4d_none(*p4d)) {
824 		pud_t *new;
825 
826 		new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
827 		if (!new)
828 			goto err_alloc;
829 		p4d_populate(&init_mm, p4d, new);
830 	}
831 
832 	pud = pud_offset(p4d, addr);
833 	if (pud_none(*pud)) {
834 		pmd_t *new;
835 
836 		new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
837 		if (!new)
838 			goto err_alloc;
839 		pud_populate(&init_mm, pud, new);
840 	}
841 
842 	pmd = pmd_offset(pud, addr);
843 	if (!pmd_present(*pmd)) {
844 		pte_t *new;
845 
846 		new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
847 		if (!new)
848 			goto err_alloc;
849 		pmd_populate_kernel(&init_mm, pmd, new);
850 	}
851 
852 	return;
853 
854 err_alloc:
855 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
856 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
857 }
858 
859 
860 void __init setup_per_cpu_areas(void)
861 {
862 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
863 	size_t atom_size;
864 	unsigned long delta;
865 	unsigned int cpu;
866 	int rc = -EINVAL;
867 
868 	/*
869 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
870 	 * to group units.  For larger mappings, use 1M atom which
871 	 * should be large enough to contain a number of units.
872 	 */
873 	if (mmu_linear_psize == MMU_PAGE_4K)
874 		atom_size = PAGE_SIZE;
875 	else
876 		atom_size = 1 << 20;
877 
878 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
879 		rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
880 					    pcpu_alloc_bootmem, pcpu_free_bootmem);
881 		if (rc)
882 			pr_warn("PERCPU: %s allocator failed (%d), "
883 				"falling back to page size\n",
884 				pcpu_fc_names[pcpu_chosen_fc], rc);
885 	}
886 
887 	if (rc < 0)
888 		rc = pcpu_page_first_chunk(0, pcpu_alloc_bootmem, pcpu_free_bootmem,
889 					   pcpu_populate_pte);
890 	if (rc < 0)
891 		panic("cannot initialize percpu area (err=%d)", rc);
892 
893 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
894 	for_each_possible_cpu(cpu) {
895                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
896 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
897 	}
898 }
899 #endif
900 
901 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
902 unsigned long memory_block_size_bytes(void)
903 {
904 	if (ppc_md.memory_block_size)
905 		return ppc_md.memory_block_size();
906 
907 	return MIN_MEMORY_BLOCK_SIZE;
908 }
909 #endif
910 
911 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
912 struct ppc_pci_io ppc_pci_io;
913 EXPORT_SYMBOL(ppc_pci_io);
914 #endif
915 
916 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
917 u64 hw_nmi_get_sample_period(int watchdog_thresh)
918 {
919 	return ppc_proc_freq * watchdog_thresh;
920 }
921 #endif
922 
923 /*
924  * The perf based hardlockup detector breaks PMU event based branches, so
925  * disable it by default. Book3S has a soft-nmi hardlockup detector based
926  * on the decrementer interrupt, so it does not suffer from this problem.
927  *
928  * It is likely to get false positives in VM guests, so disable it there
929  * by default too.
930  */
931 static int __init disable_hardlockup_detector(void)
932 {
933 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
934 	hardlockup_detector_disable();
935 #else
936 	if (firmware_has_feature(FW_FEATURE_LPAR))
937 		hardlockup_detector_disable();
938 #endif
939 
940 	return 0;
941 }
942 early_initcall(disable_hardlockup_detector);
943 
944 #ifdef CONFIG_PPC_BOOK3S_64
945 static enum l1d_flush_type enabled_flush_types;
946 static void *l1d_flush_fallback_area;
947 static bool no_rfi_flush;
948 static bool no_entry_flush;
949 static bool no_uaccess_flush;
950 bool rfi_flush;
951 bool entry_flush;
952 bool uaccess_flush;
953 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
954 EXPORT_SYMBOL(uaccess_flush_key);
955 
956 static int __init handle_no_rfi_flush(char *p)
957 {
958 	pr_info("rfi-flush: disabled on command line.");
959 	no_rfi_flush = true;
960 	return 0;
961 }
962 early_param("no_rfi_flush", handle_no_rfi_flush);
963 
964 static int __init handle_no_entry_flush(char *p)
965 {
966 	pr_info("entry-flush: disabled on command line.");
967 	no_entry_flush = true;
968 	return 0;
969 }
970 early_param("no_entry_flush", handle_no_entry_flush);
971 
972 static int __init handle_no_uaccess_flush(char *p)
973 {
974 	pr_info("uaccess-flush: disabled on command line.");
975 	no_uaccess_flush = true;
976 	return 0;
977 }
978 early_param("no_uaccess_flush", handle_no_uaccess_flush);
979 
980 /*
981  * The RFI flush is not KPTI, but because users will see doco that says to use
982  * nopti we hijack that option here to also disable the RFI flush.
983  */
984 static int __init handle_no_pti(char *p)
985 {
986 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
987 	handle_no_rfi_flush(NULL);
988 	return 0;
989 }
990 early_param("nopti", handle_no_pti);
991 
992 static void do_nothing(void *unused)
993 {
994 	/*
995 	 * We don't need to do the flush explicitly, just enter+exit kernel is
996 	 * sufficient, the RFI exit handlers will do the right thing.
997 	 */
998 }
999 
1000 void rfi_flush_enable(bool enable)
1001 {
1002 	if (enable) {
1003 		do_rfi_flush_fixups(enabled_flush_types);
1004 		on_each_cpu(do_nothing, NULL, 1);
1005 	} else
1006 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
1007 
1008 	rfi_flush = enable;
1009 }
1010 
1011 void entry_flush_enable(bool enable)
1012 {
1013 	if (enable) {
1014 		do_entry_flush_fixups(enabled_flush_types);
1015 		on_each_cpu(do_nothing, NULL, 1);
1016 	} else {
1017 		do_entry_flush_fixups(L1D_FLUSH_NONE);
1018 	}
1019 
1020 	entry_flush = enable;
1021 }
1022 
1023 void uaccess_flush_enable(bool enable)
1024 {
1025 	if (enable) {
1026 		do_uaccess_flush_fixups(enabled_flush_types);
1027 		static_branch_enable(&uaccess_flush_key);
1028 		on_each_cpu(do_nothing, NULL, 1);
1029 	} else {
1030 		static_branch_disable(&uaccess_flush_key);
1031 		do_uaccess_flush_fixups(L1D_FLUSH_NONE);
1032 	}
1033 
1034 	uaccess_flush = enable;
1035 }
1036 
1037 static void __ref init_fallback_flush(void)
1038 {
1039 	u64 l1d_size, limit;
1040 	int cpu;
1041 
1042 	/* Only allocate the fallback flush area once (at boot time). */
1043 	if (l1d_flush_fallback_area)
1044 		return;
1045 
1046 	l1d_size = ppc64_caches.l1d.size;
1047 
1048 	/*
1049 	 * If there is no d-cache-size property in the device tree, l1d_size
1050 	 * could be zero. That leads to the loop in the asm wrapping around to
1051 	 * 2^64-1, and then walking off the end of the fallback area and
1052 	 * eventually causing a page fault which is fatal. Just default to
1053 	 * something vaguely sane.
1054 	 */
1055 	if (!l1d_size)
1056 		l1d_size = (64 * 1024);
1057 
1058 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
1059 
1060 	/*
1061 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
1062 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
1063 	 * reliably avoid the prefetcher.
1064 	 */
1065 	l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
1066 						l1d_size, MEMBLOCK_LOW_LIMIT,
1067 						limit, NUMA_NO_NODE);
1068 	if (!l1d_flush_fallback_area)
1069 		panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
1070 		      __func__, l1d_size * 2, l1d_size, &limit);
1071 
1072 
1073 	for_each_possible_cpu(cpu) {
1074 		struct paca_struct *paca = paca_ptrs[cpu];
1075 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
1076 		paca->l1d_flush_size = l1d_size;
1077 	}
1078 }
1079 
1080 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
1081 {
1082 	if (types & L1D_FLUSH_FALLBACK) {
1083 		pr_info("rfi-flush: fallback displacement flush available\n");
1084 		init_fallback_flush();
1085 	}
1086 
1087 	if (types & L1D_FLUSH_ORI)
1088 		pr_info("rfi-flush: ori type flush available\n");
1089 
1090 	if (types & L1D_FLUSH_MTTRIG)
1091 		pr_info("rfi-flush: mttrig type flush available\n");
1092 
1093 	enabled_flush_types = types;
1094 
1095 	if (!cpu_mitigations_off() && !no_rfi_flush)
1096 		rfi_flush_enable(enable);
1097 }
1098 
1099 void setup_entry_flush(bool enable)
1100 {
1101 	if (cpu_mitigations_off())
1102 		return;
1103 
1104 	if (!no_entry_flush)
1105 		entry_flush_enable(enable);
1106 }
1107 
1108 void setup_uaccess_flush(bool enable)
1109 {
1110 	if (cpu_mitigations_off())
1111 		return;
1112 
1113 	if (!no_uaccess_flush)
1114 		uaccess_flush_enable(enable);
1115 }
1116 
1117 #ifdef CONFIG_DEBUG_FS
1118 static int rfi_flush_set(void *data, u64 val)
1119 {
1120 	bool enable;
1121 
1122 	if (val == 1)
1123 		enable = true;
1124 	else if (val == 0)
1125 		enable = false;
1126 	else
1127 		return -EINVAL;
1128 
1129 	/* Only do anything if we're changing state */
1130 	if (enable != rfi_flush)
1131 		rfi_flush_enable(enable);
1132 
1133 	return 0;
1134 }
1135 
1136 static int rfi_flush_get(void *data, u64 *val)
1137 {
1138 	*val = rfi_flush ? 1 : 0;
1139 	return 0;
1140 }
1141 
1142 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
1143 
1144 static int entry_flush_set(void *data, u64 val)
1145 {
1146 	bool enable;
1147 
1148 	if (val == 1)
1149 		enable = true;
1150 	else if (val == 0)
1151 		enable = false;
1152 	else
1153 		return -EINVAL;
1154 
1155 	/* Only do anything if we're changing state */
1156 	if (enable != entry_flush)
1157 		entry_flush_enable(enable);
1158 
1159 	return 0;
1160 }
1161 
1162 static int entry_flush_get(void *data, u64 *val)
1163 {
1164 	*val = entry_flush ? 1 : 0;
1165 	return 0;
1166 }
1167 
1168 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
1169 
1170 static int uaccess_flush_set(void *data, u64 val)
1171 {
1172 	bool enable;
1173 
1174 	if (val == 1)
1175 		enable = true;
1176 	else if (val == 0)
1177 		enable = false;
1178 	else
1179 		return -EINVAL;
1180 
1181 	/* Only do anything if we're changing state */
1182 	if (enable != uaccess_flush)
1183 		uaccess_flush_enable(enable);
1184 
1185 	return 0;
1186 }
1187 
1188 static int uaccess_flush_get(void *data, u64 *val)
1189 {
1190 	*val = uaccess_flush ? 1 : 0;
1191 	return 0;
1192 }
1193 
1194 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
1195 
1196 static __init int rfi_flush_debugfs_init(void)
1197 {
1198 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
1199 	debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush);
1200 	debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush);
1201 	return 0;
1202 }
1203 device_initcall(rfi_flush_debugfs_init);
1204 #endif
1205 #endif /* CONFIG_PPC_BOOK3S_64 */
1206